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HORIZONTAL PATH SPACES
AND CARNOT-CARATHEODORY METRICS

ZHONG G E

In this paper we study a class of sub-spaces of loop spaces which
have appeared in the calculus of variations. Generalizing a result of
Smale, we show that the space of loops tangent to a distribution satis-
fying Hδrmander's condition is weakly homotopic to the space of all
loops. If the distribution is fat, we resolve the end point map from the
space of horizontal paths. This resolution has two applications: (1)
the proof that the cut-locus on an analytic fat Carnot-Caratheodory
manifold is sub-analytic; (2) a study of the singularity of the hori-
zontal loop space. At the end we study the geometry of left-invariant
Carnot-Caratheodory metrics on fact nilpotent groups.

O Introduction. In this paper we will study a class of sub-spaces of
loop spaces which have appeared in the calculus of variations, control
theorem (cf. [7], [12], [28]).

Let M be a connected manifold, H c TM a smooth distribution
on M. We say that a Z/1-curve γ: [0, 1] —• M is horizontal if it is
tangent to H almost everywhere. Let ( , •) be a fiberwise metric on
H (i.e. a Carnot-Caratheodory metric, or a CC metric for short), then
the Carnot-Caratheodory distance (or a CC distance for short) on M
is defined to be

where E(r) = £ (ίψ, d-ψ) d,.
Here γ runs over the space of horizontal paths connecting x and y.
A classical result of Chow's [9] says that if H satisfies Hδrmander's
bracket generating condition, then every two points on M can be
joined by a horizontal path, so the distance is finite. The interest in
horizontal loop spaces in part lies in the fact that they play a sim-
ilar role in CC metrics as ordinary loop spaces play in Riemannian
geometry.

There are many applications of CC metrics to Riemannian geome-
try, hypoelliptic operators, control theory, physics, etc. see [4], [6], [7],
[14], [17], [18], [27], [30], [31], [33], [36], [38], [39], [40].

Let ΩHM(XQ, •) (resp. ΩHM(x0, x0)) be the space of Hι-horizon-
tal paths starting from x0 (resp. Hι -horizontal loops based at x0).
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We first look at the topology of Ω#M(XQ , XQ). Smale proved that
if H is a contact distribution on a three dimensional manifold, then
Ω//(xo 9 *o) is weakly homotopic to the ordinary based loop space. In
[12] we proved that πo{Ωfi{xo> Xo)) = π\{M). In this paper we will
prove

THEOREM 1. Let M be a connected manifold with a bracket gen-
erating distribution H. Then the space of based horizontal loops,
Ω#(xo 5 *o) ^ weakly homotopic to the space Ω{XQ , *o) of all loops:
their homotopy groups are all equal If in addition the distribution is
fat {see the definition in §1.1), then two spaces are homotopic.

In spite of Theorem 1 the two spaces are very different geometri-
cally; for example, ΩHM{XQ , XQ) is smooth, as the end point map
e: ΩH(XO, •) -+ M 9 e(γ) —• y(l) is not a submersion at the constant
loop. We will focus our attention on the case of fat distributions,
see Weinstein [41]. (Fat distributions are also called "strongly bracket
generating" or "of maximal co-rank".) The following result is inspired
by a result of Milnor [25] in finite dimensions:

THEOREM 2. If H is a fat distribution, then the complement of
the intersection of ΩHM{XQ , XQ) with a sufficiently small sphere in
ΩHM(XQ , •) at the constant loop is the total space of fibration over
Sn~ι with contractible fibers, n = dim(M).

In contrast to the Riemannian case in which cut points cannot come
arbitrarily close to XQ and the complement of a cut loss is contractible
[21], we prove

THEOREM 3. If M is a fat CC manifold of dimension n} then the
complement of the cut locus {see the definition in §5.1) of x$ within any
ball d{x, xo) < T is homeomorphic to the complement of a k-plane
in Rn. Here k — n- m is the codimensίon of the distribution.

Our final result concerns the structure of analytic CC manifolds.

THEOREM 4. Let M be a fat analytic CC manifold. Then the cut lo-
cus of any point is sub-analytic within a sufficiently small neighborhood
of that point.

There is a stronger version of this result, which says the ratio
d{x, Xo)/d\{x, XQ) , where d\{x, XQ) is the CC distance function on
the tangent cone, is sub-analytic near XQ (cf. Theorem 5.5).
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Sussmann [42] proved a result to which Theorem 4 is in a sense
complementary. His result says that on a three-dimensional analytic
CC manifold with a contact distribution, the cut locus of Xo is sub-
analytic within any compact set of M - {x0} -

Note that Theorem 3 and Theorem 4 together give us some infor-
mation about how the cut-locus of Xo within a small neighborhood
of Xo looks like, for example, that it is triangulable, and it has only
one "branch". We conjecture that the cut locus within a sufficiently
small neighborhood of XQ can be stratified into analytic submanifolds
of dimension /, where k < I < n - 1.

The main technical tool used to prove Theorems 2 and 4 was in-
troduced in the author's previous paper [12] in this journal and is of
interest in its own right. This is the resolution of the end-point map
e: ΩHM(XQ , •) -> M, i.e. a submersion

Be:BΩHM(x0, .) -> BWM,

where BΩHM(x0, •) is the blow-up of ΩHM{XQ, •), BWM is the
(weighted) blow-up of M at XQ .

This paper is organized as follows. In §1 we recall the notion of
tangent cones as developed by Folland, Rothschild, Stein, et al. In §2
we prove Theorem 1. In §3 we develop the main technical tool, i.e.
the resolution of e. In §4 we study the singularity of the horizontal
loop space. In §5 we study the cut-locus. In §6 we study left-invariant
CC metrices on fat nilpotent Lie groups; in particular, we show that
the set of fat nilpotent Lie algebras with n, m fixed, n - m = 2, is
connected.

After the first version of this paper was written in the fall of 1989,
Professor H. Sussman kindly pointed out some gaps in the proof of
Theorem 4 in that version; in this version we have taken this into
account. In fact we found a simpler method to prove Theorem 4, but
as the old method yields a stronger result (Theorem 5.5), we include
both methods. Also Professor A. V. Sarychev kindly informed us that
he has proved Theorem 1, which was announced in Dokl. Akad. Sci.
USSR,v. 314(6), 1990.

A part of this work was done at the Mathematical Sciences Re-
search Institute at Berkeley in 1988-89. We wish to thank Richard
Montgomery for calling our attention to Smale's thesis, which is es-
sential to Theorem 1, and many talks concerning CC metrics, Alan
Weinstein for helpful conversations, H. Sussmann for pointing out
some gaps in the first version of this manuscript, and finally, the
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referee for his many suggestions on how to improve the organization
of this paper.

1. Preliminary facts.

1.1. Tangent cones. In this subsection we will recall some basic
facts on Carnot-Caratheodory manifolds (or CC manifolds for short).

