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CONTACT STRUCTURES ON
(n - 1)-CONNECTED {In + 1)-MANIFOLDS

H A N S J O R G G E I G E S

A contact structure on a {In + 1)-dimensional manifold M is
a completely non-integrable hyperplane distribution in the tangent
bundle TM, i.e. a distribution which is (at least locally) defined by
a 1-form a satisfying a A (da)n Φ 0 . An almost contact structure is
a reduction of the structure group of TM to U(«) x 1. Every contact
structure induces an almost contact structure.

Applying results of Eliashberg and Weinstein on contact surgery,
we show that an (n - l)-connected {In + l)-manifold is contact (to
be precise: almost diffeomorphic to a contact manifold) if and only if
it is almost contact.

1. Introduction. This paper is a sequel to [4], where we proved the
following result.

THEOREM 1. Let M be a simply-connected 5-manifold. Then M
admits a contact structure in every homotopy class of almost contact
structures.

As in [4], all manifolds are assumed to be closed, oriented and
smooth.

After the publication of [4], Eliashberg pointed out to me that he
had obtained results similar to mine (but far more general) in [1].
We shall use his results to extend Theorem 1 to all (n — 1)-connected
{In + l)-manifolds, which were classified by Wall [10] and Wilkens
[12]. This classification is only up to almost diffeomorphism, that is,
up to the connected sum with a homotopy sphere Σ 2 w + 1 e Θ2«+i, so
the statement corresponding to Theorem 1 has to be weakened slightly
in higher dimensions. Denote by bP2n+i the subgroup of the group
of homotopy spheres ©2«+i consisting of elements which bound a
parallelizable manifold. Our extension of Theorem 1 can then be
stated as

THEOREM 2. Let M be an {n - \)-connected {In + \)-manifold.
If n is even {or n = 1), then M is almost diffeomorphic to a

manifold M' which admits a contact structure in every homotopy class
of almost contact structures.

129



130 HANSJORG GEIGES

If n is odd, then M is almost dίffeomorphic to a manifold Mr which
admits a contact structure in every stable homotopy class of almost con-
tact structures. Furthermore, in each stable homotopy class of almost
contact structures, there are infinitely many contact structures [on Mf)
with pairwise non-homotopic underlying almost contact structure.

The properties of M' are preserved under the connected sum with
elements of bPin+i In particular, "almost diffeomorphism" may be re-
placed by" diffeomorphism" for n — 1, 2, 3, 5, where ®2n+\/bP2n+2 =
0.

See [9] for what was known on this problem a few years back.
The case n = 1 is the classical result of Lutz and Martinet [6]

(and there are no obstructions to an almost contact structure, since
all (orientable) 3-manifolds are parallelizable), so for the rest of this
paper we shall assume n > 2.

2. Contact surgery. In [4] we showed that an ft-sphere embedded in
a (2n + 1)-dimensional contact manifold can be C°-approximated by
an embedded Legendre sphere, that is, a sphere which is an integral
submanifold of the contact distribution . A result of Weinstein [11]
then allowed us to perform surgery along this Legendre sphere under
preservation of the contact structure. However, the applications of
this result were limited by the fact that Weinstein's construction does
not allow any choice of framing.

Eliashberg's [1] essential improvement on our result is achieved by
keeping track of the framing under this C°-approximation. In other
words, there is still no choice of framing in the basic surgery construc-
tion along a Legendre sphere, but different framings are realized by
different C°-approximations. Eliashberg states his theorem in terms
of Stein manifolds and pseudoconvex boundaries; for our purposes
we can rephrase it as

THEOREM 3 (Eliashberg). Let M be a {In + \)-manifold, n > 2,
obtained from S2n+ι by surgery along spheres of dimension <n. Then
M admits a contact structure in every stable homotopy class of almost
contact structures.

