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SEMISIMPLICITY OF RESTRICTED ENVELOPING
ALGEBRAS OF LIE SUPERALGEBRAS

JEFFREY BERGEN

Let L = Lo Θ L\ be a restricted Lie superalgebra over a field of
characteristic p > 2. We let u(L) denote the restricted enveloping
algebra of L and we will be concerned with when u(L) is semi-
simple, semiprime, or prime.

The structure of u(L) is sufficiently close to that of a Hopf algebra
that we will obtain ring theoretic information about u(L) by first
applying basic facts about finite dimensional Hopf algebras to Hopf
algebras of the form u(L) # G. Our main result along these lines
is that if u(L) is semisimple with L finite dimensional, then L\ =
0 . Combining this with a result of Hochschild, we will obtain a
complete description of those finite dimensional L such that u(L)
is semisimple.

In the infinite dimensional case, we will obtain various necessary
conditions for u(L) to be prime or semiprime.

Introduction. Let L = L0®Lχ be a restricted Lie superalgebra over
a field K of characteristic p > 2. We let u(L) denote the restricted
enveloping algebra of L and we will be concerned with when u(L) is
semisimple, semiprime, or prime.

When L\φQ, u{L) is not a Hopf algebra. However the structure
of u(L) is sufficiently close to that of a Hopf algebra that we can
construct a skew group ring u(L) # G which is a Hopf algebra. We
will obtain ring theoretic information about u(L) by first applying
basic facts about finite dimensional Hopf algebras to u(L) # G. Our
main result along these lines is

THEOREM. If L is finite dimensional such that u(L) is semisimple
then Lx = 0 .

Combining this theorem with Hochschild's theorem [H] on the semi-
simplicity of U(LQ) , it easily follows that

COROLLARY. If L is finite dimensional then u(L) is semisimple if
and only if L\ = 0 , L is abelian, and the pth power map on LQ is
injective.



2 JEFFREY BERGEN

We begin in § 1 with the definitions and terminology for restricted
Lie superalgebras and their restricted enveloping algebras. In §2, we
examine some of the basic properties of finite dimensional Hopf alge-
bras and construct Hopf algebras of the form u(L) # G. This construc-
tion not only yields ring theoretic information about u(L), but also
gives natural examples of finite dimensional noncommutative, nonco-
commutative Hopf algebras. In §3, in addition to the above theorem
on the semisimplicity of u(L), we find some necessary conditions for
u(L) to be prime or semiprime in the infinite dimensional case.

1. Definitions and terminology. We now introduce the terminology
which will be used throughout this paper.

DEFINITION. Suppose L is a vector space over a field K of charac-
teristic p > 2 which has a ΛT-subspace decomposition L = LQ Θ L\.
We say that L is a restricted Lie superalgebra if there is a ίΓ-linear
map [ , ] and a /?th power map L o —• Lo, denoted as W , satisfying

(LI) [La, Lb] c La+b , where a + b is computed modulo 2,
(L2) [y, x] = ~(-l)ab[x, y] for all x G La and yeLb,
(L3) (-l)«[x, [y, z]] + (-l)β*[y, [z, *]] + (-l)**[z, [x, y]] = 0

for all x eLα, y eLb, and z eLc.
(Rl) (fcx)^ί = ^ x ^ ] for all Jfc e ϋ: and X G L 0 , and
(R2) [x^ί, y] = (adxY(y) for all JC G Lo and y e L,
(R3) (x + y)M = xW + yip] + Σpr}Si(x9 y) for a l l x 5 y e l o

where (adx)(y) = [x,y] and w,- is the coefficient of λ*'1 in

If Γ̂ has characteristic 3, we also need to assume in the defini-
tion that [[y, y], y] = 0, for all y G L\. For more details on Lie
superalgebras, we refer the reader to [Sc]. L admits a ΛMinear map
σ defined as (XQ + X\)σ = xo - X\, where Xι G L, . It is easy to
see that Lo = {/ G L|/σ = /}, Li = {/ G L\lσ = -/} , σ 2 = 1, and if
L\ Φ 0 then σ ^ 1. We will often refer to the elements of LQ and L\
as the homogeneous elements of L. If x , y are homogeneous then
[xσ, y σ ] = [x, y]σ therefore by the linearity of [ , ] , it follows that
[xσ

