JORDAN ANALOGS OF THE BURNSIDE AND JACOBSON DENSITY THEOREMS

L. Grunenfelder, M. Olmladič and H. Radjavi

If $\mathscr A$ is an (associative) algebra of linear operators on a vector space, it is well known that 2-transitivity for $\mathscr A$ implies density and, in certain situations, transitivity guarantees 2-transitivity. In this paper we consider analogs of these results for Jordan algebras of linear operators with the standard Jordan product.

0. Introduction. Let $\mathcal{L}(\mathcal{V})$ be the algebra of all linear operators on a vector space $\mathcal V$ over the field $\mathbb F$. A subset $\mathcal S$ of $\mathcal L(\mathcal V)$ is called transitive if $\mathcal{S}x = \mathcal{V}$ for every nonzero x in \mathcal{V} . More generally, \mathcal{S} is called k-transitive if given linearly independent vectors x_1, x_2, \ldots, x_k and arbitrary vectors y_1, y_2, \ldots, y_k in \mathcal{V} there exists a member S of \mathcal{S} such that $Sx_i = y_i, i = 1, 2, ..., k$. If \mathcal{S} is k-transitive for every k, then it is called (strictly) dense. It is a remarkable fact due to Jacobson [2] that if \mathcal{S} is an (associative) subalgebra of $\mathscr{L}(\mathscr{V})$, then 2-transitivity implies density for arbitrary **F**. In particular, if \mathcal{V} is finite-dimensional, then $\mathcal{L}(\mathcal{V})$ is the only 2-transitive algebra on \mathcal{V} . There are transitive algebras that are not 2-transitive even if \mathbb{F} is algebraically closed. In the presence of certain conditions (e.g., topological) transitivity implies density. The most well-known result of this kind is Burnside's theorem [3]: if \mathcal{V} is finite-dimensional and F is algebraically closed, then the only transitive algebra over \mathscr{V} is $\mathscr{L}(\mathscr{V})$.

In this paper we consider analogs of these results for Jordan algebras of operators: linear spaces $\mathscr A$ of operators such that A^2 and ABA belong to $\mathscr A$ for all A and B in $\mathscr A$. If the characteristic of the field $\mathbb F$ is different from 2, this is equivalent to the requirement that $\mathscr A$ be closed under the Jordan bracket $\{A, B\} = AB + BA$. Over this kind of field a Jordan algebra $\mathscr A$ may be equivalently defined as a linear space closed under taking positive integral powers. For the sake of completeness we include proofs of a few elementary facts obtainable from the general theory of Jordan algebras [4].

In what follows we often find it convenient to view members of $\mathcal{L}(\mathcal{V})$ as matrices over \mathbb{F} ; this should cause no confusion. The set

of all $n \times n$ matrices over \mathbb{F} will be denoted by $\mathcal{M}_n(\mathbb{F})$. A member A of $\mathcal{L}(\mathcal{V})$ (or $\mathcal{M}_n(\mathbb{F})$) is called a projection or an idempotent element if $A^2 = A$.

1. Transitive Jordan algebras over arbitrary fields.

- 1.0. All the Jordan algebras $\mathscr A$ considered in this section are subalgebras of the algebra of all linear operators $\mathscr L(\mathscr V)$ on a vector space $\mathscr V$ over a field $\mathbb F$. In finite dimensions Jacobson's theorem says that any 2-transitive associative algebra of linear operators of $\mathscr V$ is all of $\mathscr L(\mathscr V)$ [2]. The proof of this result for Jordan algebras of operators needs some preparation.
- 1.1. Proposition. Let $\mathscr A$ be a Jordan algebra of linear operators on a vector space $\mathscr V$. Then:
- (a) $E \mathscr{A} E$ and $(I E) \mathscr{A} (I E)$ are Jordan subalgebras of \mathscr{A} for every E in \mathscr{A} .
- (b) If $\mathscr V$ is finite dimensional and $\mathscr A$ is 2-transitive, then for every subspace $\mathscr W$ of $\mathscr V$ there exists a projection $E\in\mathscr A$ such that $E\mathscr V=\mathscr W$.
 - (c) If \mathscr{V} is finite dimensional and \mathscr{A} is 2-transitive, then $I \in \mathscr{A}$.
- *Proof.* (a) follows directly from the definition and from the observation that $(I E) \mathscr{A} (I E) = A EA AE + EAE$.
- (b) Assume first that \mathcal{W} is a 1-dimensional subspace. By 2-transitivity there exists a singular $A \in \mathcal{A}$ such that AW = W. Choose A to be of minimal rank having this property and write it in the form $A = J \oplus N$, where J is invertible and N is nilpotent. As all the powers of A are in \mathcal{A} and its rank is minimal, we have necessarily that N = 0. The minimal polynomial $p(t) = \sum_{0 \le i \le m} a_i t^i$ of Jhas nonzero constant term a_0 because J is invertible. Thus, I = $-(\sum_{1\leq i\leq m}a_iJ^i)/a_0$ is the identity operator on the range of A and the idempotent $E = -(\sum_{1 \le i \le m} a_i A^i)/a_0 = I \oplus 0$ is in \mathscr{A} . Moreover, rank $E = \operatorname{rank} A$ and EW = W. If the rank of E is strictly greater than 1, then let $E\mathscr{X}$ be a 1-dimensional subspace in the range of Edistinct from $E\mathscr{W} = \mathscr{W}$. By 2-transitivity there is a $B \in \mathscr{A}$ such that BEW = W and $BE\mathcal{X} = 0$. But then EBEW = W and $EBE\mathscr{X} = 0$ so that the rank of EBE, which is in \mathscr{A} by part (a), is strictly smaller than the rank of A contradicting the minimality assumption.