REMARK. The precise statement of Eliashberg's theorem and our
proof of Theorem 2 imply that the contact structures we obtain on
M' are symplectically (in fact, even holomorphically) fillable in the
sense of [2].
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3. Almost contact structures. Let M be a (In + 1)-dimensional
manifold. The obstructions to reducing the structure group of TM
to U(/ι) x 1 lie in H*(M\ π^_1(SO2 w+i/Uw)), 1 < q < In + 1. All
the coefficient groups are stable, so M is almost contact^jf, and only
if, it is stably almost complex. This allows us to use KU-theory to
study almost contact structures.

Suppose M is (n- l)-connected. Denote by M^n+X^ the (n + 1)-
skeleton of M and let XQ be a point in M(n+^. The Atiyah-
Hirzebruch spectral sequence in AΓ-theory for the pair (Λf^+ 1), XQ)
collapses at the ^-term, and we obtain the following commutative
diagram with exact rows

0 • Hn+ι(M;πn(U)) > KU(M{n+ι))

_
; πΛ(SO)) > KO(M{n+ι)) > Hn(M; π Λ _,(SO)) > 0,

where the vertical maps are the obvious ones.
The coefficient groups are as follows.

n mod 8 πn (U) πn (SO) πn (U) -> πw (SO)

0
1
2
3
4
5
6
7

0

z
0

z
0

z
0

z

z2z20

z
0
0
0

z

mod 2 reduction

identity

multiolication tr\

The spectral sequence for (Λf, x0) i n ^{/-theory also collapses at
the £2-term, and since H2n+ι(M; π2Λ(U)) = 0, there are^io new en-
tries^of total degree 0 in the JS^-page, so we may replace KU{M^nJt^)
by KU(M) in the diagram above.

For n ψ 0, 4 mod 8, the long exact sequence in ^-theory of the
pair (M9 M^n+^) reduces to the commutative diagram

KU(M)
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so there are no obstructions to an almost contact structure in
H2n+ι(M; π2/I(SO/U)) (note that here π2Λ(SO/U) = Z).

For n = 0, 4 mod 8, when π2 n(SO/U) = Z 2 , the vanishing of the
top obstruction is not obvious, but it can be deduced from the results
in the next section.

Following Wall [10], we denote by β and a the element in
Hn+ι(M\ MSO)) a n d Hn{M\ πΠ_i(SO)jj:espectively correspond-
ing to the stable tangent bundle of M in K0{M) in other words, a
and β are the obstructions to stable parallelizability.

For n = 1 mod 8 the short exact sequence for K0{M^n^) does
not split in general, so we cannot define β. However, in this case a
is identified as an obstruction to an almost contact structure, and β
is defined for ά = 0.

A case by case study of the first commutative diagram above then
yields

PROPOSITION 4. An (n-l)-connected (2n+l)-manifold M is almost
contact in the following cases:

(i) n = 0 mod 8, a even and β — 0,
(ii) n = 1 mod 8 and a — 0,

(iii) n = 2 mod 8 and δά = 0,
(iv) n = 3, 4, 5, 6 mod 8,
(v) n = Ί mod 8 and β is even.

In each case the mentioned conditions are necessary. The condition
in (v) is automatically satisfied for n — Ί.

Here δ denotes the Bockstein homomorphism associated to the

coefficient sequence 0 — > Z ^ Z - ^ Z 2 - + 0 .
Details of the proof of Proposition 4 can be found in [3].

4. (n - l)-connected (In + l)-manifolds. We first recall Wall's clas-
sification of [n - l)-connected {In + l)-manifolds [10, Theorem 7].
This classification contains certain exceptional cases, which have to be
distinguished by additional invariants. However, it is easy to see that
for n Φ 4 the exceptional cases violate the necessary conditions for
an almost contact structure, so we can ignore them.