 9 y
σ] = [x 9 y]σ for all x9 y G L. Thus σ is an automorphism of

L.
There exists a unique largest iξΓ-algebra u(L) D L, such that u{L)

is generated by L with relations xy - (-l)^y.x = [x, y] , for all
x eLα and y eLb, and x p = x ^ , for all x e Lo. We call κ(L) the
restricted enveloping algebra of L. The following analog of Jacobson's
Theorem [J] on U(LQ) asserts that u(L) exists:
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JACOBSON'S THEOREM. Let L be a restricted Lie superalgebra in
char/? > 2 and let C be a totally ordered basis for L consisting
of homogeneous elements. Then u{L) has as a K-basis all ordered
monomials

bfιbζ2- bl*
such that bi e C, b\ < b2 < - < bn, and such that 0 < βi < p
whenever bi e LQ and 0 < βi < 1 whenever bi eL\.

If LQ is n-dimensional and L\ is m-dimensional then Jacobson's
Theorem implies that u(L) has dimension pn2m . The automorphism
σ of L can be extended to an automorphism of u(L) with σ2 = 1.
As a result, we can decompose u(L) as u(L) = UQ Θ U\ where UQ =
{r e u(L)\rσ = r} and U{ = {r e u(L)\rσ = -r}.

If x G L is homogeneous then the map x: L -» L defined by
ax = [x, a], for all α G L, extends to a map on all of u(L). We call
this map the superderivation induced by x and satisfies the following
properties:

(51) For any aeu(L),

( xa - ax if x G Lo,
a = s

1 xa - aσx if x G L i ,

(52) For any α, β G w(L),

/ tfvt (cxxβ + aβx i f X G L Q ,

A AΓ-subspace 5 of u(L) is called L-invariant if Bx c B for all
homogeneous x e L, and is called homogeneous if Bσ = B. If B
is homogeneous then 5 can be decomposed as B = BQ® B\ where
B0 = {be B\bσ = b} and Bx = {b G £ | ό σ = -6} . Observe that if /
is a homogeneous ideal of u(L) then (SI) implies that J must also be
L-invariant. A AΓ-subspace I of L will be called a Lie superideal of
L if / is L-invariant and homogeneous. If, in addition, 70 is closed
under the pth power map we say that I is a restricted Lie superideal.

We will need the following lemma in §3.

LEMMA 1.1. Let A be an L-invariant, homogeneous subspace of
u(L). Then Au(L) = u(L)A.

Proof. In order to prove that Au(L) c u{L)A it suffices, by Ja-
cobson's Theorem, to show that ax\ '- xn G u(L)A for all homoge-
neous a e A and homogeneous JC/ G L. We proceed by induction
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on n the result is clear when n = 0. Therefore we may assume that
ax\ -"Xn = Σ/=o t^i w h e r e U ^ U(L) and the hi are homogeneous
elements of A. Now if x e L is homogeneous then, by (SI), either
bf = xbi - biX or bf = xb\ + 6/X, for every i. Since bf eA, both of
the above cases imply that biX € u(L)A. Hence ί/fe/x G u(L)A and
so, α ci XWJC = Σ/=o ̂ / X G U(L)A An analogous argument shows
that u(L)A c

2 Hopf algebras. Throughout this section, H will be a Hopf alge-
bra over a field K of arbitrary characteristic. We let A: H -+ H ® H
be the comultiplication, e: H -+ K the counit, and S: H -> H the
antipode. For a more thorough introduction to Hopf algebra termi-
nology, we recommend [A] or [Sw]. For Lie algebras and restricted
Lie algebras LQ , it is well known that both the ordinary enveloping
algebra U(LQ) and the restricted enveloping algebra U(LQ) , are Hopf
algebras where A(x) = x ® l + l ® i , e(x) = 0, and S(x) = -x, for
all x ELQ.

Now suppose L = L o θ Lγ is a Lie superalgebra or a restricted
Lie superalgebra, then if y £ L\ the superderivation induced by y
satisfies (S2) on the ordinary and restricted enveloping algebras U(L)
and u(L). Therefore if α, β e U(L) or u(L) then (α0)* = oPβ +
aσβy . However, every Hopf algebra acts on itself via left and right
adjoint actions. For all α, β, h e H these adjoint actions satisfy

(A)

where J ^ Λi Θ^2 is the comultiplication of h in the sigma notation
of Heyneman and Sweedler.