A Carnot-Caratheodory metric (or a CC metric) on a manifold M
is a symmetric bilinear semi-positive form Q(-, •): T*M x T*M —• R.
It induces a bundle homomorphism LQ : T*M —• TM by

( L Q ( p ) , q ) τ M , τ * M = Q ( P , Q ) , P>Q£ T*M,

where ( , )TM,T*M * S the natural pairing between TM and Γ*M.
The image of T*M under LQ, H = LQ(T*M) is called the horizontal
bundle, on which there is an induced metric

We always assume that H is smooth.
We say that H satisfies Hόrmander bracket generating condition if

we define

17 TJ I Γ TJ Tji TJ TJ i Γ Tj TJ Ί

n \ — n ~τ if* , n J , . . . , -Πs — - * - * $ — 1 ' 1**$— \ , - * * $ — i J ? . . .

then for s big enough, //y = TM. /ί is so-steps bracket generating
if so is the smallest integer such that HSQ = TM. From now on
we assume that H satisfies Hόrmander's condition unless specified
otherwise.

A class of distributions of special interest to us is fat distributions.
Recall that H is fat if for any a e C°°(H), a Φ 0, every vector can
be locally written as b\ + [a, b{[ for some b\, bi e C°°(H).

A rank m fat distribution on an n manifold must be a contact
distribution if m = n -1 and m must be a multiple of 4 if n - m > 1
(cf. [32], Appendix 2).

LEMMA 1.1. If H is fat, XQ e M, ίAe« ίAere are local coordinates

(x, y) at XQ such that H is locally defined by Λ/ = 0, / = 1 , . . . , / : ,

A, = dyi - Σ τijkxίdχk + Ri,

JRι αr^ l-form satisfying

\Ri\<M(\x\2

A proof can be found in Goodman [14].
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We now define a two-step nilpotent Lie algebra associated with H
at Xo, which plays a similar role as tangent spaces play in Riemannian
geometry.

DEFINITION 1.1. Using the notations in Lemma 1.1, we define a
graded two-step nilpotent Lie algebra n = Vι®V2, where [V\, Vχ\ —•
V2 is given by

(1.1) [ ( X ! 1 , . . . , ^ ) , ^ ! , . . . , ^ ) ]

V 1 J

The simply connected Lie group of n is called the tangent cone of M

at x 0 .
Note that the bracket (1.1) can also be written in a coordinate-free

way as follows

(1.2) HXQ x HXQ - TXQM/HXQ , Ω(vi , v2) = [vx, v2] mod(H).

Obviously H is fat if and only if the nilpotent algebra n has the
property that for any a € V\, a Φ 0, adα: V\ -+ V2 is onto. We will
call such two-step nilpotent Lie algebras fat nilpotent.

The construction of tangent cones can be generalized to higher order
bracket generating distributions, due to Rothschild-Stein [33], see also
Goodman [14].

1.2. Partial connections. To write down the geodesic equation for
a CC metric, we will need the notation of partial connections.

DEFINITION 1.2. Given a projection onto H, π: TM —• H, a map

Hx x C°°(H) - C°°(H)9 (M, v) - Z)MK

depending smoothly on x, is a partial connection if
(1) it is linear in.ύeHx , and for a function / on M,

(2)
DvV2-DV2Vι = π[vi, v 2 ].

It is easy to prove that once π is given, the partial connection exists
uniquely. In fact, the partial connection can be given in the following
way. We extend the CC metric to a Riemannian metric g on M
such that π becomes an orthogonal projection, and denote by Dg

the Levi-Civita connection on g then the partial connection is given
by

Duv =
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Using these notations, we can easily write down the geodesic equa-
tions, which in local coordinates was derived in [39], p. 435, (12.1).

Suppose that a Riemannian metric g is an extension of the CC
metric, so we have an orthogonal decomposition TM = HφH1. Let
γ: [0, 1] -* M be a CC geodesic; then it satisfies

(1.3) 2) y y = λ . ( / , . ) ,

where Ω is as in (1.2) and λ e HL is the Lagrange multiplier, which
satisfies

(1.4) ( 7 -

where T: H x H —• H1 is a tensor, whose exact form is not our
concern in this paper.

2. Horizontal path space and horizontal loop space. In this section
we will study the topology of the horizontal path space ΩHM(XQ , •)
and the horizontal loop space ΩHM(x0,

LEMMA 2.1. ΩHM(xQ,-) is contractible.

LEMMA 2.2. ΩHM(XQ , xo) in the C°-norm is a Hopf space.

These two lemmas can be proved as in the case of ordinary path
spaces. Moreover, the above results are still true under the weaker
hypothesis that every two points on M can be joined by a horizontal
path.

If Vi> 72 are two horizontal paths, yi(l) = }>2(0)> then jι γ\
denotes the path defined by γ(t) = γ\(2t), 0 < t < 1; γ(t) =
y 2 ( 2 ί - l ) , 1/2 < ί < 1.

LEMMA 2.3. Every XQ G M has a neighborhood NXo such that for
any x, yeNXo, there is a horizontal path γxy within NXQ which joins
x to y and depends continuously on x, y.

Proof. It suffices to prove that the following is true: for any x e
NXQ , there is a horizontal path γx within Nx , joining XQ to x and
depending continuously on x. In fact, if the above is true, let γXχXi =
?x2 yx

ι, then γXιχ2 satisfies the requirement.

Suppose the vector fields a\, . . . , am span/f in a neighborhood of
xo 9 and, together with their commutators,

dj = K , , [β/r_1, air] - ], / = (h , . . . , ir), r < s

span Γ X Q M .
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Choose k multiple indices J\,..., J^ such that

α i ( Λ b ) , . . . , a m ( x 0 ) , aJχ ( x 0 ) , . . . , a J k { x 0 )

are linearly independent and span 7 ^ 1 / . Denote Jj = {i\j, Ϊ2j,...,
ir j) and ^ ( ί ) = exp(ία;), j = 1 , . . . , m. We define inductively,
for Jj = (Jι, ij),

if each to > 0 otherwise, the right-hand side above should be changed
to

Then we have

(2.1) dφJι(t9t,...9t)/dt\isso = ajι.

Define

Φ ( ί l , ... , t n ) = φ j k ( t l > . . . , h ) φ j k λ { t 2 , ... , t2)- -

It is easy to verify that Φ is differentiable at 0. Hence by the implicit
function theorem and (2.1), Φ is a local diffeomorphism at XQ. We
then define a horizontal path

γ x ( ή = φ j . ( 0 , . . . , 0, [ η ( n t - j + I) - (r - l)]tj, tj, ..., tj)

x φjk_x{tj+\,... , ί/+i)

n n ΓJ Γj

where (t\, . . . , tn) = Φ~ι(x), then this path joins x0 to x and de-
pends continuously on x.

