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JORDAN ANALOGS OF THE BURNSIDE
AND JACOBSON DENSITY THEOREMS

L. GRUNENFELDER, M. OLMLADIC AND H. RADJAVI

If sf is an (associative) algebra of linear operators on a vector
space, it is well known that 2-transitivity for J / implies density and,
in certain situations, transitivity guarantees 2-transitivity. In this
paper we consider analogs of these results for Jordan algebras of
linear operators with the standard Jordan product.

0. Introduction. Let ^{cPr) be the algebra of all linear operators
on a vector space Ψ* over the field F. A subset S? of ^{T') is
called transitive if S?x = *V for every nonzero x in Ψ*. More gen-
erally, S? is called ^-transitive if given linearly independent vectors
X\, X2, . . . , Xk and arbitrary vectors y\, yi, . . . , y^ in "V there ex-
ists a member S of S? such that Sxi — yx 9 i = 1, 2, . . . , k. If
5? is ^-transitive for every k, then it is called (strictly) dense. It is
a remarkable fact due to Jacobson [2] that if S? is an (associative)
subalgebra of S?^), then 2-transitivity implies density for arbitrary
F. In particular, if "V is finite-dimensional, then 2"^) is the only
2-transitive algebra on 2^. There are transitive algebras that are not
2-transitive even if F is algebraically closed. In the presence of cer-
tain conditions (e.g., topological) transitivity implies density. The
most well-known result of this kind is Burnside's theorem [3]: if Ψ*
is finite-dimensional and F is algebraically closed, then the only tran-
sitive algebra over "V is t2

p{c^r).
In this paper we consider analogs of these results for Jordan algebras

of operators: linear spaces si of operators such that A2 and ABA
belong to sf for all A and B in $f . If the characteristic of the field
F is different from 2, this is equivalent to the requirement that si be
closed under the Jordan bracket {A, B} = AB + BA. Over this kind
of field a Jordan algebra si may be equivalently defined as a linear
space closed under taking positive integral powers. For the sake of
completeness we include proofs of a few elementary facts obtainable
from the general theory of Jordan algebras [4].

In what follows we often find it convenient to view members of
as matrices over F; this should cause no confusion. The set

335



336 L. GRUNENFELDER, M. OLMLADIC AND H. RADJAVI

of all n x n matrices over F will be denoted by Jtn{¥). A member A
of J ? ( ^ ) (or Jtn(¥)) is called a projection or an idempotent element
if A2 = A.

1. Transitive Jordan algebras over arbitrary fields.

1.0. All the Jordan algebras si considered in this section are subal-
gebras of the algebra of all linear operators S?(^V) on a vector space
*V over a field F . In finite dimensions Jacobson's theorem says that
any 2-transitive associative algebra of linear operators of *V is all of
.2^(2^) [2]. The proof of this result for Jordan algebras of operators
needs some preparation.

1.1. PROPOSITION. Let si be a Jordan algebra of linear operators
on a vector space "V. Then:

(a) EsiE and (/ - E)si{I - E) are Jordan subalgebras of si for
every E in si.

(b) If 'V is finite dimensional and si is 2-transitive, then for every
subspace WofΎ* there exists a projection E esi such that EΎ' =
2Γ.

(c) If *V is finite dimensional and si is 2-transitivef then I esi .

Proof, (a) follows directly from the definition and from the obser-
vation that (/ - E)si{I -E) = A-EA-AE + EAE.

(b) Assume first that W is a 1-dimensional subspace. By 2-transiti-
vity there exists a singular A e <si such that AW = W. Choose A
to be of minimal rank having this property and write it in the form
A = / Θ N, where / is invertible and N is nilpotent. As all the
powers of A are in si and its rank is minimal, we have necessarily
that N = 0. The minimal polynomial p(t) = Σo<i<w f li ί ί °f ^
has nonzero constant term a$ because / is invertible. Thus, / =
^(Ί2\<i<mai^i)/ao i s ^ e identity operator on the range of A and
the idempotent E = -(Σ 1 < / < m ajA^/ao = / Θ θ is in si . Moreover,
rank E = rank ,4 and EW~=W. If the rank of E is strictly greater
than 1, then let E%? be a 1-dimensional subspace in the range of E
distinct from EW = W. By 2-transitivity there is a B e si such
that BEW = W and BESf = 0. But then EBEW = 3Γ and
EBESf = 0 so that the rank of EBE, which is in si by part (a),
is strictly smaller than the rank of A contradicting the minimality
assumption.