For n — 4 there is an exceptional invariant ω e Z2 . Wall classifies
almost closed manifolds, that is, manifolds bounded by a homotopy
sphere Σ2n. If Σ2n £ bP2n+\, then the almost closed manifold can-
not be smoothly closed by attaching a (In + l)-disc. It can be shown
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that the invariant ω distinguishes between manifolds which can be
closed and those which cannot. Since the existence problem for con-
tact structures on open manifolds is covered by Gromov's Λ-principle
(cf. the remarks in [4]), we only have to consider closed manifolds;
hence we may treat the case n = 4 as non-exceptional.

THEOREM 5 {Wall). Let M be an (n - \)-connected (In + 1)-
manifold in the non-exceptional case, n > 2, n Φ 3, 7. Then M
is, up to almost diffeomorphism, determined by

A. homology invariants (essentially Hn(M\ Z) with its quadratic
structure),

B. tangential invariants
(i) άefPW π,.! (SO)),

(ii) βeH»+ι(M;πn(SO)),
(iii) For n φ 2, 6 even, φ e Hn+ι(M; Z2) = Hn(M; Z) ® Z 2 .

REMARKS, (i) Wall erroneously states that φ has to be defined for
n Φ 2, 4, $ even, but see the correction in [8]. There one can also
find a definition of φ, for which Wall referred to a paper that has
never been published.

(ii) In [10] it was left undecided whether the case n = 4 is excep-
tional. The fact that it is indeed exceptional, and that the excep-
tional invariant ω has the described properties, can be deduced from
the existence of an almost closed 4-connected 9-manifold M with
H4(M) = Z and a = 1 e π3(SO) = Z which cannot be closed. This
example is due to D. L. Frank, see [8].

The cases n = 3 and n = 7 are studied in [12]; for us it is enough
to know that here a is always zero.

We shall now give various geometric models of (n - 1)-connected
(2n + l)-manifolds M.

I. Manifolds M with a = 0. By [10, Theorem 8], M is (up to
almost diffeomorphism) obtained from 5 f 2 w + 1 by surgery along a link
of ^-spheres. Eliashberg's theorem tells us that M will be contact if
the tangential condition for an almost contact structure (as given in
Proposition 4) is satisfied.

We note one specific example. If Hn(M\ Z) = Z, a = β = 0,
φφO, then M is the cotangent sphere bundle of Sn+ι, which is well
known to be contact.

II. If Hn(M; Z ) S Z , φ = β = O, then M is an S"+1-bundle over
Sn, classified by α e πn_i(SO). So M is obtained from S2n+ι by
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surgery along a trivially embedded (n - l)-sphere, hence, by Eliash-
berg's theorem, it is again enough to satisfy the tangential condition.

III. Given an arbitrary M, write M = M\ #M2 with Hn{M\) free,
Hn(M2) pure torsion (such a splitting exists by Wall's classification).
Choose generators for Hn(Mχ) = Z θ / c . With respect to these gener-
ators, 6L{M\) can be written as {a\, . . . , ak) with α, G πn_i(SO);
φ{Mχ) can be written as {φ\, . . . , φ^) with φι e Z2 .

By changing our choice of generators, if necessary, we can always
ensure φ2 = = Φk = 0. Assume β{M\) = 0. Then Afi can be
written as the connected sum of manifolds of type II with possibly
one additional summand of the following type.

IV. Manifolds M with Hn(M; Z) = Z, a φ 0, φφ 0, β = 0. Let
Af; be the cotangent sphere bundle of Sn+ι. Then

Hn(M#M'; Z) = //«(M; Z) θ Hn{M' Z) ^ Z θ Z

with generators ^ , e2 , say. In terms of these generators, we have

ά{M# M') = (ά(Af), 0)

and

^ / ) = (1 ? 1).

Now change the generators to e\ — e\ and e2 = e\ + e2. In terms
of these generators we have

and

f/) = (O, 1).

This proves that M#M' is almost diίfeomorphic to N#N', where
TV is of type II and Nf of type I (in fact, N' is the cotangent sphere
bundle of Sn+ι again).