REMARK. Hόrmander's condition is essential for the validity of
Lemma 2.3. In fact, we can construct a distribution which does not
satisfy Hόrmander's condition, still any two points on M can be
joined by a piecewise smooth horizontal path, but for which Lemma
2.3 is not true: let M = R3, and H be spanned by a\, aι 9 where

= Γ φ(xι)d/dxϊ9 0<x{;
U{ \ φ(-Xι)(d/dx2 - Xιd/dx3), xx < 0

) , 0 < JCi;

where ^(ΛΓI) is positive for ci > 0, and is zero for ΛΓI < 0.
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THEOREM 2.4. e: ΩHM(x0, •) -> M has the homotopy lifting prop-
erty for polyhedra.

Proof. (We will use the notations in Lemma 2.3.) By Hurewicz's
theorem, it suffices to prove that the map e: e~ι(NXQ) —• NXQ has the
lifting homotopy property for polyhedra (cf. [35]).

Let P be a polyhedron, hs: P —• Nx , s e [0, 1] a given homotopy,

μ: P —• e~ι(NXo) a map covering ΛQ . We construct a homotopy lifting

μ s : P -» e~ι(NXo) as follows.
Choose a continuous function Ϊ , Ϊ(0) = 0, 1(5) > 0 if s > 0, such

that the path t: [0, 1 - ι(s)] -+ (μ(p))(t) is within NXo for all p e P,
j e [ 0 , l ] . Now define, for / ? G P ,

•{ 1), 1 - ι(s)t < 1.

So μs(p) first joins (μ(p))(0) to (/ι(p))(l - I(J)) along μ(/?),then
joins (/z(/?))(l — ̂ (^)) to hs(p) along the horizontal path constructed
in Lemma 2.3. By Lemma 2.3, μs(p) depends on s, p continuously.
Moreover, e(μs(p)) = hs(p). Hence e: e~ι(Nx ) -* Nx is a fibration.

Λ.o/

Proof of Theorem 1. Using the long exact sequence associated to the
fibration e, we obtain π^(Ω^Jlf(;co, JCo)) = πk+i(M).

If H is fat, it is proved in [12] that the energy functional E on
ΩffM(x\, X2) satisfies the Palais-Smale condition and is non-
degenerate for generic X2, so Ω#Λf (XQ , XQ) is a CW-complex. By
a theorem of Whitehead, a weak homotopy equivalence between two
CW-complexes is a homotopy equivalence (cf. [35]), so ΩHM(XQ , XQ)

is homotopic to the ordinary based loop space.

As an application, we consider the case where M is the total space
of a principal G-bundle over B: G -• M^B with a connection ω 0 .
Applying Theorem 1, we have

COROLLARY 2.5. If at every point x e B the holonomy algebra is
g {the Lie algebra of G), then the space of based loops on B withji
given holonomy has the same homotopy groups as the based loop space
does on M.

3. Resolution of end point map. Suppose that H is fat. Then
x0 is an isolated singularity of the end point map e, and hence
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ΩHM(x0, x0) is singular at the constant loop. In the next two sec-
tions we will study this singularity. In this section we will develop a
resolution of e by blowing up the source manifold (i.e. the horizontal
paths space) and the target manifold M simultaneously. We begin
with the blow-up of M.

3.1. Weighted blow-up of M. We will use the notations in Lemma
1.1. We define the weighted blow-up of M at xo to be BWM =
S\ x [0, oc), where S\ is the set of points (x\, . . . , xm, y\, . . . , yk)
satisfying x^ + + x^ + y\ + + y\ = 1. The blow-up map
Bw: BWM —* M is given by

B

= ( s - x Ϊ 9 . . . , s . x m , s 2 - y u . . . , s 2 - y k ) .

It is easy to see that Bw is a diίfeomorphism except at the boundary.

REMARK. A similar construction was developed by Kupka [44].

3.2. Blow-up of ΩHM(x0, .) . Let ΩRm be the Hubert space of
Hι paths on Rm starting from 0 e Rm. As we will see §3.3, the
horizontal path space ΩHM(XQ , •) in a neighborhood of the constant
loop can be identified with ΩRm. From now on we will make this
identification.

In view of this identification, we define the blow-up of ΩHM(XQ , •)
to be BΩHM(XQ , •) = S°° x [0, oc), where S°° is the space of curves γ
on Rm through 0, \γ\ffι = 1. The blow-up map B: BΩHM(x0, .) ->
ΩRm is given by

(3.2) B(γ,s)=sγ.

As in §3.1, it is easy to see that B is a diffeomorphism except at the
boundary.

3.3. Resolution of e. Having developed the blow-ups of the target
and the source manifold of e, now we develop the resolution of e.

First we need a normal form of e. We begin with the simplest case:
M is a fat nilpotent group N with the Lie algebra given by (1.1). In
this case Ω#M(xo> •) can be identified with the space of Hι -paths
on Rm starting from 0, ΩRm , and e can be written as

) ,coχ, . . . , ωk
γ Jγ

where
1 — 1 If
I — 1 , . . . , A C .
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For a general fat distribution, we will approximate e using tangent
cones. More precisely,

LEMMA 3.1. Suppose that H is a fat distribution and N is the tan-
gent cone at XQ. In a coordinate neighborhood of the constant loop, we
can write e as e: ΩRm —• Rn,

where

Proof. Let γ = (γ\(t), y(t)) be a horizontal path; then we have the
following equations: (γ\(t) = (x\(t), ... , xm(t)))

(3.3) ^yi(t) j ; } ^

/ = 1,. . . ,/:,

where Tι{x, y, z, w) is a smooth function

| T / ( x ? y ? z , ^ ) | < C o ( | x | 3 + |y|2),

where Q is a uniform constant for bounded z.
It is obvious that given γ\(t) G Ωi?m , there is a unique γ = (γ\(t),

y(ί)) satisfying (3.3) and vice-versa, and the solution can be written
as

yi(t)= ί ωi + OiWxf + Wyf).
Jyx

Hence the lemma follows.

Let gra(^) be the graph of the restriction of e

e: ΩHM(x0, •) - ΩHM(x0, x0) -» M - {x0},

and

(B,BW): BΩHM(x0, .) x BW(M) -+ ΩHM(x0, •) x M

be the obvious map.

DEFINITION 3.1. The resolution

Be: BΩHM(x0, •) - B~\ΩHM{x^, x0)) - ^ ^

of e is determined by its graph, which is the closure of
\ ) in 5Ω/yJl/(*b, .) x BW(M).
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The relation between various blow-ups can be summerized in the
following diagram

BΩHM(x0, .)-B-ι(ΩHM(xo,Xo)) - ^ BWM

(3-4)

, .) - ΩHM(x0, xo) —?-+ M

LEMMA 3.2. Be is a submersion everywhere.

Proof. By (3.4), since both Bw and B are diffeomorphisms except
at the boundaries, we need only to prove that Be is submersive at the
boundary of BΩHM(x0, •).