The rest follows by induction on the dimension of W. Let %? be
a subspace of codimension 1 in W and £ e i a projection such
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that EΨ* = Sf. Note that y = W n ker E has dimension 1 and that
.Let F€J/ be a projection such that F<V = ̂  then
where ^ = ker £ n ker F. Let /> be a projection in 5^

on W along ^ then N = E + F-P has square equal to zero and
therefore, P = 2(E + F)- (E + F)2 is in si . To get (c) take W = T
in (b). D

Some of the proofs of the following results could be shortened
slightly, at the expense of keeping the paper self-contained, by using
the Pierce decomposition associated with an idempotent.

1.2. THEOREM. Let sf be a Jordan algebra of linear operators on a
finite dimensional vector space Ψ*. Then stf is 2-transitive if and only

Proof. ̂ f{^) is clearly 2-transitive. The converse is proved by
induction on the dimension of *V. The assertion obviously holds
if dim 2^ = 2. So, let dim 2^ > 2. Let 8? be a 1-dimensional
subspace of *V and find by 1.1 (b) a projection E e si such that
E'V = %?. Next, find a 1-dimensional subspace ψ c ker is and
corresponding projection Fes/ such that FΎ* = y. It is clear
that EF = 0 and with no loss of generality we may assume that
FE = 0 as well, since otherwise, we could replace F by F - FE =
(/ - E)F(I - E) e s/ . The Jordan subalgebra 3B = (/ - E)s/ (I-E),
respectively ^ = (/ — F)sf{I - F), of sf can be viewed as a 2-
transitive algebra of operators on ker 2?, respectively keri7, and by
induction hypothesis 3S = ̂ (kerg 7 ), respectively W = Jΐ?(kerF).
The subalgebra W is also called the Pierce zero-space relative to F.
Choose now any T e £?{^) and let us show that T e srf. By 2-
transitivity we may assume with no loss of generality that ETF =
FTE = 0. But, then, T = R + S, where R = (I-E)T(I-E) e&
and S = ET+TE-ETE e ? . •

Theorem 1.2 can be generalized as follows for Jordan algebras of
finite rank operators. For a further strengthening of this result see
Theorem 3.4.

1.3. THEOREM. Let sf be a Jordan algebra of finite rank operators
on a vector space Ύ. If si is 2-transitive, then it is dense, i.e. n-
transitive for all n>\.

Proof. This can be done by reduction to the finite dimensional
case. Observe that the proof of 1.1. (b) remains valid if we replace
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the condition " "V is finite dimensional" by weaker conditions "2^ is
finite dimensional and the elements of sf have finite rank". There-
fore, we can find for every finite dimensional subspace W of Ύ*
a projection E in J / such that E*V = W. By 1.1.(a) EssfE is
a Jordan subalgebra of si and it is 2-transitive as a Jordan alge-
bra of operators on ET = W. Thus, £ ^ £ = &{W) by 1.2. If
vectors {xi, X2 > > *&} C 5^ are linearly independent and vectors
{JΊ > ;V2 > > y*} C 2^ a r e arbitrary, then apply this consideration to
the span W of these two sets of vectors. D

2. Some characterizations of proper transitive Jordan algebras.

2.0. In this section we shall assume that the characteristic of the
field F is different from 2. Let <5^(F) be the (transitive) Jordan
algebra of all symmetric nxn matrices over F. We give a proof that
if F is algebraically closed, then <5^(F) is, up to similarity, the only
proper transitive Jordan subalgebra of Jtn(¥). This, of course, does
not hold if F is not algebraically closed. However, for a formally
real closed field the algebra c5^(F) has no proper transitive Jordan
subalgebras. These results do not seem to be easily derivable from
Jacobson's general structure theorems for Jordan matrix algebras [4];
our presentation here is self-contained and elementary.