The rest follows by induction on the dimension of \mathcal{W} . Let \mathcal{X} be a subspace of codimension 1 in \mathcal{W} and $E \in \mathcal{A}$ a projection such

that $E\mathscr{V}=\mathscr{X}$. Note that $\mathscr{Y}=\mathscr{W}\cap\ker E$ has dimension 1 and that $\mathscr{W}=\mathscr{X}\oplus\mathscr{Y}$. Let $F\in\mathscr{A}$ be a projection such that $F\mathscr{V}=\mathscr{Y}$; then $\mathscr{V}=\mathscr{W}\oplus\mathscr{U}$, where $\mathscr{U}=\ker E\cap\ker F$. Let P be a projection in \mathscr{V} on \mathscr{W} along \mathscr{U} ; then N=E+F-P has square equal to zero and therefore, $P=2(E+F)-(E+F)^2$ is in \mathscr{A} . To get (c) take $\mathscr{W}=\mathscr{V}$ in (b).

Some of the proofs of the following results could be shortened slightly, at the expense of keeping the paper self-contained, by using the Pierce decomposition associated with an idempotent.

1.2. Theorem. Let $\mathscr A$ be a Jordan algebra of linear operators on a finite dimensional vector space $\mathscr V$. Then $\mathscr A$ is 2-transitive if and only if $\mathscr A=\mathscr L(\mathscr V)$.

Proof. $\mathcal{L}(\mathcal{V})$ is clearly 2-transitive. The converse is proved by induction on the dimension of \mathcal{V} . The assertion obviously holds if $\dim \mathcal{V} = 2$. So, let $\dim \mathcal{V} > 2$. Let \mathcal{X} be a 1-dimensional subspace of \mathcal{V} and find by 1.1(b) a projection $E \in \mathcal{A}$ such that $E\mathscr{V} = \mathscr{X}$. Next, find a 1-dimensional subspace $\mathscr{Y} \subset \ker E$ and corresponding projection $F \in \mathcal{A}$ such that $F\mathcal{V} = \mathcal{Y}$. It is clear that EF = 0 and with no loss of generality we may assume that FE = 0 as well, since otherwise, we could replace F by F - FE = $(I-E)F(I-E) \in \mathcal{A}$. The Jordan subalgebra $\mathcal{B} = (I-E)\mathcal{A}(I-E)$, respectively $\mathscr{C} = (I - F)\mathscr{A}(I - F)$, of \mathscr{A} can be viewed as a 2transitive algebra of operators on $\ker E$, respectively $\ker F$, and by induction hypothesis $\mathscr{B} = \mathscr{L}(\ker \mathscr{E})$, respectively $\mathscr{E} = \mathscr{L}(\ker F)$. The subalgebra $\mathscr E$ is also called the Pierce zero-space relative to F. Choose now any $T \in \mathcal{L}(\mathcal{V})$ and let us show that $T \in \mathcal{A}$. By 2transitivity we may assume with no loss of generality that ETF =FTE = 0. But, then, T = R + S, where $R = (I - E)T(I - E) \in \mathcal{B}$ and $S = ET + TE - ETE \in \mathscr{C}$.

Theorem 1.2 can be generalized as follows for Jordan algebras of finite rank operators. For a further strengthening of this result see Theorem 3.4.

1.3. Theorem. Let $\mathscr A$ be a Jordan algebra of finite rank operators on a vector space $\mathscr V$. If $\mathscr A$ is 2-transitive, then it is dense, i.e. n-transitive for all $n \geq 1$.