Using Lemma 3.1 and (3.1), (3.2), we see that Be can be written
as

(3.5) (γι,s)^(Usγι(l),±Πωι +Tk(sVl)\ , . . . ,

where

b = ί Λx? +-+x4

m)+Πωι + Tk(sVι)\

if Vχ l / 4

-f- + l y ωk + Tk(sγι)\

for (xι, . . . , xm) = 7i(l). By (3.3), we can rewrite (3.5) as
> J ωi"-->

ωλ I \+o(s).

So it is a submersion.

4. Singularity of horizontal loop space. In this section we will study
the singularity of the horizonal loop space, using the resolution of e.
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4.1. The case of nilpotent groups. Suppose that M is a simple con-
nected nilpotent Lie group N whose Lie algebra is

n = V ι ® V 2 ® > ®VS9 [Vi9Vj]cVi+J9 i + j<s,

[Vi9Vj] = 09 i + j>s,

and H is the left translation of V\. As usual, we denote the space of
Hι horizontal paths starting from 0 by Ω#iV(0, •).

i?+ (the multiplicative group of positive numbers) acts on N - {0}
as

t(aΪ9 02, . . . > an) = (aιt, . . . , amt, am+ϊt
2, . . . , α ί f cί*, . . . , an?)>

where α/fc e V^ . Let P^iV be the quotient space. It is easy to prove

that Pw is diffeomorphic to Sn~ι, n = dim(iV).
The action of R+ on N induces an action on Ω#iV(0, •),

ΩHN(0, 0) respectively. Let P(ΩHN(0, -)-Ω,HN(0, 0)) be the quo-
tient of the space ΩHN(0, .) - ΩHN(0 9 0) by this action. Then the
end point map e induces a map

{e}: P(ΩHN(0, .) - ΩHN(0, 0)) ^ PWN

in an obvious way.

THEOREM 4.1. {e} is afibration over Sn~ι.

Proof. We only need to prove an equivariant version of Lemma 2.3,
i.e. there is δo > 0, such that for any x, y, rf(x, j;) < δo 9 there is a
horizontal curve 7*^ connecting x , y, depending continuously on
x, j ; , and

where S 7 denotes the induced action of i?+ on ΩHN(0 9 •).
In fact, there are left-invariant vector fields on N9 a\, . . . , am e

Γ(H) spanning H, and, together with their commutators of length
l e s s t h a n ( s + l ) 9 a j = [ a i γ , . . . , [ a i r _ χ , a i f ] ] , J = ( i \ 9 ... , i r ) , r < s
span TN. We then define Φ in the same way as in Lemma 2.3.

To construct γXjy, we need to prove that Φ is equivariant, i.e.

Φ(s(tΪ9 ... 9tn))(s(xΪ9 ... 9xn))

= S Φ ( ί l , . . . , tn)(X\9 . . . , X / i ) .

To this end, we need the notation of (weighted)-homogeneity.
A function / on TV is homogeneous of degree k if

, . . . , Xn)) = Skf(X\ 9...9Xn).
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A vector field V on N is homogeneous of order 1 if for every ho-
mogeneous function / of degree k, V(f) is homogeneous of degree
(k - 1). It is easy to prove that a\, ... 9am are homogeneous of
degree 1, so (4.1) follows. The rest of the proof is the same as in
Theorem 2.4.

REMARK 1. The fibre of the above fibration is contractible. In fact,
the fibre is just e~ι (XQ) , XQ Φ 0, which, by a result of Weinstein (cf.
[12], Lemma 2.1), is homotopic to e~ι(0), which is contractible.

REMARK 2. Let Ωi?w(0, •) be the space of 771-curves on Rn

through 0, β\ the end point map, and Ωi?*(0, 0) = e^l(0).
i?+ acts on Rn - {0} in an obvious way and hence on ΩRn(0, •) -
ΩRn(0, 0). Let P+Rn , P+(Ωi?*(0, •) - Ωi?w(0, 0)) be the quotient
spaces respectively; then as in Theorem 4.1, the induced map { î} :
P+(ΩJRn(0, •) - ΩRn(0, 0)) -> P+Rn is a fibration with contractible
fiber. It would be interesting to compare this fibration with the fibra-
tion in Theorem 4.1.

4.2. The case of general fat distributions. In this subsection we will
generalize the results in §4.1 to a general fat distribution H. This
generalization is not straight forward, as the map e is not stable at
the constant loop.

Let N be the tangent cone at XQ £ M, and

B(ΩHM(x0, •) - ΩHM(x0, JC0))

•) - B-ι(ΩHM(x0,

which can be considered as the blow-up of ΩHM(XQ9 -)-ΩHM(XQ, XQ).

Note that the boundary of B(ΩHM(XQ, •) — ΩHM(XQ, XQ)) is just
P(ΩHN(0, .) - ΩHN(0, 0)), which is a fibration over S'*-1 by The-
orem 4.1.

We define a Riemannian structure on ΩRn by

where ( , •) is the Euclid structure on Rm . Also denote

D-1y(/)= fy{s)ds.
Jo

To be precise about the sphere in Theorem 2, we need to introduce
a function on ΩRm .
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Write e = (e\, ... , en). Let dβi be the differential of the func-
tional βι. Then D~2dei formally is the gradient of the functional βι
with respect to ( , )i

We define a function ΩRm

P(γ) = dct(D'2dei(γ){t) - tD'2dei(γ)(l),

(D-2dei(γ)(t)-tD-2dei(γ)(l))).

Since H is fat, P(γ) φ 0 if γ φ 0.
Now we define a sphere

Now we reformulate Theorem 2 as follows:

THEOREM 4.2. Lei 5^ = Ω//Λf (JCQ ? -̂ o) Π -Se. ΓAe« ί/ze complement
of Se in Sε is the total space ofafibratίon over Sn with contractible
fiber for e small enough.

REMARK. We do not know if the theorem will remain true if we
replace 5^ by the standard sphere.

4.3. The proof of Theorem 4.2. The basic idea of the proof is to
study a vector field (which we call F) on BΩHM(XQ , •). We will
prove that its phase flow induces a homeomorphism from Sε - Se to
P(ΩHN(0, •) - ΩHN(0, 0)), which is, by Theorem 4.1, a fibration
over Sn~ι.

We first construct a vector field on ΩRm ,

(4.2) ^ = -γs(t) + Σai(γs)(D-2dei(γs)(t) -

where fli(y), . . . , ak{γ) satisfy

(4.3)

= (D-2dej(γ)(t) - t2dej(γ)(l), yh - 2ej(γ),

7 = 1 , . . . ^ f c .