2.1. THEOREM. Let F be any formally real closed field. Then, the
only transitive Jordan algebra of symmetric nxn matrices over F is

Proof. We shall use induction on n. The assertion is trivial for
n = 1. So, assume si is a transitive Jordan subalgebra of *^(F)
with n>2. Let E be an idempotent of minimal positive rank in si .
Idempotents abound in si because in the spectral decomposition

for a member A of si , every E\ corresponding to a nonzero λ, is a
polynomial in 4̂ (with constant term zero) and thus belongs to si .
The existence of spectral decompositions in si follows from the fact
that F is real-closed [5].

The transitivity of si implies that it has nonscalar members, so
that E Φ I. Since E is symmetric there exists an invertible matrix
T with T~{ = T( such that

T-χET= , Q
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where k is the rank of E, 0 < k < n. Replacing si by T~xsiT we
can assume that

E - { o o)
Writing the corresponding matrix for a typical member of si

-(X Y'\
-\γ z) '

we observe that

= EAE-(I-E)A(I-E)=(^ _°z

and thus
1 0\

θ) a n d

are in J / . By Proposition 1.1 (a) we conclude that Es/E and
(/ - E)si(I - E) are Jordan subalgebras of sf they are also eas-
ily seen to be transitive on respective spaces imi? and ker£. Hence,
by the inductive hypothesis, Es/E = <9%(V) and (/ - E)s/{I -E) =
S^n_k(¥). This means that si contains all symmetric matrices of the
form (o M ) * n Particular, k = 1 by minimality. To complete the
proof observe that the transitivity of si forces it to contain a matrix
with an arbitrarily assigned first column. Thus, for a given ( n - l ) x l
matrix N there is a member (^ ^ ) in J / with some L and M.
Since by the argument above, L = V and M = Mt are arbitrary in
this expression, we have that si =<9*n(F). D

The following example shows that the hypothesis of real closure in
the theorem is needed. Let F be the field Q of rational numbers and

Then, si is a proper Jordan subalgebra of ^ ( Q ) . It is easily seen
that si is transitive: it is generated by / and

- 0 - • ) •
The minimal polynomial of A is irreducible over Q, and thus if
x is any nonzero vector, then the span of x and Ax is the whole
underlying space.

Our next theorem is a more general result in the case of algebraically
closed fields; it includes, as a corollary, the analog of the above theo-
rem. We need the following lemmas.
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2.2. LEMMA. Let si be a transitive Jordan algebra ofnxn matrices
over an algebraically closed field F. Then si contains an idempotent
of rank 1.

Proof. For n = 1 this is trivially true. We first prove it for n = 2.
Assume there is no idempotent of rank 1 in this case. This implies, by
considering spectral projections of matrices in si , that every member
of si has singleton spectrum, i.e., it is of the form N + al with N
nilpotent. Since the characteristic of F is different from 2, a member
of si is nilpotent if and only if it has trace zero.

If si consists of nilpotents alone, then 0 = (A + B)2 = A2 +
B2 + AB + BA = AB + BA for all A, B e si implying that if
B Φ 0, then its range is invariant under every A esi . Thus, si is
triangularizable; this contradicts the transitivity of si . Thus, we can
assume that si has an invertible member, which implies, by taking
an appropriate polynomial, that / e si. Hence, N is in si for
every N + al in si. Let sio be the set of all nilpotent elements
in the algebra. It follows that for A and B in sio and a e F, the
matrix A + aB has trace zero and is thus nilpotent. In particular
A + B is nilpotent and hence AB + BA = (A + B)2 - A2 - B2 = 0.
This shows that sio is a Jordan algebra. We see, as before, that sio is
triangularizable and so is si = si0 + ¥1, contradicting the transitivity
of si.

We can now assume n > 2. If si contains a nontrivial idempotent,
i.e., an idempotent E with 0 < ranki? < n, then by (1.1)(a) EsiE is
a Jordan subalgebra of si which is forced, by the transitivity of si ,
to be transitive as an algebra of operators acting on the range of E.
We conclude, by induction on n, that EsiE and thus si contain
idempotents of rank 1. To complete the proof we must only show the
existence of a nontrivial E.