Contrasting (*) with (S2), we see that for U(L) or u(L) to be
contained in a Hopf algebra, we would need A(y) = y ® l + σ ® y . In
particular, if L\ Φ 0 then neither U(L) or u(L) is a Hopf algebra.
However the formula A(y) = y ®1 + σ <8>y does indicate a way to
construct a Hopf algebra by essentially adjoining σ to U(L) or «(£)-*

If L\ Φ 0 then σ induces an automorphism of order 2 of both
U(L) and u(L). Letting G be the group {1, σ}, we can form the
skew group rings U(L)#G and u(L)#G. In both of these rings,

x σ = ax and yσ = -σy, for all x e Lo and y eLγ. U(L) # G and
u(L) # G can both be made into Hopf algebras by defining Δ, e, and
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S as follows:

A(x) = x<g> 1 + 1 ®x, ε(x) = 0, S(x) = -x, forallxeL 0 >

= y Θ 1 +σ®y, e(y) = 0, S(y)=yσ, for all y e ! , ! ,

= σ ® σ , ε(σ) = 1, S(σ) = σ .

It is not difficult, but somewhat tedious, to check that U(L)#G
and u(L) # G satisfy all of the Hopf algebra axioms. The details for
this construction, as well as for more general Hopf algebra construc-
tions, can be found in [R, Theorem 1]. We note that both U(L)#G
and u{L) # G are noncommutative as well as noncocommutative. We
record these observations as

PROPOSITION 2.1. Let L = L0®Lχ be either a Lie superalgebra or
a restricted Lie superalgebra with L\φO. If U(L) and u(L) are the
enveloping algebra and the restricted enveloping algebras of L, then
the skew group rings U(L)#G and u(L)#G are noncommutative,
noncocommutative Hopf algebras, where G = {1, σ}.

Since there is interest in the construction of finite dimensional non-
commutative, noncocommutative Hopf algebras,we now use Jacob-
son's Theorem and Proposition 2.1 to observe that

COROLLARY 2.2. If L is a restricted Lie superalgebra over afield of
characteristic p > 2 such that LQ is n-dimensional and L\ φθ is m-
dimensional, then u(L)#G is a noncommutative, noncocommutative
Hopf algebra of dimension pn2m+x.

In §3, we will use fundamental facts about the structure of finite
dimensional Hopf algebras to gain information about the structure
of u(L) # G. This will enable us to obtain ring theoretic information
about u(L). The Hopf algebra facts we will need are

PROPOSITION 2.3. Let H be a finite dimensional Hopf algebra. Then

(i) if ω is the kernel of e, then the right annihilator of ω is a
one-dimensional ideal of H known as the left integral and denoted as

JH-
(ii) H is semisimple if and only if ε(JH) Φ 0.

(iii) If M is a Hopf subalgebra of H with left integral JM then
there exists an h eH such that JH = JMh.

(iv) H is semisimple if and only if every Hopf subalgebra of H is
also semisimple.
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Parts (i) and (ii) are results of Larson and Sweedler [LS]. Part (iii)
follows from the freeness result of Nichols-Zoeller [NZ]. Briefly, if
M is a Hopf subalgebra of H then H is free as a left M-module
with basis {hi}. Let t G JH; then there exist m* G M such that t =
Σi niihi. If A: G M n ω then 0 = fcί = £}, /cm;/*,. By (i), each w; G
JM and there exist α; G AT and m e fM such that ra; = α w . Thus
ί = m(X)z α, Λ/) as required. For part (iv), let M be a Hopf subalgebra
of if and let ί and m be as in the previous argument. Now if H is
semisimple then, by (ii), we may assume that ε(t) φθ. However ε is
an algebra homomorphism, hence 0 Φ ε(t) = ε{m)ε{YJiaihi) and so,
e(m) Φ 0. Thus M is also semisimple.

3. The main results. We can now prove the main result of this
paper.

THEOREM 3.1. Let L be a finite dimensional restricted Lie super al-
gebra. If u(L) is semisimple then L\ = 0.

Proof. If there exists some non-zero y G L\, let A be the restricted
supersubalgebra of L generated by y. Letting x = \y, y], it follows
that A = Ao Θ A\, where A\ = (y) and either ^ 0 = 0 or ^o =
(x, x^ ] , x ^ ] , . . . , x^"]) for some natural number n. A result of
Fisher-Montgomery [FM] states that if G is a finite group and if R
is a ring with no \G\-torsion then R is semiprime if and only if R # G
is semiprime. Since in the finite dimensional case being semisimple
is equivalent to being semiprime, we can apply the result of [FM] to
the Hopf algebra u(L) # G of Corollary 2.2 to conclude that if u(L)
is semisimple then u(L) # G is also semisimple. The skew group ring
H = u{A) # G is a Hopf subalgebra of u(L) # G thus by Proposition
2.3(iv), H is also semisimple. Thus, by Proposition 2.3(ii), there
exists a t G JH such that ε(t) φθ.