This condition is to assure that the vector field (4.2) leaves the set
e~ι(0) invariant. Note that when restricted to ^ - 1 ( 0 ) , (4.2) is just the
gradient flow of the functional ||y||2 with respect to the Riemannian
product ( , )i -
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Solve 0i, ... , #£ from (4.3); then we can rewrite (4.2) as

(44) 4 * ^ = - 7 ( , ί)

where V, P satisfy the following conditions (C will denote any con-
stant)

(1) P is a smooth function on Ωi?m, P(y) = Po(7) + Λ(y) > w h e r e

Po is a positive homogeneous functional of degree 2k, and

(4.5)

(2) V is a smooth vector field on Ωi?m

(4.6)

We will use d/ds to denote the Lie derivative with respect to the
vector field (4.2). Using (4.5), (4.6), by a direct computation we obtain

d (\\γ\\2k+ι/2\ ^ \\γ\\2k+1/2 , r\\7\\4k+3/2

( 4.7 ) ds[ P(y) ) - ^ C

This will be our fundamental inequality. As we will see, if ||y|| and
||y||2*+1/2//>(y) are sufficiently small, then they are fast decreasing.

LEMMA 4.3. If

(4-8)

where c is sufficiently small then there is a constant C\y 0 < C\ < 1,

( 4 . 9 )

Proof. Applying the Gronwall inequality to (4.7).

COROLLARY 4.4. Under the same condition in Lemma 4.3, there is

a constant C2, 0 < Cι < 1/6, such that

Proof. Using (4.4), we have

dsm~ m||y|| IMI + < |y|| +
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Using the Gronwall inequality, we prove the lemma.

So far we have proved that the phase flow of (4.2) will approach 0
within Se very fast, so 0 is a singularity of this vector field. To resolve
this singularity, we will pull back this vector field by B to BΩRm and
then divide it by \γ\. The vector field F thus obtained will induce a
homeomorphism Sε - Se -» P(ΩHN(0, .) - ΩHN(0, 0)).

To be more precise, define βs = ys/||y$|| then βs satisfies the fol-
lowing equation:

ds \\Ύs\\2P{ys) Wvs\\P{ysy

which, together with the equation for ||y5||,

(4.11)

is the pull back of (4.2). Obviously this vector field vanishes on the
boundary of BΩRm.

Note that βs converges as s —> oo . To see this, we estimate dβs/ds .
From (4.10), we have

d
A rs\

>\2k+l

ds1"

then, using Lemma 4.3, Corollary 4.4, we have

l lynllu + 1

(Λ 1 **>\ II O O II ^ /^II'UII

The vector field F is then obtained by dividing (4.10), (4.11) by

v{ys)
3P{7S)

(414) d]M
ds ~ l+\\γs\

Obviously F is a smooth vector field on S°° x [0, oo), non-
vanishing up to the boundary. Note that by (12), the phase flow of F
determines a continuous map Se -* S°° . Moreover, using a standard
argument in the theory of smooth vector fields on manifolds and the
fact that F is non-vanishing, we then prove that this map is in fact a
homeomorphism, so
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LEMMA 4.5. The phase flow of F induces a homeomorphism Sε -
Se -> P{ΩHN(0, •) - ΩHN(0, 0)).

5. Cut-locus of CC metrics. In this section we will study the cut
locus of a CC metric. We will prove Theorem 3 in §5.1, Theorem 4
in §5.2.

5.1. Geometry and definition of the cut locus. Let M be a com-
plete CC manifold. Geodesies and minimizing geodesies are defined
as in Riemannian geometry. If H is fat, then the geodesies sat-
isfy the geodesic equation ([12], compare [28] for the general case).
exρx : T* M —• M, or simply exp will denote the exponential map
for the CC metric (cf. [12]). Thus exp is the composition of the time
1 map of the Hamiltonian flow on T*M composed with the inclusion
of TIM into Γ*M, projected to M.

Fix a point XQ G M. Then any geodesic through XQ has the form
γ(t) = exp(tp). A "cut point" of XQ along γ is a point X\ = γ{t\)
lying on γ such that [xo, X\] is the largest subinterval of γ for which
the geodesic is minimizing. In other words, if t > t\ then γ[0, /]
is not a minimizing geodesic, and if t < t\ then it is a minimizing
geodesic. The set of all cut points (as γ varies) to x$ is called the cut
locus (of XQ) .

Note that X\ is a cut point of JCQ if a n d only if either (a) there is
more than one minimizing geodesies connecting XQ to X\ or (b) we
can write X\ = exp(p) where p is a critical point of exp, and if t < 1
then tp is not a critical point. Note that (a) and (b) are not mutually
exclusive. The points satisfying (b) are said to be in the "conjugate
locus". Strictly speaking, the critical values of exp form the conjugate
locus and the set of points satisfying (b) are said to be in the "first
conjugate locus". For more on the cut locus and conjugate locus see
Taylor [38], Lemma 5, or Kobayashi-Momizu [43], vol. 2, §8.7.

Strichartz [36] proved that cut points of JCQ occur arbitrarily near
x0. In fact conjugate points occur arbitrarily near x0 (cf. [12]) and
0 is a critical point for exp with corresponding value XQ . For these
reasons we now define XQ to be in its own cut locus. Thus, for our
purpose the cut locus is the usual cut locus, with XQ included.

If H is strong bracket generating, a geodesic does not minimize
past its first conjugate point. It follows from this that (after adding
Xo in!) the cut locus is closed. Taylor (see [38], Theorem 4) claimed
that a geodesic does not minimize past its first conjugate point, but
we find a counter-example, see the Remark 2 after the proof of Theo-
rem 3.
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Let S be the unit cylinder Q(p, p) = 1 in T* M. Let μ = μXQ: 5 ->
i?+ be the function which assigns to each p eSx the largest extended
real number T e [0, oo] such that the geodesic t —> expx (ί/>) is
minimizing for all t e (0, Γ] . Taylor [38] proved that if μ is locally
bounded away from zero and H is fat, then μ is continuous. He also
conjectured that μ is continuous. Here we will prove his conjecture.

LEMMA 5.1. μ is locally bounded from below away from zero.

Proof. By the result of Rayner [32], for any CC geodesic γ: [a, b] —•
M without double points, there is a Riemannian metric which extends
the CC metric, with respect to which γ is still a geodesic. Moreover,
this Riemannian metric depends smoothly on γ. Obviously, if γ
minimizes the Riemannian action then it also minimizes the CC ac-
tion. Since for a family of smoothly varying Riemannian metrics the
injectivity radii are locally bounded away from zero, so is μ.

Proof of Theorem 3. For r > 0, let Br be the ball at x0, d(x, x0) <
r. We want to prove that the complement of the cut locus within Br

is homeomorphic to the complement of a fc-plane in Rn .
Let D be the set of points p in T£ M such that the geodesic t ->

y{t) = txp(tp) is minimizing for 0 < t < 1, exρ(/?) e 2?r, and exp(/?)
is not a cut point to Xo. We first prove that D is homeomorphic
to the complement of Rk in Rn. This follows from the following
properties of D:

(1) D is open (since the cut-locus is closed).
(2) If p e D, then ίp e D for 0 < ί < 1. In fact, if expXQ(top)

is a cut point for some ί0 G (0, 1), then there is another geodesic
7o joining exp̂ - (top) to JCQ with length less or equal to that of t —•
exp;co(ί/?) *> hence if yi denotes the curve γ\ = γo(2t), if 0 < t < 1/2
yi(ί)°= exP*0((2(l - 0*0 + (2* - ι))P) >if !/•'< t < 1, then j ^ is also
minimizing as it has the same length as γo, and hence must be smooth
(as every minimizing geodesic is smooth), which is a contradiction.