Assume si contains no nontrivial idempotent. Then, as in the first
paragraph of the proof, every member of si is seen to be oi the form
N + al with N nilpotent. There must be nonzero nilpotent matrices
in si . (Just observe that if N+al e A with a φ 0, then, considering
the characteristic polynomial of this matrix, we show that I esi and
hence N e si. Surely si cannot consist of scalar matrices.) Let
N be a nilpotent member of si with minimal positive rank. Since
N2 has smaller rank than N, we must have iV2 = 0. We next show
that N has rank 1. Considering members of si as operators on 5^
and noting that the kernel of N contains its range, let Ύ\ be the
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range of N, Ψi a complement of Ψ[ in the kernel of N, and ^3 a
complement of ^ Θ 5^ in ^ With respect to the decomposition
^ = ^ ί θ ? 2 θ ^ 3 (where Ψi may of course be zero) and with an
appropriate choice of basis, N will have the form

'o 0 v
0 0 0

,0 0 0
where k is the rank of N . If the corresponding block matrix of a
typical A in si is (Λ;)^ , = i > then ΛMiV e ^ and its matrix equals

'0 0 A3i

0 0 0
,0 0 0

The matrix NAN-aN is a nilpotent member of si and all its blocks
except A$\ — al^ are zero. The minimality of the rank k forces
the block A^\ of every A to be scalar. But this would contradict
the transitivity of si if k > 1. Thus, k = 1. (These facts about
algebras consisting of scalar translations of nilpotent operators can
also be deduced from more sophisticated results on Jordan algebras

Finally, we shall exhibit a single member of si with an eigenvalue
1, showing that not every member of si is the sum of a nilpotent
and a scalar. To this end, pick x e f with Nx Φ 0. By transitivity,
there is an A e si such that A(Nx) = x. Then, N2 = 0 implies
(NA + AN)(Nx) = NANx = Nx. Since N has rank 1, the matrix
NA + AN has rank at most 2. Since n > 2, this matrix is a singular
member of si . D

2.3. LEMMA. If si satisfies the hypotheses of Lemma 2.2, then si
contains idempotents Eι, i — 1, 2, . . . , n, of rank one with EiEj = 0

Proof. We shall use induction on n. Let n > 2 and assume the
assertion true for n - 1. Let £1 = £ be an idempotent of rank one
in si as in Lemma 1.1. We can assume with no loss of generality
that E = diag(l, 0, . . . , 0). The Jordan algebra (/ - E)si{I - E) is
contained in si by Proposition 1.1 (a). Since it also acts transitively
on the range of / - E, which has dimension n - 1, we conclude from
the inductive hypothesis that (/ — E)si(I - E) contains idempotents
E2, . . . > En with the desired property. The proof is completed by
observing that EγEj = EjE{ = 0 for j > 2. D
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2.4. THEOREM. Let F be an algebraically closed field, and let si be
a transitive Jordan algebra of nxn matrices over F. Then either si =
Λίίi(F) or there exists an invertible matrix T such that T~xsiT =

Proof. We shall show first that si contains S^n(¥) up to a sim-
ilarity. By Lemma 2.3 we can assume that si contains diagonal
idempotents Ej of rank one: E\ = diag(l, 0, . . . , 0), . . . , En =
diag(0, . . . , 0, 1). Consider the special case of n = 2. In this case
the transitivity of si implies that its dimension is either 3 or 4. If
the dimension is 4, then si = ^ ( F ) if it is 3, then si contains a
nonzero matrix of the form ( ^ ) (after adding a suitable linear com-
bination of E\ and E2). Now, both s and t have to be nonzero by
transitivity. Thus, we have shown that, when n = 2, the algebra si
must contain a matrix of the above form with s = 1 and t Φ 0.

Returning now to the general case, let {A///} be the set of matrix
units, i.e., the only nonzero entry of My occurs at the (/, j) po-
sition and equals 1. Observe that for j > 1 the Jordan subalgebra
(Eι + Ej)sf(E\ + Ej) acts transitively on the 2-dimensional range of
E\ +Ej . As in the paragraph above, it must contain, together with E\
and Ej, at least one matrix of the form Aj = M\j + tjMjγ. Letting
T = diag(l, y/ti, . . . , y/ΰt), we see that the Jordan algebra Ts/T~ι

contains the symmetric matrices

(and, of course, E\, . . . , En).
If 1, i, and j are distinct, then Bu = BnBn +BnBn e TssfT'1.

Observe that Bu = Mij+Mμ. We have shown that Γ J / Γ " 1 contains
a basis for symmetric matrices. Hence, Ts/T~ι D c5^(F).