Suppose M satisfies the tangential conditions as laid down in
Proposition 4. Then the same holds for TV, so N#N' is obtained
from S2n+ι by surgery along a trivially embedded (n - l)-sphere
and a trivially embedded fl-sphere and admits a contact structure by
Eliashberg's theorem. To obtain M from M#Mf, we have to per-
form surgery along an embedded n -sphere representing the fibre of
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the cotangent sphere bundle M' of Sn+ι. Hence M is contact (up
to almost diffeomorphism) by Eliashberg's theorem.

We can now prove Theorem 2. Write M = M\ # M2 as in III. It
is a classical result of Meckert that the connected sum of two con-
tact manifolds is contact; this is also a special case of Weinstein's
theorem, namely, surgery along S°. We can therefore consider M\
and M2 separately. Furthermore, it is enough to deal with the case

(i) n ΞΞ 0 m o d 8 . We have ά e Hn(M; Z), so ά(M2) = 0. A
necessary condition for the existence of an almost contact structure is
β = 0. This implies that M\ is covered by II and IV, M2 is covered
by I.

(ii) n = 1 mod 8. The obstruction a has to vanish, so we are in
case I.

(iii) n = 2 mod 8. The condition δά = 0 implies ά(M2) — 0. So
the same remarks as in (i) apply (since β = 0).

(iv) n = 3, 5, 6, 7 mod 8. Here trivially a = 0, and hence we are
in case I again.

(v) n = 4 mod 8. Here we have a e Hn(M; Z) and β = 0, so
we are in the same situation as in (i).

Eliashberg's theorem gives us a contact structure in every stable ho-
motopy class of almost contact structures. The stronger statements
in Theorem 2 follow from the work of Sato [7]. He showed that an
element Σ 2 w + 1 of bP2n+i admits a contact structure in every homo-
topy class of almost contact structures if n is even (and there are only
finitely many such classes, classified by π2W+i(Sθ2rt+i/U>i)) > a n d that
j2n+\ a d m χ t s a contact structure in infinitely many different homotopy
classes of almost contact structures if n > 3 is odd.

By taking the connected sum with the (diίferentiably) standard
sphere S2n+X which is equipped with a contact structure whose un-
derlying almost contact structure is not homotopically standard, we
can thus change the homotopy class of the almost contact structure
underlying a contact structure on Mf (in the notation of Theorem 2).

The last statement of Theorem 2 is also clear from the remarks
above.

It remains to fill the small gap in the proof of Proposition 4; that
is, we have to show the vanishing of the top obstruction to an almost
contact structure in H2n+ι{M\ π2Λ(SO/U)) for n = 0, 4 mod 8. We
need the following lemma.
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LEMMA 6. (i) The top obstruction to an almost contact structure is
additive under the connected sum of manifolds (in particular: the con-
nected sum of two almost contact manifolds is almost contact).

(ii) A manifold which is almost diffeomorphic to an almost contact
manifold admits an almost contact structure.

Proof, (i) This follows directly from [5], where it is shown that the
top-dimensional obstruction to extending an X-structure (this con-
cept includes stable almost complex structures, non-singular vector
fields etc.), that is, the obstruction to extending an X-structure from
Mm - Dm to a closed manifold Mm, is additive if Sm admits an
X-structure. Now use the fact that S2n+ι admits an almost contact
structure for all n.

(ii) All homotopy spheres are stably parallelizable, so the odd-
dimensional ones admit an almost contact structure. Then apply (i).

The proof of Theorem 2 showed that, given a manifold M which
satisfies the tangential conditions for an almost contact structure over
the (n + l)-skeleton, we can find contact manifolds Mf, N and N'
such that M#M' is almost diffeomorphic to N#N'. Since the top
obstruction vanishes for M', N and Nf, Lemma 6 implies that the
same is true for M. This completes the proof of Proposition 4.
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