(3) If Q(p,p) φ 0, then for t sufficiently small, tp e D. This
follows from μX(j > 0.

(4) If Q(p, p) = 0, then exp(p) = x 0

Let C(XQ) be the cut locus of Xo. Then we prove that exp: D —•
Λf - C(JCO) n 5 r is a homeomorphism. Obviously expx : D —• Λf -
C(xo) Π 5 r is a local diffeomorphism. We need only to prove that it
is one-to-one.
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Suppose that p\, p2 € D, px φ ρ2, exp^Oi) = exp* (P2) Choose
t\ > 1 such that txp2 e D. Define y3(ί) = exp(2ίpθ, if 0 < t < 1/2,
and y3(ί) = exp((((2ί - 1)^ + 2 - 2/)p2)) if 1/2 < ί < 1, then y3 is
also minimizing (since it has the same length as the path t: [0, t\] —>
exp(ίp2)) > a n d hence must be smooth, which is a contradiction.

REMARK 1. There is no such simple relation between the topologies
of the cut locus and M as in Riemannian geometry (cf. [21]).

REMARK 2. Theorem 3 is not true in general, as the following ex-
ample shows. Take M = R5, H spanned by

d d d d d d

and the metric

{dxi)1 + (dyι)
2 + (dx2-y2dzι)

2 + (dy2 + x2dzι)
2,

then the cut-locus of 0 is

{(xι ,yι,x2,y2,zι)eRs,x2 = y2 = 0}

In particular, the cut locus is not closed. The geodesic t —• (p\t, p2t,
0 , 0 , 0 ) is minimizing within [0, oo), though every point on it is a
critical yalue of the exponential map.

5.2. Cut-locus on fat analytic CC manifolds. We will prove The-
orem 4. Let M be a fat analytic CC manifold. We will need the
following characterization of the cut-locus.

LEMMA 5.2. The cut-locus of XQ is the singular support of the func-
tion d(x9xo). (The singular support of a function is the set of points
where the function is not analytic, cf [37].)

Proof. To see that this is in fact equivalent to our definition apply
the inverse function theorem to exp to conclude that if x is not in the
cut locus then it is not in this singular support of d{ , XQ) . (Note that,
according to our definition of cut locus, if x is not in the cut locus and
if γ = exp(ίp) is a minimizing geodesic joining XQ to x = exp(/?),
then p is not a critical point of exp.) Conversely, if x is in the cut
locus, then it must be in the singular support. Join x to Xo by a
geodesic γ as in the definition. Without loss of generality, we may
take γ to be unit speed. Suppose that x = γ(t\). Now observe that
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d{y{t) ,xo) = t for / < tx but that d(γ(t), x0) < t for t > t\. Since
γ is analytic it follows that d cannot be analytic at x.

Now it suffices to prove that the distance d(x, XQ) is sub-analytic
in x near x0 since the singular support of a sub-analytic function is
sub-analytic.

THEOREM 5.3. Suppose that the CC metric is real analytic and H is
fat] then there exists T > 0 such that d(x, XQ) is sub-analytic within
the ball d{x,xo)< T.

We extend the CC metric to a Riemannian metric and will use the
notations in §1.2. So in the following γ = γ(t), 0 < t < 1, y(0) = x0,
will denote a geodesic for the CC metric with the Lagrangian multiplier
λ = λ(t), which satisfy equations (1.3), (1.4).

We define a map

exp://Xo xH^-+M,

which is obviously analytic. Note this is simply the old exponential
map composed with the metric-induced identification on Hx x ^

TXQM with T M.

LEMMA 5.4. There exists T > 0 and a compact subset F c HXQ X

£ {e.g. a closed ball) such that if γ: [0, 1] -+ M, γ(0) = x0, is

minimizing and d{γ{\), x0) < T, then (/(0), λ(0)) e F.

Proof. By contradiction.

If it is not true, then there is a sequence of minimizing geodesies
y, : [0, 1] -> Af, 7/(0) = x 0 , Φ / ) := 7/(1) Φ Xo, with Lagrange
multipliers λ/ satisfying (1.3), (1.4), such that

( 5 . 1 ) 7 / ( 1 ) - > x θ 5 Λ/(0) —• c » , a s / - + O O .

So // = max/ |λ|(ί)| -• oo.
Now use the coordinates of Lemma 1.1 to identify a neighborhood

of XQ with Rm x i?^ , where 0 corresponds to x$ and m is the distri-
bution's rank. Then we have 7/ = (α/, A) , α/(ί) G i?m , β( ί ) e i?^ .
Let
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where

Define

α, = j - , ~βi = ^ , ?/ = (α, , /?;).

From (1.3), we see that |y (0l2 is independent of t. Strichartz (cf.
[36], Theorem 11.1) has shown that E(γi)/δf is uniformly bounded.
It follows that y,- has a weakly convergent sub-sequence (still denoted
by Ji) in Hι, y, —• y^ . In particular, yf -> y^ uniformly in C°.
It follows from the weak convergence of yf that y^ is a horizontal
path on the tangent cone. This can be seen as follows.

As we have seen in the proof of Lemma 3.1, a horizontal path (x9y)
satisfies

where Tj(x,y,z,w) is a smooth function

\Ti(x9y,z9w)\<C0(\x\3 + \y\2).

S o

A(ί)= / ω + O(δf)9
Λ|[0,/]

where ω = (α>i, . . . , ω^), ωz are as in §3.3. So it follows that

i.e. the limit (αoo, βoo) is horizontal.
First we remark that γ^ is not constant, as

From (1.4) we obtain

(5.2) I ^

Hence λiβi is uniformly bounded in C°. So after passing to a sub-
sequence, we assume that

^ -> b φ 0 uniformly in C°.

Dividing (1.3) by δι-_9 we obtain

(5.3)
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where Q\ (resp. Qι) is an analytic function, quadratic (resp. linear)
in the first variable. Divide (5.3) by //, and then taking its inner
product with a i/^map V with compact support, we obtain

T f
n h

Q H

Let / —• oc above and note that the integral on the right-hand side
uniformly bounded to conclude that

Jo
for any compactly supported V. But b, y'^ Φ 0. This contradicts
the fact that H is fat. (Observe that if H is fat, then so is every
tangent cone.)

