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A CLASSIFICATION OF CERTAIN 3-DIMENSIONAL
CONFORMALLY FLAT EUCLIDEAN HYPERSURFACES

OSCAR J. GARAY

This paper deals with conformally flat hypersurfaces of the 4-
dimensional Euclidean space E4 . We classify those conformally flat
hypersurfaces of E4 whose mean curvature vector, H, is an eigen-
vector of their Laplacian i.e. AH = λH; λeR.

The classification is done by proving that the classical Cartan-
Schouten result remains valid for this kind of hypersurfaces.

1. Introduction. A Riemannian manifold (Mn, g) is conformally
flat, if every point has a neighborhood which is conformal to an open
set in the Euclidean space. A submanifold of the Euclidean space
En+l is said to be conformally flat if so it is with respect to the in-
duced Riemannian structure. Thus, in the highest codimension, we
can talk about conformally flat hypersurfaces Mn of the Euclidean
space En+{. We classify conformally flat Euclidean hypersurfaces in
E4 whose mean curvature vector is an eigenvector of their Laplacian.
More concretely we prove that if x : M —• E4 is a complete con-
formally flat hypersurface immersed in the 4-dimensional Euclidean
space, which satisfies AH = λH, H being the mean curvature vector
of the immersion, then it is either minimal or the Riemannian product
EP x £ ( 3 - P ) 9 0 < p < 3 .

The dimension of the hypersurface seems to play an important role
in the study of conformally flat Euclidean hypersurfaces. For n = 2,
the existence of isothermal coordinates means that any Riemannian
surface is conformally flat. We shall discuss the case n = 3 at the end
of this section. For n > 4, the following result of Cartan-Schouten,
[2], [27], is of fundamental importance: If Mn is a hypersurface im-
mersed in En+ι, n > 4, then Mn is conformally flat in the induced
metric, if and only if, at least n - 1 of the principal curvatures coin-
cide at each point. (See also Nishikawa and Maeda [24].) Using this
theorem Kulkarni [20] and Nishikawa and Maeda [24] gave a local
classification of conformally flat hypersurfaces in EnJrX, n > 4.

Unfortunately canal hypersurfaces [4, p. 166] are conformally flat
hypersurfaces which do not fall under this classification. Also, Cecil
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and Ryan, [3], showed that some cyclides of Dupin are counterexam-
ples to both, the mentioned local classification, and to the attempt of
Nishikawa [23] of classifying the complete analytic conformally flat
hypersurfaces of dimension greater than three in the Euclidean space,
En+X .

In [1], D. Blair showed that the generalized catenoid and the hyper-
planes are the only conformally flat minimal hypersurface of En+X,
n > 4. Pinl and Ziller also obtained this result in [25] but their proof
uses the local classification result of Kulkarni.

In [4, p. 159], Chen defined a locus of r-spheres in Em as a subman-
ifold M of Em which is obtained from the smooth glueing of some
ft-dimensional submanifolds of M (possibly with boundary) such that
each of the submanifolds is foliated by r-spheres (0 < r < n) of Em .
In Theorem 4.4 of [4, p. 165], Chen and Yano gave both local and
global descriptions of conformally flat hypersurfaces of En+ι, n > 4,
in terms of loci of (n - l)-spheres. In fact, they showed that every
conformally flat hypersurface of En+X, n > 4, is a locus of (n - 1)-
spheres. Although not every locus of (n — l )-spheres is conformally flat
in general, Chen and Yano proved in Theorem 4.2 of [4, p. 162] that
a locus of (n - l)-spheres in En~x, n > 4, is conformally flat if and
only if the unit normal vector field of the hypersurface, restricted to
each of the (n - l)-spheres, is parallel with respect to the normal bun-
dle of the (n - l)-sphere in En+X. In Theorem 3.1 of [4, p. 157] they
gave an intrinsic characterization of conformally flat hypersurfaces.