Proof. This can be done by reduction to the finite dimensional case. Observe that the proof of 1.1.(b) remains valid if we replace

the condition " $\mathscr V$ is finite dimensional" by weaker conditions " $\mathscr V$ is finite dimensional and the elements of $\mathscr A$ have finite rank". Therefore, we can find for every finite dimensional subspace $\mathscr W$ of $\mathscr V$ a projection E in $\mathscr A$ such that $E\mathscr V=\mathscr W$. By 1.1.(a) $E\mathscr AE$ is a Jordan subalgebra of $\mathscr A$ and it is 2-transitive as a Jordan algebra of operators on $E\mathscr V=\mathscr W$. Thus, $E\mathscr AE=\mathscr L(\mathscr W)$ by 1.2. If vectors $\{x_1,x_2,\ldots,x_k\}\subset \mathscr V$ are linearly independent and vectors $\{y_1,y_2,\ldots,y_k\}\subset \mathscr V$ are arbitrary, then apply this consideration to the span $\mathscr W$ of these two sets of vectors.

2. Some characterizations of proper transitive Jordan algebras.

- 2.0. In this section we shall assume that the characteristic of the field \mathbb{F} is different from 2. Let $\mathcal{S}_n(\mathbb{F})$ be the (transitive) Jordan algebra of all symmetric $n \times n$ matrices over \mathbb{F} . We give a proof that if \mathbb{F} is algebraically closed, then $\mathcal{S}_n(\mathbb{F})$ is, up to similarlity, the only proper transitive Jordan subalgebra of $\mathcal{M}_n(\mathbb{F})$. This, of course, does not hold if \mathbb{F} is not algebraically closed. However, for a formally real closed field the algebra $\mathcal{S}_n(\mathbb{F})$ has no proper transitive Jordan subalgebras. These results do not seem to be easily derivable from Jacobson's general structure theorems for Jordan matrix algebras [4]; our presentation here is self-contained and elementary.
- 2.1. Theorem. Let \mathbb{F} be any formally real closed field. Then, the only transitive Jordan algebra of symmetric $n \times n$ matrices over \mathbb{F} is $\mathcal{S}_n(\mathbb{F})$.

Proof. We shall use induction on n. The assertion is trivial for n=1. So, assume $\mathscr A$ is a transitive Jordan subalgebra of $\mathscr S_n(\mathbb F)$ with $n\geq 2$. Let E be an idempotent of minimal positive rank in $\mathscr A$. Idempotents abound in $\mathscr A$ because in the spectral decomposition

$$A = \sum \lambda_i E_i, \quad E_i^2 = E_i, \quad E_i E_j = 0, \quad i \neq j,$$

for a member A of \mathscr{A} , every E_i corresponding to a nonzero λ_i is a polynomial in A (with constant term zero) and thus belongs to \mathscr{A} . The existence of spectral decompositions in \mathscr{A} follows from the fact that \mathbb{F} is real-closed [5].

The transitivity of \mathscr{A} implies that it has nonscalar members, so that $E \neq I$. Since E is symmetric there exists an invertible matrix T with $T^{-1} = T^t$ such that

$$T^{-1}ET = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix} ,$$

where k is the rank of E, 0 < k < n. Replacing $\mathscr A$ by $T^{-1}\mathscr A T$ we can assume that

$$E = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}.$$

Writing the corresponding matrix for a typical member of \mathscr{A}

$$A = \begin{pmatrix} X & Y' \\ Y & Z \end{pmatrix} \,,$$

we observe that

$$B = EAE - (I - E)A(I - E) = \begin{pmatrix} X & 0 \\ 0 & -Z \end{pmatrix} \in \mathscr{A},$$

and thus

$$\frac{1}{2}(BE + EB) = \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} - B = \begin{pmatrix} 0 & 0 \\ 0 & Z \end{pmatrix}$$

are in \mathscr{A} . By Proposition 1.1(a) we conclude that $E\mathscr{A}E$ and $(I-E)\mathscr{A}(I-E)$ are Jordan subalgebras of \mathscr{A} ; they are also easily seen to be transitive on respective spaces im E and $\ker E$. Hence, by the inductive hypothesis, $E\mathscr{A}E = \mathscr{S}_k(\mathbb{F})$ and $(I-E)\mathscr{A}(I-E) = \mathscr{S}_{n-k}(\mathbb{F})$. This means that \mathscr{A} contains all symmetric matrices of the form $\begin{pmatrix} L & 0 \\ 0 & M \end{pmatrix}$. In particular, k=1 by minimality. To complete the proof observe that the transitivity of \mathscr{A} forces it to contain a matrix with an arbitrarily assigned first column. Thus, for a given $(n-1)\times 1$ matrix N there is a member $\begin{pmatrix} L & N' \\ N & M \end{pmatrix}$ in \mathscr{A} with some L and M. Since by the argument above, $L=L^t$ and $M=M^t$ are arbitrary in this expression, we have that $\mathscr{A}=\mathscr{S}_n(\mathbb{F})$.