To complete the proof of the theorem it suffices to show that if si
contains J?^(F) properly, then si = J?n(W). Thus, assume si con-
tains a nonsymmetric matrix C = (cy). Some principal 2 x 2 sub-
matrix must be nonsymmetric and by passing from si to P~ιsiP,
where P is a permutation matrix, we can assume c^φ C2\. Observe
that the matrix

M=(Eλ+ E2)C(Eι + Ei) - cnEx - c22E2 - c2ιB2ι

belongs to si and is a nonzero scalar multiple of M 1 2 . We shall
show that My e si , /, j = 1, . . . , n. Every Ma is in si and we
have just seen that M\2 and hence M2\ = B2\ - Mn are in si.
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For j > 2, M\j — Mι2B2j + B2jMi2, and MjX = Bj\ - M\j which
implies that M\j and Mj\ are in sf . Similarly, for j > i > 1,
Mji = MuBjι + BjXM\i, and Λfz 7 = 2?/, - A/)z- so that A/)/ and Mtj

are in j / . D

2.5. COROLLARY. Lei F be an algebraically closed field. If sf is
a transitive Jordan algebra of symmetric n x n matrices over F, then

) : β * e Q ί / ) }

The example given after Theorem 2.1 can be modified to show that
the algebraic closure hypothesis is essential in the preceding result.
Consider Q(i) instead of Q and let

* Λ
Then, s/ is a proper Jordan subalgebra of S^2(Q(i)) it is also tran-
sitive.

The following example shows that the assumption charF Φ 2 is es-
sential in the results above: the 3-dimensional Jordan algebra spanned
over F 2 by {/, M\2, M2\} is transitive and contains no idempotent
of rank 1.

3. Results on ideals.

3.0. We continue to assume that the characteristic of the field F
is different from 2. In the associative algebra case some transitivity
properties are inherited by ideals. This is of course trivial if dim Ψ*
is finite, since then Sfi^) is simple. In the Jordan case, restriction
to ideals seems to be accompanied with some loss of transitivity. The
following result is well known for general associative algebras [2].

3.1. PROPOSITION. Let ^ Φ 0 be an ideal in an associative algebra

stf of operators on a vector space ^ . If sf is n-transitive, then so is

f

Here are our results on this question for Jordan algebras of linear
operators and their Jordan ideals.

3.2. THEOREM. Every Jordan ideal β~ φ 0 of an (n + \)-transitive
Jordan algebra szf of operators on a vector space 2^ is n-transitive,
n>\.

Proof. If T is (n + 1)-dimensional then J / = &W) and, by [1,
Theorem 1], we have ^ — si . So, assume with no loss of generality



344 L. GRUNENFELDER, M. OLMLADIC AND H. RADJAVI

that "V contains n + 2 linearly independent vectors. Fix a linearly
independent set of vectors {xi, ... , xn} c Ψ* and let Sf and y be
the span of {x\, ... 9 xn} and of {xi, ... , xn-\] , respectively. We
will show first that

(a) 3/ ef such that jy = 0, Jxn $ ST.
Assume the contrary; then

(b) / e f and Jψ = 0 implies Jxn e &.
Then, for any A e JZ? such that Ay = 0 it holds that K = JA + AJ
is in f and that Ky = 0. Therefore by (b), Kxn belongs to %?.
Let a be such that Kxn = (/ + a)Axn. Since J / is n-transitive, ̂ 1
may be chosen so that it satisfies the required conditions and that Axn

is an arbitrary vector in *V. This shows that
(c) jy = 0 implies (/ + a)T C %? for some a.

Thus,
J = - α +

for some linear functional fxί, / = 1, . . . ,« . But then, for an arbi-
trary i 4 € J / with ^ J ^ = 0 define K as above and use the expression
for / to get

K = -2α,4 + Axn ®fn+ Σ Xi® f\A.
\<i<n

Thus K belongs to f and K^ = 0. Hence, by (c), it must be of
the same form as / , i.e.,

\<i<n

Now, we choose vectors u, v e "V such that {x\, ... , xn, u, v} are
linearly independent, and find an A e si such that Ay = 0, and
that Axn = w, 4̂w = v . Then