From the viewpoint of conformal geometry, several important re-
sults should be mentioned. Kuiper [19] proved that a compact simply
connected conformally flat space, of dimension greater than two, is
conformally equivalent to Sn. On the other hand the topological
types of compact conformally flat hypersurfaces in En+X, n > 4, are
known [16]. The authors describe also in [16] the extrinsic geome-
try of such hypersurfaces. Finally, Pinkall determines their intrinsic
conformal geometry, proving [26, Theorem 2, p. 218]: Every com-
pact conformally flat hypersurface in En+X, n > 4, is conformally
equivalent to a classical Schottky manifold.

Completeness is not a conformal invariant; therefore, from the con-
formal geometry point of view, compactness is the simplest global con-
dition that can be imposed on a conformally flat manifold. However,
under the Riemannian geometry point of view, completeness has still
a role to play. Cecil and Ryan [3] classified the conformally flat hy-
persurfaces of En+X, n > 4, with the additional assumption that the
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immersion is taut (and therefore complete). In [17] we gave a classi-
fication of complete conformally flat hypersurfaces of En+X, n > 4,
using an extra condition on the mean curvature vector, namely, that
the mean curvature vector is an eigenvector of the Laplacian of Mn

with respect to the induced metric. This extrinsic condition forces the
manifold into some rather simple shapes.

Leaving aside the result of Kuiper, all the above-mentioned proposi-
tions in dimension n > 4 use the Cartan-Schouten theorem. In other
words, they use the fact that for n > 4 the conformally flat hyper-
surfaces of En+ι have one principal curvature whose multiplicity is
at least n - 1. Cartan-Schouten's result is no longer true in dimen-
sion 3. Lancaster [21, p. 6] gave some examples of conformally flat
hypersurfaces in E4 having three different principal curvatures.

Probably due to this fact, there are not so many results concerning
the classification of conformally flat hypersurfaces in E4. Lancaster
[21] describes the conformally flat hypersurfaces in E4 having diago-
nal Weingarten map with respect to a conformal coordinate system.

In this paper we use an idea of Chen [11] to prove that the main
result in [17] is also true for n = 3. That is, if Δ is the Laplacian
of M3 with respect to the induced metric, and H its mean curvature
vector, then we have

THEOREM. Let M3 be a complete conformally flat hypersurface of
E4. Then it satisfies the condition AH = λH, λ e R, if and only if
M3 is one of the following submanifolds

(a) a minimal hypersurface,
(b) around 3-sphere, S3(r),
(c) a cylinder over a circle Sι(r) x E2,
(d) a cylinder over a 2-sphere S2(r) x E1.

The main point in the proof of the above theorem is to show that,
if the mean curvature vector is an eigenvector of the Laplacian of
M3 and if it is not minimal, then the Cartan-Schouten result is still
valid. As a consequence we can use the computations of [17] to obtain
the result. For conformally flat minimal hypersurfaces in E4, we are
not able to prove that there is one principal curvature of multiplicity
at least two. If this were the case, one might use the method of [1]
to prove that M3 is either the generalized catenoid or E3 (see final
remark page 236 of [1]).

This work was done while the author was visiting the Department of
Mathematics of Michigan State University, during the first semester of
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1991. I would like to thank my colleagues there, Professors Chen, Blair
and Ludden, for their hospitality. I owe special thanks to Professor
Chen who brought to my attention his paper [11] and for his comments
and suggestions during the preparation of this paper.

2. Main results. Suppose that M3 is a connected Riemannian man-
ifold and let x : M3 —• E4 be an isometric immersion of M3 as an
orientable hypersurface of E4. Let us denote by σ, A, H, V and
D the second fundamental form, the Weingarten map, the mean cur-
vature vector, the Riemannian connection of Mn and the normal
connection of the immersion. Suppose that ζ is a global unit normal
vector on Mn and that a in the mean curvature function with respect
to ξ, that is H = aξ. The following lemma is a special case of Chen's
formula [6], Lemma 4.1, p. 271 (for a proof see [6] and [17]).

LEMMA 1 (Chen fs formula). Let x : M3 -* E4 be an orientable
hypersurface of E4. Then

(2.1) AH = {Aa + a\σ\2}ξ + 2A(Va) + \ Vα 2 ,

Δ being the Laplacian of Mn in the induced metric and Vα2 the
gradient of a2.