The following example shows that the hypothesis of real closure in the theorem is needed. Let \mathbb{F} be the field \mathbb{Q} of rational numbers and

$$\mathscr{A} = \left\{ \begin{pmatrix} a+b & b \\ b & a-b \end{pmatrix} : a, b \in \mathbb{Q} \right\}.$$

Then, $\mathscr A$ is a proper Jordan subalgebra of $\mathscr S_2(\mathbb Q)$. It is easily seen that $\mathscr A$ is transitive: it is generated by I and

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

The minimal polynomial of A is irreducible over \mathbb{Q} , and thus if x is any nonzero vector, then the span of x and Ax is the whole underlying space.

Our next theorem is a more general result in the case of algebraically closed fields; it includes, as a corollary, the analog of the above theorem. We need the following lemmas.

2.2. Lemma. Let $\mathscr A$ be a transitive Jordan algebra of $n \times n$ matrices over an algebraically closed field $\mathbb F$. Then $\mathscr A$ contains an idempotent of rank 1.

Proof. For n=1 this is trivially true. We first prove it for n=2. Assume there is no idempotent of rank 1 in this case. This implies, by considering spectral projections of matrices in $\mathscr A$, that every member of $\mathscr A$ has singleton spectrum, i.e., it is of the form $N+\alpha I$ with N nilpotent. Since the characteristic of $\mathbb F$ is different from 2, a member of $\mathscr A$ is nilpotent if and only if it has trace zero.

If $\mathscr A$ consists of nilpotents alone, then $0=(A+B)^2=A^2+B^2+AB+BA=AB+BA$ for all A, $B\in\mathscr A$ implying that if $B\neq 0$, then its range is invariant under every $A\in\mathscr A$. Thus, $\mathscr A$ is triangularizable; this contradicts the transitivity of $\mathscr A$. Thus, we can assume that $\mathscr A$ has an invertible member, which implies, by taking an appropriate polynomial, that $I\in\mathscr A$. Hence, N is in $\mathscr A$ for every $N+\alpha I$ in $\mathscr A$. Let $\mathscr A_0$ be the set of all nilpotent elements in the algebra. It follows that for A and B in $\mathscr A_0$ and $\alpha\in\mathbb F$, the matrix $A+\alpha B$ has trace zero and is thus nilpotent. In particular A+B is nilpotent and hence $AB+BA=(A+B)^2-A^2-B^2=0$. This shows that $\mathscr A_0$ is a Jordan algebra. We see, as before, that $\mathscr A_0$ is triangularizable and so is $\mathscr A=\mathscr A_0+\mathbb F I$, contradicting the transitivity of $\mathscr A$.

We can now assume n > 2. If $\mathscr A$ contains a nontrivial idempotent, i.e., an idempotent E with $0 < \operatorname{rank} E < n$, then by (1.1)(a) $E \mathscr A E$ is a Jordan subalgebra of $\mathscr A$ which is forced, by the transitivity of $\mathscr A$, to be transitive as an algebra of operators acting on the range of E. We conclude, by induction on n, that $E \mathscr A E$ and thus $\mathscr A$ contain idempotents of rank 1. To complete the proof we must only show the existence of a nontrivial E.

Assume \mathscr{A} contains no nontrivial idempotent. Then, as in the first paragraph of the proof, every member of \mathscr{A} is seen to be or the form $N+\alpha I$ with N nilpotent. There must be nonzero nilpotent matrices in \mathscr{A} . (Just observe that if $N+\alpha I\in A$ with $\alpha\neq 0$, then, considering the characteristic polynomial of this matrix, we show that $I\in \mathscr{A}$ and hence $N\in \mathscr{A}$. Surely \mathscr{A} cannot consist of scalar matrices.) Let N be a nilpotent member of \mathscr{A} with minimal positive rank. Since N^2 has smaller rank than N, we must have $N^2=0$. We next show that N has rank 1. Considering members of \mathscr{A} as operators on \mathscr{V} and noting that the kernel of N contains its range, let \mathscr{V}_1 be the