H is a free left w(^4o)"module; in particular

H = u(A0) θ u(A0)y Θ u(A0)σ θ u(A0)yσ.

Therefore there exist # i , a^, #3, #4 G w(^o) such that t = a\+ aiy +
#3<7 + <24.yσ. Furthermore y commutes with U(AQ), ε(y) = 0, and
x = 2y2 therefore we have

0 = yt = axy + \a2x + a^yσ + \

Since a2x, a^x G u(A0), the direct sum decomposition of H implies
that a i = #3 = 0. Therefore t = a2y + a^yσ. Now applying the



RESTRICTED ENVELOPING ALGEBRAS

homomorphism ε yields ε(t) = ε(a2y + a^ya) = ε(y)ε(a2 + a4a) = 0,
a contradiction. Thus L\ = 0 thereby proving the result.

In [H], Hochschild shows that if Lo is finite dimensional then u(L$)
is semisimple if and only if LQ is abelian and the pth power map is
injective. Combining Hochschild's result with Theorem 3.1 we obtain

COROLLARY 3.2. Let L be a finite dimensional restricted Lie super-
algebra. u{L) is semisimple if and only if L\ = 0, Lo is abelian, and
the pth power map on LQ is injective.

In order to move on to the infinite dimensional case, we first need
to prove a stronger version of Theorem 3.1. We will essentially be
showing that although u(L) is not a Hopf algebra, it does contain an
ideal analogous to the left integral in a Hopf algebra.

THEOREM 3.3. If L is finite dimensional with L\ Φ 0 then u(L)
contains a one-dimensional homogeneous ideal J such that J2 = 0
and J is the right annihίlator in u(L) of L.

Proof. In the finite dimensional Hopf algebra H = u(L)#G, choose
a non-zero t e fH. Therefore there exist a, b e u(L) such that
t = a + bσ. By Proposition 2.3(i), if / e L then It = 0 and tl = at,
for some a e K. Thus It = la + Ibσ = 0 and tl = al + blσσ =
a(a + bσ). As a result, La = 0 and aL c ίΓα, and so AΓα is an
ideal of u(L) which annihilates L on the right. Also by Proposition
2.3(i), (1 - σ)t = 0 and ί(l - σ) = βt, for some β e K. Thus
(1 - σ)(α + £<τ) = (α - 6σ) + (-α σ + ft)σ = 0 and (a + Z?σ)(l - σ) =
{a -b) + {-a + b)σ = jff(α + bσ). Thus ασ = i a n d α - i = j8α
which imply that aσ = γa for some γ G K. Since σ2 = 1, it follows
that y2 = 1, and thus y = ± 1 . As a result a is homogeneous, and
hence the ideal Ka is certainly homogeneous. Furthermore, since
t = α + aσσ and r ^ 0, it follows that a Φ 0. Thus the ideal Ka is
indeed one-dimensional.

Now suppose c e E/(L) such that Lc = 0. Let ύf = c + cσ and
e = c - cσ clearly Ld = Le = 0. Furthermore (1 — σ)(d + da) =
(1 - σ)(e - eσ) = 0; thus both d + da and e - ea belong to JH.
Therefore, by Proposition 2.3(i), there exist a\, ai e K such that
d + da = a\(a + &σ) and e - ea = aι{a + ba). Hence c + cσ = a\a
and c - cσ = a2a. It now easily follows that c e Ka, thus Ka is the
right annihilator of L in u(L).
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Finally, it suffices to show that a2 = 0. We know that aσ = ±a, and
we will handle the two cases separately. If aσ = a then t = a + aσ
hence e(t) = 2ε(α). Since u(L)#G is not semisimple ε(£) = 0; thus
e(a) = 0, and so a e u(L)L. However La = 0 and it follows that
α 2 = 0. On the other hand, if aσ = -a then t = a - aσ; hence
ta = a2 - aσa = a2 + a2σ. However, there exists α e ^ such that
ta = at = a(a - ασ). As a result α2 = αα and a2 = - α α hence
a2 = 0 as required.