Take a local orthonormal frame {e\, e2, e$, e$} such that {e/},
/ = 1 , 2 , 3 , are tangent to M3 and e$ = ξ. Denote by {wι}4

=ι

the dual frame and by {wj}, /, j = 1, . . . , 4, the connection forms
associated to the frame {e\, eι, e^, e4}. Let us write the structure
equations of M3 corresponding to this system

n

(2.2) dwi = ΣW1Au)j'
i=\
n+\

(2.3) dw) = ΣwΊ*wk>
k=\

(2.4) dwf+ι =
7=1

If we choose a tangent frame {ei}}=ι which diagonalizes the Wein-
garten map Aβi = μiβi, / = 1 , 2 , 3 , and use the Codazzi equation
(VXA)Y = (VYA)X then from (2.2), (2.3) and (2.4) we obtain

(2.5) ei(μj) = (μz - μj)wj(ej),

(2.6) ( f ^
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Let R and r be the Ricci and scalar curvature of M3 respectively.
The following tensor is known as the Schouten tensor

(2.7) L = -R+!Lg9

g being the metric tensor on M. Assume now that M3 is conformally
flat. A result of Weyl [4, p. 26] states that

(2.8) (V

where W, Y, Z are tangent vector fields to Af3.
We want to prove the following theorems.

PROPOSITION 1. Let x : M3 —• E4 be an orientable conformally flat
hypersurface of E4. // M3 satisfies AH = λH, λeR, then M3 is
either minimal or it has a principal curvature of multiplicity at least
two at each point

In other words, this means that under the condition AH = λH, the
classical Cartan-Schouten theorem remains valid for conformally flat
hypersurfaces in E4 other than the minimal ones.

The above result leads automatically to

PROPOSITION 2. Assume that x : M3 —> E4 is a complete orientable
conformally flat hypersurface of E4. Then it satisfies AH = λH, λ e
R, if and only if M3 is one of the following submanifolds

(1) a minimal hypersurface in E4,
(2) a hypersphere S3{r),
(3) a cylinder over a circle E2 x Sx(r),
(4) a cylinder over a 2-sphere Eι x S2(r).

This result extends Theorem 3.2 of [17] to the case of hypersurfaces
in E4.

We first prove Proposition 2 assuming that Proposition 1 holds.
Then we shall prove Proposition 1.

Proof of Proposition 2. Assume that M3 is not minimal. Since M
has at most two different principal curvatures at each point, one can
proceed in the same way as Theorem 3.1 of [17] to conclude that M3

is isoparametric.
If M3 is isoparametric we can use a well-known result of Segre [28]

to conclude that M3 is one of the last three manifolds of Proposi-
tion 2.
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Thus our main concern is proving Proposition 1. We do it in the
following way.

Proof of Proposition 1. We denote by V the open set of M where
A has three different principal curvatures. We shall prove that V is
either empty or minimal.

Suppose that V is not empty. By using the Gauss equation we have

(2.9) R(Y, Z) = 3a(AY, Z) - (A2Y, Z)

therefore from (2.9) and (2.7)

(2.10) L(Y, Z) = r-(Y, Z) - 3a{AY, Z) + (A2Y, Z).

Now (2.8) and (2.10) lead in turn to

(2.11) Y(r)Z-Z(r)Y= l2{Y(a)AZ - Z(a)AY}

+ A{{VZA
1)Y-{VYA

1)Z}.

From (2.9) and Codazzi's equation

(2.12) r = 9a2-\A\2.

Combining (2.11) and the connection equations we get

(2.13) (μj - μf)wj(βj) = 3 (̂α)/ι7- - far) - e^μj),

(2.14) {μj - μDwfie*) = (μj - μ2

k)wf(ej)

for distinct /, j , k e {1, 2, 3}.
If V Φ 0 then we use (2.6) and (2.14) to obtain

(2.15) wf(ej) = 0

for distinct ί , f c , ; G { l , 2 , 3 } . Using Lemma 1 and the hypothesis
AH = λH we have

(2.16) Δ(α) = (A- |σ | 2 )α

on M and, in particular, on V.
Suppose that a is non-zero constant on some open set V\ c V.