range of N, \mathcal{V}_2 a complement of \mathcal{V}_1 in the kernel of N, and \mathcal{V}_3 a complement of $\mathcal{V}_1 \oplus \mathcal{V}_2$ in \mathcal{V} . With respect to the decomposition $\mathcal{V} = \mathcal{V}_1 \oplus \mathcal{V}_2 \oplus \mathcal{V}_3$ (where \mathcal{V}_2 may of course be zero) and with an appropriate choice of basis, N will have the form

$$\begin{pmatrix} 0 & 0 & I_k \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

where k is the rank of N. If the corresponding block matrix of a typical A in \mathscr{A} is $(A_{ij})_{i,j=1}^3$, then $NAN \in \mathscr{A}$ and its matrix equals

$$\begin{pmatrix} 0 & 0 & A_{31} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

The matrix $NAN - \alpha N$ is a nilpotent member of \mathscr{A} and all its blocks except $A_{31} - \alpha I_k$ are zero. The minimality of the rank k forces the block A_{31} of every A to be scalar. But this would contradict the transitivity of \mathscr{A} if k > 1. Thus, k = 1. (These facts about algebras consisting of scalar translations of nilpotent operators can also be deduced from more sophisticated results on Jordan algebras [6].)

Finally, we shall exhibit a single member of \mathscr{A} with an eigenvalue 1, showing that not every member of \mathscr{A} is the sum of a nilpotent and a scalar. To this end, pick $x \in \mathscr{V}$ with $Nx \neq 0$. By transitivity, there is an $A \in \mathscr{A}$ such that A(Nx) = x. Then, $N^2 = 0$ implies (NA + AN)(Nx) = NANx = Nx. Since N has rank 1, the matrix NA + AN has rank at most 2. Since n > 2, this matrix is a singular member of \mathscr{A} .

2.3. LEMMA. If $\mathscr A$ satisfies the hypotheses of Lemma 2.2, then $\mathscr A$ contains idempotents E_i , $i=1,2,\ldots,n$, of rank one with $E_iE_j=0$ for $i\neq j$.

Proof. We shall use induction on n. Let $n \ge 2$ and assume the assertion true for n-1. Let $E_1 = E$ be an idempotent of rank one in $\mathscr A$ as in Lemma 1.1. We can assume with no loss of generality that $E = \operatorname{diag}(1, 0, \ldots, 0)$. The Jordan algebra $(I - E)\mathscr A(I - E)$ is contained in $\mathscr A$ by Proposition 1.1(a). Since it also acts transitively on the range of I - E, which has dimension n-1, we conclude from the inductive hypothesis that $(I - E)\mathscr A(I - E)$ contains idempotents E_2, \ldots, E_n with the desired property. The proof is completed by observing that $E_1E_j = E_jE_1 = 0$ for $j \ge 2$.

2.4. Theorem. Let \mathbb{F} be an algebraically closed field, and let \mathscr{A} be a transitive Jordan algebra of $n \times n$ matrices over \mathbb{F} . Then either $\mathscr{A} = \mathscr{M}_n(\mathbb{F})$ or there exists an invertible matrix T such that $T^{-1}\mathscr{A}T = \mathscr{S}_n(\mathbb{F})$.

Proof. We shall show first that \mathscr{A} contains $\mathscr{S}_n(\mathbb{F})$ up to a similarity. By Lemma 2.3 we can assume that \mathscr{A} contains diagonal idempotents E_j of rank one: $E_1 = \operatorname{diag}(1, 0, \ldots, 0), \ldots, E_n = \operatorname{diag}(0, \ldots, 0, 1)$. Consider the special case of n = 2. In this case the transitivity of \mathscr{A} implies that its dimension is either 3 or 4. If the dimension is 4, then $\mathscr{A} = \mathscr{M}_2(\mathbb{F})$; if it is 3, then \mathscr{A} contains a nonzero matrix of the form $\binom{0}{s} \binom{0}{t}$ (after adding a suitable linear combination of E_1 and E_2). Now, both s and t have to be nonzero by transitivity. Thus, we have shown that, when n = 2, the algebra \mathscr{A} must contain a matrix of the above form with s = 1 and $t \neq 0$.

Returning now to the general case, let $\{M_{ij}\}$ be the set of matrix units, i.e., the only nonzero entry of M_{ij} occurs at the (i,j) position and equals 1. Observe that for j>1 the Jordan subalgebra $(E_1+E_j)\mathscr{A}(E_1+E_j)$ acts transitively on the 2-dimensional range of E_1+E_j . As in the paragraph above, it must contain, together with E_1 and E_j , at least one matrix of the form $A_j=M_{1j}+t_jM_{j1}$. Letting $T=\mathrm{diag}(1,\sqrt{t_2},\ldots,\sqrt{t_n})$, we see that the Jordan algebra $T\mathscr{A}T^{-1}$ contains the symmetric matrices

$$B_{j1} = \frac{1}{\sqrt{t_j}} T A_j T^{-1} = M_{j1} + M_{1j}$$

(and, of course, E_1, \ldots, E_n).