Proof of Theorem 4. Define two subsets

A = {(x, t, /(O), λ(0)) EMxRxF,

x = exp(/(O),A(O)), ί =

B = {(x,t, /(O), λ(0)) eMxRxF,

* = exp(/(O),λ(O)), 0 < |

Since these sets are defined by analytic equations and inequalities, they

are sub-analytic.
Let P:MxRxF—>MxR be the projection; then by definition,

the graph of the distance function t = d(x, XQ) within d(x, JCQ) < T
is just

P(A) - P(B).

Since F is compact, we see that P is proper on the closures of A and
B respectively. By the definition of sub-analytic sets, P(A) - P(B) is
sub-analytic. So we see that the graph of d(x, XQ) is sub-analytic,
and hence d(x, x0) is sub-analytic within d(x, x0) < T.

5.3. A stronger version of Theorem 4. Here we will prove a stronger
version of Theorem 4, using a more direct approach.

THEOREM 5.5. Suppose H is fat and the CC metric on M is real
analytic. Choose coordinates x = (x;, yj) near x0 as in Lemma 1.1,
and define
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then there is a neighborhood U of XQ such that the closure of the graph

of

d(x,xo)/a(x)

on U-{x0} is sub-analytic within UxR. Moreover, when pulled back
to the weighted blow-up, d(x, xo)/a(x) is continuous and sub-analytic.

We will need a result of Tamm [37].

LEMMA 5.6. Suppose that φ: N -> M and g: N -+ R are sub-
analytic and φ is proper. Then the function

φg(x) = mΐ{g{u):ueφ-χ{x)}

is sub-analytic.

Now d(x, XQ) can be written as

d(x, xo)/a(x) = inf{E(γ)/a(x), e(γ) = x} .

But e is not proper, so Lemma 5.6 cannot be applied directly. The
following result will enable us to overcome this difficulty.

LEMMA 5.7 ([17]). Let B be a Hilbert space, f{y, z): B x Rr -+ R
an analytic function satisfying

(5.5) (/>ί/(0, 0)α, b) = ((I-A)a, b), a,beB,

where A is a linear compact operator of B, B — ker(7 — A) θ V. Then
there are local origin preserving analytic transformations T: B xRr —•
B x Rr and h: ker(7 - A) x Rr —• B y defined in a neighborhood of
(0, 0) G ker(7 - A) x Rr, such that f takes the form of

where A\ is the restriction of A to V.

In the proof of Theorem 5.5 we will use the resolution of e, as in
Lemma 5.7 it requires that the projection is a submersion (recall that
e is not a submersion).
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Proof of Theorem 5.5. Write

We note that the functional in (5.6), B*E(γ)ι/2/a(Bw(z)), has an
analytic continuation to the boundary of the domain. In fact, we have

(5.7) E{ay)^a2EQ{y) + a'Ex{y,a),

where EQ is the energy functional on the tangent cone, E\ an analytic
functional. So

B*E(γ) ( B(γ)
(B())i ° Ja(BwoBe(γ))

+ a(Bw o Be{γ))Eι

Since all the terms above are analytic, so the functional in (5.6) has an
analytic continuation. Moreover, when z € B~1(XQ) , the minimizers
of (5.6) come from the minimizing geodesies on the tangent cone N.

We first check that the condition in Lemma 5.7 is satisfied when
z G B~1(XQ) . From (5.7), we see that the second derivative of EQ is
associated with the Jacobi's field on the tangent cone N, which is a
2nd order linear differential-integral equation (cf. [12], page 93)

D2-L = 0,

where L is a 1st order linear differential-integral operator. So

and hence A is compact.
Consider the set of minimizing geodesies γ on the tangent cone,

with e(γ) Φ 0. i?+ acts on this sets, induced from its action on
N. Let S be the quotient of this set by the action of i? + , then
S is compact. Then, by (5.7), the set of minimizers of (5.6) when
z G B~1(XQ) is just S. Thus every point in S has a neighborhood in
B(ΩHM(XQ , •) -Ω#M(xo , *o)) i n which Lemma 5.6 is valid. Choose
a cover of S by a finite number of such neighborhoods, denoted by
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Ui (such a cover exists since S is compact). If we can prove that the
minimizers of (5.6) are contained in a compact subset in |J Ui if z
is sufficiently near XQ , then we can use Lemma 5.6 and Lemma 5.7
to prove the theorem.

Then we only need a corollary of Lemma 5.4 (whose proof is rather
straight forward) to complete the proof.

COROLLARY 5.8. There is an open set W c U t// such that Be{W)
contains an open neighborhood of XQ, and if z e Be(W), then the
minimizers of (5.6) lie in W.

REMARK. The cut-locus of a CC metric seems hopelessly compli-
cated in general, despite Theorem 4. We don't even know what a
cut-locus in a general three-dimensional CC manifold looks like dif
feomorphically, while in Riemannian geometry, the generic cut-locus
on manifolds of dimension < 6 admits a complete classification up
to diffeomorphisms (Bunchner [8]). Even the case of a left invariant
CC metric on a nilpotent group is not trivial, as the energy functional
here has non-isolated critical points (cf. §6). Montgomery has found
complicated "secondary conjugate locus" on Heisenberg groups. We
conjecture that if the cut locus of any point of a three-dimensional fat
CC manifold is locally dίffeomorphic to a line, then the metric is ho-
mogeneous, and for every point there is a Sι isometric group which
leave both this point and the cut-locus through this point invariant.

6. Left-invariant CC metrics on fat two-step nilpotent groups. As we

have shown in previous sections, the geometry of a CC manifold M
is largely determined by the tangent cones, especially when H is fat.
In this section we will study the CC geometry on fat nilpotent group.

6.1. The case of codimension 1. Let n = V\ Θ V2 be a fat two-
step nilpotent Lie algebra, [VΪ9 V{\ = V2, [Vu V2] = [F 2 , V2] = 0,
dim V\ — m, dim V2 = k, and N be the corresponding simply con-
nected nilpotent group.

We begin with the case k = 1. The nilpotent Lie algebra then
is Heisenberg. We first look at the case n = 3 which was studied
in detail in [11]. Take x, y, z as the coordinates on N such
that H is spanned by d/dx - yd/dz, d/dy + xd/dz, and the
CC metric is (up to a constant) Q = (dx - ydz)1 + (dy + xdz)2.
The geodesic flow on T*H passing through χ = y = z = 0is
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(x(t), y(t), z(t), p{t), q(t), r(t)), where

r(/) = r(0) = r,

x(t) = sm{4rt)(p(0)cos(4rt) + q(0)sin(4rt))/2r,

y(t) = sin(4rί)(-p(0)sin(4rί) + ί(0)cos(4rί))/2r,

p{t) = cos(4rή(p(0) cos(4rί) + 0(0)) sin(4rί),

q{t) = cos(4rί)(-p(0) sin(4rί) + q(0)) cos(4rί),

The 1st conjugate locus of (0 ,0 ,0) is the set of points (0, 0, z).
Moreover, the Morse index of (0, 0, z) (z φ 0) along a prime
geodesic (i.e. a geodesic which does not contain conjugate point except
the end point) is 1. In this case, the 1st conjugate locus coincides with
the cut locus.