We shall see that this is not possible. In fact, we see from (2.16) that
|σ | 2 is also constant and, therefore, (2.12) means that r is constant.
Then we can use (2.13) to obtain

(2.17) aiμj) = {μ} - μj)w{(ej), i Φ j.

Combining (2.5) and (2.17) we get βi(μj) = 0, iφj, i, j e {1, 2, 3} .

But a is constant and then e, (μ/) = 0, / e {1, 2, 3} . Thus μ z ,
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/ = 1, 2, 3, are constant. From (2.17), wj(ej) = 0, i φ j , and then
using (2.15) wj = 0 on V\, this means that V\ is flat. But then from
Gauss equation we have μ;μ7 = 0, i Φ j , on V\ so that at least two
principal curvatures are zero on V\ which contradicts V\ c V.

We deduce from the above reasoning that a can't be a non-zero
constant on any open set V\ c F .

The following lemma follows easily from Chen's formula (Lemma

1).

LEMMA 2. Suppose that x : M3 —• i?4
 W α hypersurface of E4

satisfying AH = A/ί. Γ/ẑ π yί(Vα:2) = - |α(Vo: 2) on ίA^ open set
U = {peM; Va2(p)φ0}.

If V ΠU = 0 then Vα2 = 0 on V means that a2 is constant
on V and then α = 0 on F . If F n ( 7 / 0 , we can choose an
open set F2 c F n [/. Now, using Lemma 2 we can take a local
orthonormal basis in V2, {e\, e2, e^, e4} such that {e\, £2> ̂ 3} are
tangent vectors to Λf3 diagonalizing ^4, Aβ\ = ///β/, / = 1, 2, 3, e\
is parallel to Vα2 and e^ = ζ, the normal unit vector. Therefore there
exists a function ί on F2 (or on some suitable open set contained in
V2) such that

(2.18) / / i = - | α ; ^2 = ?<* + <*; μ3 = fα - tf.

Thus from (2.5) and because ^i||Vα2 we get

(2.19) e2(a) = e3(a) = 0,

Since //1 = - | α , then ^2(^1) = ^3(^1) = 0 and then from (2.5) we
have

(2.20) tι

Therefore using (2.15) and (2.20) we obtain

(2.21) w\ = φw2\ w^ = ηw3

where φ = w\(e2) and η = w^(e^). Now from (2.18) and (2.19)

A_ 9eι(a) + 4eι(δ)t ^ _ 9eι(a) - 4ex(δ)
[ ] Φ~ 4 η
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Differentiating w4 = μ\Wι and considering (2.18) and (2.21), we
have dw4 = 0 and therefore, locally, there exists a function u, such
that wι = du. Then, by using (2.19), daΛdu = 0 and thus a is a
function of u.

Combining now (2.5) and (2.13) we get

(2.23) 3ei(a)μj - fair) = (μj - μ ^ μ , ) .

From this equation and (2.12) we obtain

(2.24) ei(μj)(βj - μt) + Σ {±(μk + μs) - μj}ei(μh) = 0.

h,k,se{l,2,3}

If we put i = 2 j = 1 and / = 3 j = 1 in (2.24) we obtain
e2(δ2) = ei(δ2) = 0 respectively. Since μ, Φ μj, i φ j , va. VΊ, we
have δ Φ 0, and therefore β2{δ) — e?,{δ) = 0. Thus δ depends on
u,δ(u). We write a',δ' for e\{a) and e\{δ) respectively. Putting
j: = 1, 7 = 2 in (2.24) we get δa' = 5aδ' hence

(2.25) a = cδ5, ceR.