If 1, i, and j are distinct, then $B_{ij} = B_{i1}B_{j1} + B_{j1}B_{i1} \in T \mathscr{A} T^{-1}$. Observe that $B_{ij} = M_{ij} + M_{ji}$. We have shown that $T \mathscr{A} T^{-1}$ contains a basis for symmetric matrices. Hence, $T \mathscr{A} T^{-1} \supset \mathscr{S}_n(\mathbb{F})$.

To complete the proof of the theorem it suffices to show that if \mathscr{A} contains $\mathscr{S}_n(\mathbb{F})$ properly, then $\mathscr{A} = \mathscr{M}_n(\mathbb{F})$. Thus, assume \mathscr{A} contains a nonsymmetric matrix $C = (c_{ij})$. Some principal 2×2 submatrix must be nonsymmetric and by passing from \mathscr{A} to $P^{-1}\mathscr{A}P$, where P is a permutation matrix, we can assume $c_{12} \neq c_{21}$. Observe that the matrix

$$M = (E_1 + E_2)C(E_1 + E_2) - c_{11}E_1 - c_{22}E_2 - c_{21}B_{21}$$

belongs to \mathscr{A} and is a nonzero scalar multiple of M_{12} . We shall show that $M_{ij} \in \mathscr{A}$, $i, j = 1, \ldots, n$. Every M_{ii} is in \mathscr{A} and we have just seen that M_{12} and hence $M_{21} = B_{21} - M_{12}$ are in \mathscr{A} .

For j>2, $M_{1j}=M_{12}B_{2j}+B_{2j}M_{12}$, and $M_{j1}=B_{j1}-M_{1j}$ which implies that M_{1j} and M_{j1} are in $\mathscr A$. Similarly, for j>i>1, $M_{ji}=M_{1i}B_{j1}+B_{j1}M_{1i}$, and $M_{ij}=B_{ij}-M_{ji}$ so that M_{ji} and M_{ij} are in $\mathscr A$.

2.5. COROLLARY. Let \mathbb{F} be an algebraically closed field. If \mathscr{A} is a transitive Jordan algebra of symmetric $n \times n$ matrices over \mathbb{F} , then $\mathscr{A} = \mathscr{S}_n(\mathbb{F})$.

The example given after Theorem 2.1 can be modified to show that the algebraic closure hypothesis is essential in the preceding result. Consider $\mathbb{Q}(i)$ instead of \mathbb{Q} and let

$$\mathscr{A} = \left\{ \begin{pmatrix} a+b & b \\ b & a-b \end{pmatrix} : a, b \in \mathbb{Q}(i) \right\}.$$

Then, \mathscr{A} is a proper Jordan subalgebra of $\mathscr{S}_2(\mathbb{Q}(i))$; it is also transitive.

The following example shows that the assumption char $\mathbb{F} \neq 2$ is essential in the results above: the 3-dimensional Jordan algebra spanned over \mathbb{F}_2 by $\{I, M_{12}, M_{21}\}$ is transitive and contains no idempotent of rank 1.

3. Results on ideals.

- 3.0. We continue to assume that the characteristic of the field \mathbb{F} is different from 2. In the associative algebra case some transitivity properties are inherited by ideals. This is of course trivial if $\dim \mathcal{V}$ is finite, since then $\mathcal{L}(\mathcal{V})$ is simple. In the Jordan case, restriction to ideals seems to be accompanied with some loss of transitivity. The following result is well known for general associative algebras [2].
- 3.1. Proposition. Let $\mathcal{J} \neq 0$ be an ideal in an associative algebra \mathscr{A} of operators on a vector space \mathscr{V} . If \mathscr{A} is n-transitive, then so is \mathcal{J} .

Here are our results on this question for Jordan algebras of linear operators and their Jordan ideals.

3.2. Theorem. Every Jordan ideal $\mathcal{J} \neq 0$ of an (n+1)-transitive Jordan algebra \mathscr{A} of operators on a vector space \mathscr{V} is n-transitive, $n \geq 1$.