If n > 5, the CC metric can be written as

ai({dXi - yidz)2 + {dyt + Xidz)2),

where αz are positive numbers. It is easy to prove the following result:

LEMMA 6.1. A point (0, 0, z) is a conjugate point of (0, 0, 0).
If di Φ cij for i Φ j , the Morse index of (0,0, z) (z Φ 0) to
(0, . . . , 0, 0) along a prime geodesic is 1, while if a\ = aι = = at,
the Morse index is t(t - l)/2 (n = It + 1).

In this case, if a\ — #2 = - = Q>t ? then the cut-locus of 0 is the set
{(0, . . . , 0, z)}; otherwise the cut locus is rather complicated.

6.2. The case k = 2. In this case the fat two-step nilpotent Lie
algebra is not unique for given n . Nevertheless, we have the following
result.

LEMMA 6.2. The set of fat two-step nilpotent Lie algebras with m =
n - 2 is connected for given n.

Thus the "moduli space" of fat CC metrics with k = 2 is connected.
To prove this lemma, we need the following results.

LEMMA 6.3. The set

U — {A e GL(n, R), JnA = AτJnA, has no real eigenvalues}
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is connected Here Jn is the matrix

Proof. Any element A in U can be written as

-ι_ιB 0
(6-1) PAP - l 0

where 5 is a complex matrix, JB its complex conjugation, B Φ B, P
is an invertible matrix of the form of

p=

From JA = ATJ, we see that P must satisfy

i.e. P ^ ^ € w(ί, C) (the space of ί x t infinitesimally hermitian ma-
trices, n = It). Such P is called admissible. We want to prove that
the set of admissible P is connected.

(1) If Pi is non-singular, then P can be connected to

{p2p~ι P2P\)
1

by a curve of admissible Pt

(PxAt 7,-AΛ
\P2At P2At)

where At is a matrix depending continuously on t, AQ — I, A\ =

(2) If Px is singular, then there are C, D e GL(t, C) such that
C7!5^ e u(t, C). Since for any Z>, (PιD)τ(P2D) e u(t, C) when-
ever PjP2 E u(t, C), hence P can be connected to

(Wx W\\__(P\ 72\/D 0 \
V**2 W2)~~\P2 P2)\0 DJ'

and then to matrix

Wx + tC __

W2 W2

f

Note that for t small enough Wγ + tC is non-singular. Thus we have
reduced the case (2) to the case (1).



282 ZHONG GE

So far we have proved that any P can be connected to a matrix of
the form

\F FJ

where Feu(t,C), det(F -T)φO. On the other hand, the set

{Feu(t,C),det(F-F)φO}

is contractible to the set of non-singular anti-symmetric matrices,
which is connected. So, the set of admissible P is connected.

Having proved that the set of admissible P is connected, we can
prove that the set U is connected. In fact, let A be any matrix of the
form (6.1) with B φΈ\ then there is Bt such that BQ = B, B\ = ilt,
Έt φ Bt, and depends continuously on /. So any A e U can be
connected in U to

(il 0

where P is admissible, which forms a connected set, since the set of
admissible P is connected.

Proof of Lemma 6.2. Suppose that the two-step nilpotent Lie alge-
bra is of the form of Rm + R2 with [Rm, Rm] = R2, [Rm, R2] =
[i?2, R2] = 0. Write [.,.]: RmxRm->R2 as [α, ό] = ( α τ 5 1 ό , α τ 5 2 ό ) ,
where Bγ, Bι are skew-symmetric matrices. The Lie algebra is fat if
and only if for every (c\, ci) £ R2 - {0},

(6.2) det(cιBι+c2B2)φ0.

We denote the set of such pairs (2?i, B2) by V. Write B\ as B\ =
P τ / P , with P invertible. Write B2 = PTDP then (6.2) is equivalent
to det(ci / + c2D) Φ 0. Denote the set of skew-matrices D satisfying
the above condition by U\. Then V is connected if and only if U\ is.
So we need only to prove that U\ is connected. But U\ is precisely
the set U in Lemma 6.3, since the map U\ —• U which sends D to
DJ~ι is a homeomorphism.

6.3. Generic cases. We will study general left-invariant CC metrics
when N - m > 2.

Given a fat nilpotent Lie algebra Vx + V2 , [Vx,Vι] = V2, [VUV2] =
0, denote the V2Ύahied anti-symmetric bilinear form on Vu J(a\,a2)
= [#i 5 #2] Then the multiplication of the Lie group is (a\, bχ)(a2, b2)
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= {a\ Λ-ai, b\ + b2 + J(ciι, ai)l2). Let L be the left translation. Then

TL{aιA){δa, δb) = (δa, δb + J(aι, δa)/2),

L*{aίA)(da, db) = (da + J*{ax, db)/2, db),

where J*:Vγx F2* -f V* is defined by

(J*(a, b))(c) = b(J(a ,c)), a, c € Vx, b e V2*.

For a metric Q$ on Vx*, the induced left-invariant CC metrices is
Q0(da + J*(a,db)). We identify Vx with V* via βo The Hamil-
tonian of the Carnot-Caratheodory metric is

(6.3) QoiP + J*(a, r)), (a, b, p, r) eT*N.

Since (6.3) does not contain b explicitly, r is a V£-valued first integral
of the Hamiltonian (6.3).

Fixing r0 e F2*, define Jr<s: Vx -+ V\ by /Γβ(α) = J*(a, r0). Then
the Hamiltonian system (6.3) can be written as

Let P be an orthogonal matrix such that

where ±c\i, ±C2i, . . . , ± Q Ϊ are the eigenvalues of /ΓQ, Q > 0. In-
troduce a = Pa, p = P~ιp; then (6.4) can be rewritten as

d_ίa\ ί d i a g ( c ! J 2 9 . . . 9 c t J 2 ) I \ (a\

dt\p)\-diag(c2/2, . . . , c}l2) -diag(ci J2,..., ctJ2)) \jp) '

Write α as (aι, . . . , 3*) and similarly for p . Then (6.4) can be
written as

d (ai\_( ah I \(aΛ

which has been solved in §6.1.
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LEMMA 6.4. If the eigenvalues of Λo are ±C\i, . . . , ±cti; C/ > 0,
d φ Cj, for i Φ j , ί/jeft ίήe Mαrse /mfex of (0, z) to (0, 0) along a
prime geodesic c for which r(c) = ΓQ is 1.

REMARK 1. In general the cut-locus is rather complicated.

REMARK 2. It seems that a "generic" conjugate point has multiplic-
ity 1. More precisely, we conjecture that the following is true: Fixing
mf n with n > 4, then given a positive definite bilinear form QQ on
V£, there is an open and dense set ofnilpotent Lie algebras such that a
generic conjugate point of 0 e V\ x Vι of the induced fat left-invariant
CC metric has multiplicity 1.
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