We can now combine (2.25), (2.22), (2.19) and (2.18) to obtain

(2.26) μ ι = -\cδ5 • μ2 = \cδs + δ; μ3 = \cδ5 - δ,

(2 27) w2- w M

(2.27) tϋ! - ( 4 + 1 5 ^ 4 μ

w ' «Ί - ( 4 -
We know that *>/(«) = e, (ί) = 0, / = 1,2; then from (2.19)

etQij) = 0, i, j = 2,3. Using (2.13) we get ^(μO = e2{μx) = 0
and thus e,(r) = 0. Using this fact in (2.13) and (2.14) we have

(2.28) 0*| - μ2

2)wl(e3) = 0, {μ\ - μl)w2(e2) = 0.

If μ\ = μ^, then either μ3 = μ2 or μ$ = -μ2 the first case is clearly
impossible because we are in V. If μ3 were equal to —μ2, then using
(2.26) we have δ = 0, and therefore from (2.25) a = 0 on K2. If
μ\φ μ\, then from (2.28) and (2.15) we have

(2.29) w\ = 0.

Taking differentiation of the second equation of (2.27) and using"
(2.26) and (2.29) we get

(2.30) (45c<54 + 4)(4<J + 15cδ5)δ"

= (27OOΛ58 - 60cδ4 + 32){δ'f
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Analogously differentiating the first equation of (2.27) and using
(2.26) and (2.29) one has

(2.31) (45cδ4 - 4)(4ί - 15cδ5)δ"

= -(Π00c2δs + 60cδ4 + 32)(δ')2

+ \cδ*{lcδ4 - 1)(4 - I5cδ4)2.

Combining (2.30) and (2.31), we find

(2.32) (1377200c2<58 + 17280)(<5')2

= §<J4(1701000c4J16 + 149760c258 - 1024).

Now taking differentiation of (2.29) and using (2.26) and (2.27) we
have

(2.33) 16(2025c2<J8-16)(J')2

= <J4(-18225c4<516 + 4896c2(58 - 256).

Finally, from (2.32) and (2.33) we can conclude that δ is constant
on V2. Therefore by (2.25) a is constant on V2 which implies that
a = 0 on V2. Since V2 is arbitrary, a = 0 on V Π U, but clearly
a = 0 on V Π (M3 - U) consequently it is zero on V. Hence either
V = 0 or it is minimal.

Suppose that V = 0 then M 3 has at most two different principal
curvatures. On the other hand, if V is minimal then it is contained
in the set W = {p e M3/a(p) = 0}. Consider the open submanifold
W\ = M3 - W. Then there are at most two different principal cur-
vatures on W\ and using the method of Theorem 3.1 of [17] we see
that it is isoparametric and therefore it has constant mean curvature
a. By continuity, a = 0 on M3 , that is, M3 is minimal.

3, Final remarks.

REMARK 3.1. B. Y. Chen and K. Yano introduced in 1972 the no-
tion of quasiumbilical submanifolds [4, p. 147]. An isometric im-
mersion x : Mn —• Em in the Euclidean space is quasiumbilical
with respect to a unit normal direction ξ, if the Weingarten map
associated to ξ9 Aζ, admits an eigenvalue of multiplicity at least
n - 1. The immersion is said to be (totally) quasiumbilical if for ev-
ery point p G Mn there exists a local orthonormal basis of (TM)1-,
{ζn+ι, . . . ,ξm}, such that (Mn, x) is quasiumbilical with respect to
ξj, j = n + 1, ... , m.

In terms of quasiumbilical submanifolds, the Cartan-Schouten re-
sult can be rephrased in the following way: An Euclidean hypersurface
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Mn, n > 4, is conformally flat, if and only if it is quasiumbilical.
Chen and Yano [4, Prop. 1.11, p. 148] proved that every quasium-
bilical Euclidean submanifold Mn, n > 3, is conformally flat. The
converse of this result is not true in general [21]. For n > 3 and un-
der suitable restrictions on the codimension of Mn the converse also
holds [14], [22]. For a detailed study see [29].

Our Proposition 1 can be interpreted in the light of quasiumbilicity
condition: A conformally flat non-minimal hypersurface M3 or E4

satisfying AH = λH is quasiumbilical.