Proof. If $\mathscr V$ is (n+1)-dimensional then $\mathscr A=\mathscr L(\mathscr V)$ and, by [1, Theorem 1], we have $\mathscr J=\mathscr A$. So, assume with no loss of generality

that \mathscr{V} contains n+2 linearly independent vectors. Fix a linearly independent set of vectors $\{x_1, \ldots, x_n\} \subset \mathscr{V}$ and let \mathscr{X} and \mathscr{Y} be the span of $\{x_1, \ldots, x_n\}$ and of $\{x_1, \ldots, x_{n-1}\}$, respectively. We will show first that

- (a) $\exists J \in \mathcal{J}$ such that $J\mathcal{Y} = 0$, $Jx_n \notin \mathcal{X}$. Assume the contrary; then
 - (b) $J \in \mathcal{J}$ and $J \mathcal{Y} = 0$ implies $J x_n \in \mathcal{X}$.

Then, for any $A \in \mathscr{A}$ such that $A\mathscr{Y} = 0$ it holds that K = JA + AJ is in \mathscr{J} and that $K\mathscr{Y} = 0$. Therefore by (b), Kx_n belongs to \mathscr{X} . Let α be such that $Kx_n = (J + \alpha)Ax_n$. Since \mathscr{A} is *n*-transitive, A may be chosen so that it satisfies the required conditions and that Ax_n is an arbitrary vector in \mathscr{V} . This shows that

(c) $J\mathscr{Y} = 0$ implies $(J + \alpha)\mathscr{V} \subseteq \mathscr{X}$ for some α . Thus,

$$J = -\alpha + \sum_{1 \le i \le n} x_i \otimes f_i$$

for some linear functionals f_i , $i=1,\ldots,n$. But then, for an arbitrary $A\in \mathscr{A}$ with $A\mathscr{Y}=0$ define K as above and use the expression for J to get

$$K = -2\alpha A + Ax_n \otimes f_n + \sum_{1 \le i \le n} x_i \otimes f_i A.$$

Thus K belongs to \mathscr{J} and $K\mathscr{Y}=0$. Hence, by (c), it must be of the same form as J, i.e.,

$$K = -\beta + \sum_{1 \le i \le n} x_i \otimes g_i.$$

Now, we choose vectors $u, v \in \mathcal{V}$ such that $\{x_1, \ldots, x_n, u, v\}$ are linearly independent, and find an $A \in \mathcal{A}$ such that $A\mathcal{Y} = 0$, and that $Ax_n = u$, Au = v. Then

$$Ku = -2\alpha v + f_n(u)u + \sum_{1 \le i \le n} f_i(v)x_i = -\beta u + \sum_{1 \le i \le n} g_i(u)x_i,$$

which forces $\alpha = 0$. A similar argument with K playing the role of J shows that $\beta = 0$. Also, using the freedom in the choice of u, we conclude that f_n is trivial. Thus, from the fact that (b) holds for every $J \in \mathcal{J}$ we obtain

(d) $J \in \mathcal{J}$ and $J \mathcal{Y} = 0$ implies $J \mathcal{V} \subset \mathcal{Y}$.

The conclusion (d) contradicts the assumption that $\mathcal{J} \neq 0$ in case n = 1. In other words, we have shown that given $x \neq 0$, there is a $J \in \mathcal{J}$ such that x and Jx are linearly independent. Observe that this proves the theorem for n = 1: if $x \neq 0$ and y are given

and $J \in \mathcal{J}$ is such that x and Jx are linearly independent, then by 2-transitivity choose an $A \in \mathcal{A}$ with Ax = x and AJx = y - Jx. Then $AJ + JA \in \mathcal{J}$ and (AJ + JA)x = y.