\<i<n

which forces a = 0. A similar argument with K playing the role of
/ shows that β = 0. Also, using the freedom in the choice of u,
we conclude that fn is trivial. Thus, from the fact that (b) holds for
every / G J? we obtain

(d) / G / and jy = 0 implies JT <zy.
The conclusion (d) contradicts the assumption that f Φ 0 in case

π = 1. In other words, we have shown that given x φ 0, there is
a / G ̂  such that x and /x are linearly independent. Observe
that this proves the theorem for n = 1: if x φ 0 and y are given
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and / G f is such that x and Jx are linearly independent, then by
2-transitivity choose an A e si with Ax = x and AJx = y - Jx.
Then Λ/ + Λ4 e ,/" and (AJ + JA)x = j ; .

Assume now for ft > 1 inductively that </ is (n-Intransitive and
find an E G ̂  such that isxz = x*, / = 1 , . . . , n-1. As E2 G J? and
equals E on ^ , we have by (d) that (E - £ 2 ) ^ c y . Assume now
that there exists a vector w e f such that u and Eu do not belong to
y . It follows from {E-E2)T c | < that £2w equals the sum of Eu
and a vector from ^ (so E2u φ y). By ^-transitivity of si find an
A esf such that Λ tj = x\, / = l , . . . , n - l 5 and 4̂i?w = 0. This
implies for # = EA + AE G ̂  that Kxt = 2xi9 i = 1, . . . , n - 1
and KEu G J ^ . Hence, K - 2E annihilates y and its image is not
contained in ψ 9 because (K-2E)Eu equals the sum of -2E2u and
a vector from y , contradicting (d). The freedom in the choice of u
shows that for every E G JF such that Ex\ = xx 9 i = 1, . . . , n-1, we
have necessarily that EΨ* c ψ and J? is a projection on y . Choose
now a nonzero vector w G kerls and find by (n + l)-transitivity of
sf an A G sf such that Ax\ = w, ylx/ = 0, / = 2 , . . . , n - l , and
ί̂w = xι. Then, A: = EA+AE-2EAE G ̂ , and ΛJCI = w, AΓx/ = 0,

i = 2, . . . , n - 1 , and Ku = x{. It follows for L = K2-EK2EeJr

that LJ^ = 0 and Lu = u contradicting (d). Consequently, we have
shown that (b) leads to a contradiction and we have (a). So, fix a
/ G f such that j y = 0 and /*„ £ «T. Now, pick by (Λ + 1)-
transitivity of J / an 4̂ G J/ such that ASf = 0, and AJxn = w an
arbitrary vector from Ύ*. Thus, for K = AJ + JAeJ" we have that
^ J / = 0, and Kxn = JAxn +AJxn = w. The n-transitivity of Jf in
the theorem now follows easily by cyclicly permuting the vectors x z,
/ = 1, . . . , n and taking sums of corresponding operators K. D

The following result can also be obtained from work of Osborn and
Racine [7].

3.3. COROLLARY. Every Jordan ideal of a dense Jordan algebra is
dense.

3.4. THEOREM. Let si be a 2-transitive Jordan algebra of operators
on a vector space Ψ*. If si contains at least one operator of finite
rank, then the Jordan ideal <f of all finite rank operators of si is
strictly dense, and so is si .

Proof. Assume with no loss of generality that "V is not finite di-
mensional. By 3.2 f is transitive. Thus, we may find an £ G /
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such that Ex = x and such that it is of minimal rank with this prop-
erty. Similarly as in the proof of l.l.(b), we may find that E is a
projection of rank one and that for every finite dimensional subspace
W of T we may find a projection £ G / such that E<V = W.
Now, for any {x, y} linearly independent and {u, υ} arbitrary vec-
tors of "V, let W denote the linear span of these four vectors and
let £ G / be the corresponding projection. Use 2-transitivity of J /
to find AES& such that Ax = u and Ay = υ , use 1.1.(a) to see that
B = EAE e β", and observe that again Bx = u and By = v . Thus,
^ is 2-transitive and it is strictly dense by 1.3. •

The reader will no doubt have noticed that we left the following
questions unanswered.

Question 1. Is there an n-transitive Jordan algebra si with a Jordan
ideal J" φO which is not ^-transitive?

Question 2. Is there an ^-transitive Jordan algebra which is not
(n + 1)-transitive for any n > 2?
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