REMARK 3.2. There is also a close link between submanifolds sat-
isfying AH = λH and finite type submanifolds [6], [7]. Indeed, if
λ = 0, then AH = 0 and therefore A2x = 0. These submanifolds
are called biharmonic and have been studied by several authors [8],
[12], [15]. Chen and Ishikawa [12] and Dimitric [15], proved that a
biharmonic submanifiold is either minimal or of infinite type. In fact,
in many cases, the only possibility is the minimal one. For instance
Chen in 1985 proved that a biharmonic surface in E3 is minimal.
Also Dimitric [15] showed that a biharmonic submanifold M of the
Euclidean space is minimal in the following cases: (a) M is a curve,
(b) M has constant mean curvature or (c) M is a hypersurface with
at most two distinct principal curvatures. In [9] B. Y. Chen made
the following conjecture: the only biharmonic submanifolds in the
Euclidean space are the minimal ones. The conjecture is true for
spherical submanifolds [9].

If δH = λH with λ Φ 0, then Chen [13] has proved that they are
either of 1-type or of null 2-type. Summarizing this result, we have
that given an Euclidean isometric immersion x : Mn -* Em satisfying
AH = λH, then if λ = 0, it is either minimal or of infinite type, and if
λ Φ 0, then it is either of 1-type or of null 2-type. Consequently, if the
above Chen conjecture is true, the problems of classifying Euclidean
submanifolds satisfying AH = λH and that of classifying null 2-type
Euclidean submanifolds are basically the same.

REMARK 3.3. If x: Mn -> Em is an isometric immersion and Δ
represents the Laplacian with respect to the induced metric, then the
following Beltrami equation is well known: Ax = -nH, H being the
mean curvature vector of the immersion. In particular the above for-
mula says that the Laplacian of the position vector of the immersion
is everywhere perpendicular to Mn .

The family of submanifolds satisfying AH = λH that we have stud-
ied before verifies also that the Laplacian of the mean curvature vec-
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tor is everywhere perpendicular to Mn . In other words, the second
Laplacian of the position vector is a normal vector to Mn . It makes
sense therefore to pose the following problem: to study Euclidean sub-
manifolds whose second Laplacian of the position vector (that is the
Laplacian of the mean curvature vector) is everywhere perpendicular
to Mn.

We proved in [18] that if AH = c, c being a constant normal vector,
then c = 0, that is (Mn, x) is biharmonic. Under the assumption
that AH is everywhere normal to Mn , the main point is that Lemma
2 is still valid no matter what the dimension of Mn. This gives us
important information about one of the principal curvatures. If in
addition there are so many principal curvatures, then this information
can be crucial. For instance, following the computations of Theorem
3.1 in [17], one can easily deduce the following result.

PROPOSITION 3. Let Mn be a conformally flat orientable hyper sur-
face of En+ι, n > 3. Assume that the Laplacian of the mean curvature
vector, AH, is everywhere perpendicular to Mn. Then the mean cur-
vature function a is harmonic, if and only if it is constant

Proof. Take U = {p e Mn Va2(p) Φ 0} . Suppose a is harmonic,
if a is not constant, then under the above conditions a must satisfy
locally the equation (3.16) of [17], on some open set contained in U

')2 = Cα2(rt+5)/(M+2) _ (Φ + 2 ) \ 4Φ ) \ 4
2(n-ί)J

where c is a constant. On the other hand since a is harmonic, we
have from equation (3.17) of [17] that a also satisfies

-{n + 2)aa" + 3(n - l)(α') 2 = 0.

From these equations, we see that a is locally constant in U. This is
impossible. Therefore a is constant on M2.

The conformally flat condition in the above proposition is only
needed to assure the existence of at most two different principal cur-
vatures at each point of Mn . Therefore one can also prove, following
the computations of [10], that

PROPOSITION 4. Let x : M2 —> E3 be an isometric immersion of
a surface in E3 satisfying that AH is everywhere perpendicular to
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M2 . Then the mean curvature function is harmonic, if and only if it is
constant.
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