Assume now for n > 1 inductively that \mathcal{J} is (n-1)-transitive and find an $E \in \mathcal{J}$ such that $Ex_i = x_i$, i = 1, ..., n-1. As $E^2 \in \mathcal{J}$ and equals E on \mathcal{Y} , we have by (d) that $(E-E^2)\mathcal{V}\subset\mathcal{Y}$. Assume now that there exists a vector $u \in \mathcal{V}$ such that u and Eu do not belong to \mathcal{Y} . It follows from $(E-E^2)\mathcal{V}\subset\mathcal{Y}$ that E^2u equals the sum of Euand a vector from \mathcal{Y} (so $E^2u \neq \mathcal{Y}$). By *n*-transitivity of \mathcal{A} find an $A \in \mathcal{A}$ such that $Ax_i = x_i$, i = 1, ..., n-1, and AEu = 0. This implies for $K = EA + AE \in \mathcal{J}$ that $Kx_i = 2x_i, i = 1, ..., n-1$ and $KEu \in \mathcal{Y}$. Hence, K-2E annihilates \mathcal{Y} and its image is not contained in \mathcal{Y} , because (K-2E)Eu equals the sum of $-2E^2u$ and a vector from \mathcal{Y} , contradicting (d). The freedom in the choice of ushows that for every $E \in \mathcal{J}$ such that $Ex_i = x_i$, i = 1, ..., n-1, we have necessarily that $E\mathscr{V}\subset\mathscr{Y}$ and E is a projection on \mathscr{Y} . Choose now a nonzero vector $u \in \ker E$ and find by (n + 1)-transitivity of \mathscr{A} an $A \in \mathscr{A}$ such that $Ax_1 = u$, $Ax_i = 0$, i = 2, ..., n-1, and $Au = x_1$. Then, $K = EA + AE - 2EAE \in \mathcal{J}$, and $Kx_1 = u$, $Kx_i = 0$, $i=2,\ldots,n-1$, and $Ku=x_1$. It follows for $L=K^2-EK^2E\in\mathcal{J}$ that $L\mathcal{Y} = 0$ and Lu = u contradicting (d). Consequently, we have shown that (b) leads to a contradiction and we have (a). So, fix a $J \in \mathcal{J}$ such that $J\mathcal{J} = 0$ and $Jx_n \notin \mathcal{X}$. Now, pick by (n+1)transitivity of $\mathscr A$ an $A \in \mathscr A$ such that $A\mathscr X = 0$, and $AJx_n = u$ an arbitrary vector from \mathcal{V} . Thus, for $K = AJ + JA \in \mathcal{J}$ we have that $K\mathcal{Y} = 0$, and $Kx_n = JAx_n + AJx_n = u$. The *n*-transitivity of \mathcal{J} in the theorem now follows easily by cyclicly permuting the vectors x_i , $i = 1, \ldots, n$ and taking sums of corresponding operators K.

The following result can also be obtained from work of Osborn and Racine [7].

- 3.3. COROLLARY. Every Jordan ideal of a dense Jordan algebra is dense.
- 3.4. Theorem. Let $\mathscr A$ be a 2-transitive Jordan algebra of operators on a vector space $\mathscr V$. If $\mathscr A$ contains at least one operator of finite rank, then the Jordan ideal $\mathscr J$ of all finite rank operators of $\mathscr A$ is strictly dense, and so is $\mathscr A$.

Proof. Assume with no loss of generality that \mathscr{V} is not finite dimensional. By 3.2 \mathscr{J} is transitive. Thus, we may find an $E \in \mathscr{J}$

such that Ex = x and such that it is of minimal rank with this property. Similarly as in the proof of 1.1.(b), we may find that E is a projection of rank one and that for every finite dimensional subspace \mathscr{W} of \mathscr{V} we may find a projection $E \in \mathscr{F}$ such that $E\mathscr{V} = \mathscr{W}$. Now, for any $\{x,y\}$ linearly independent and $\{u,v\}$ arbitrary vectors of \mathscr{V} , let \mathscr{W} denote the linear span of these four vectors and let $E \in \mathscr{F}$ be the corresponding projection. Use 2-transitivity of \mathscr{A} to find $A \in \mathscr{A}$ such that Ax = u and Ay = v, use 1.1.(a) to see that $B = EAE \in \mathscr{F}$, and observe that again Bx = u and By = v. Thus, \mathscr{F} is 2-transitive and it is strictly dense by 1.3.

The reader will no doubt have noticed that we left the following questions unanswered.

Question 1. Is there an *n*-transitive Jordan algebra \mathscr{A} with a Jordan ideal $\mathscr{J} \neq 0$ which is not *n*-transitive?

Question 2. Is there an *n*-transitive Jordan algebra which is not (n+1)-transitive for any $n \ge 2$?

REFERENCES

- [1] I. N. Herstein, On the Lie and Jordan rings of a simple associative ring, Amer. J. Math., 77 (1955), 279-285.
- [2] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, RI, 1984.
- [3] ____, Lectures in Abstract Algebra, vol. II, Van Nostrand, (1953).
- [4] _____, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., vol. 39, Amer. Math. Soc., Providence, RI, 1968.
- [5] S. Lang, Algebra, Addison Wesley, (1971).
- [6] J. M. Osborn, Jordan and associative rings with nilpotent and invertible elements,J. Algebra, 15 (1970), 301–308.
- [7] J. M. Osborn and M. L. Racine, Jordan rings with nonzero socle, Trans. Amer. Math. Soc., 251 (1979), 375-387.

Received December 15, 1991.

Dalhousie University Halifax, Nova Scotia B3H 4H8 Canada

AND

University of Ljubljana 61000 Ljubljana Slovenia