The existence of a "left integral" in u(L) might turn out to be quite
useful in attempting to study the invariants of restricted superalgebras
as the action of the element a in the proof of Theorem 3.3 would
serve as a trace map. As we move to the case where L is infinite
dimensional, instead of being concerned with semisimplicity we will
primarily be concerned with when u(L) is prime or semiprime. We
continue with

EXAMPLE 3.4. Let L = Lo θ Lx where Lo = (x, x^], x^, . . .)
and L\ — (y) where the only non-trivial bracket relation is [y, y] =
x. Therefore U(LQ) = K[x], the polynomial ring in one variable, and
u{L) = K[x, y]/(x - 2y2). Thus u{L) = K[y], also a polynomial ring
in one variable. Hence u(L) is both prime and semisimple.

The above example shows that in the infinite dimensional case u(L)
can be prime or semiprime even if L\ Φ 0. However we will now see
that if u{L) is semiprime with L\ Φ 0 then LQ must be infinite
dimensional.

THEOREM 3.5. Let L be a restricted Lie superalgebra such that u(L)
is semiprime. If L\ φθ then L o must be infinite dimensional.

Proof. Since every element of u(L) is a linear combination of prod-
ucts of homogeneous elements, u(L) acts on L as sums and compo-
sitions of superderivations. If 0 Φ y e L, let A denote the image of
y under the action of u{L). It is easy to see that A is homogeneous
and is the smallest Lie superideal of L containing y. We claim that
if L o is finite dimensional then A is also finite dimensional. To this
end, note that Ly C Ly

0 θ L\ C Ly

0 0 L o thus if LQ is finite dimen-
sional then so is Ly. Therefore if M — {m e L\ [m, y] = 0} then
M is a homogeneous AΓ-subspace of finite codimension in L. As a
result there exists an ordered basis XύY for L such that X < Y, Y
is a basis for M, and X is finite dimensional. By Jacobson's The-
orem, if η is a basis monomial of u(L) then the image of y under
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η is 0 unless η consists solely of elements from X. Since there are
only a finite number of such η, the image of y under u(L) is finite
dimensional and so, A is finite dimensional.

A = AQ © A\ where AQ is a Lie ideal of LQ however AQ need not
be restricted. Let AQ be the span over K of { α ^ £ Lo|α € ^o and
ra > 0} . Then by (R2) and (R3), Ao is restricted with [~A0, L] C
[̂ 4o ? £] Since AQ is finite dimensional, if we let A = AQΘA\ then
4̂ is a finite dimensional restricted Lie superideal of L.

By Theorem 3.3, the right annihilator of A in u(A) is a one-
dimensional ideal Ka, where a is homogeneous and a2 = 0. How-
ever, by (S2) if x e L is homogeneous then 0 = (Aa)x = (A)xa + Aax

or 0 = (̂ 4<z)x = (A)xa + (A)σax. In either case, since A is homo-
geneous and L-invariant, we have ax e u(A) and Aax = 0. Thus
ax G Ka, and hence Ka is an L-invariant homogeneous subspace
of L. Now, by Lemma 1.1, au{L) = u{L)a and so, {au{L))2 =
u(L)a2u(L) = 0. As a result αw(L) is a nilpotent ideal of u(L)
hence w(L) is not semiprime.

The proof of Theorem 3.5 actually shows that if / is a restricted
Lie superideal of L and if / is the right annihilator of / in u(I),
then Ju(L) = u(L)J. In light of Theorem 3.5 and this observation
we now have

COROLLARY 3.6. (i) If u{L) is prime, then L contains no non-zero
finite dimensional restricted Lie superideals.

(ii) If u(L) is semiprime and if I is a finite dimensional restricted
Lie superideal of L then u(I) is semisimple, I C LQ, and [/, L\] = 0.

(iii) If u(L) is prime then LQ must be infinite dimensional

Proof. Let / be a non-zero restricted Lie superideal of L and /
the right annihilator of / in u(I). Thus 0 = I(Ju(L)) = I(u(L)J).
By Theorem 3.3, / Φ 0 and so, u(L) is not prime. Furthermore
if J2 = 0 then (Ju(L))2 = u(L)J2u(L) = 0. However, if u(I)
is not semiprime then, by Theorem 3.3, J2 = 0. Hence if u(L)
is semiprime then so is u(I). Now, by Theorem 3.1, if u(I) is
semiprime the I = IQC LQ and clearly [ 7 , L i ] C / n L i = 0 . Finally,
if u(L) is prime then when L\ = 0 , LQ must be infinite dimen-
sional by Proposition 2.3(i), and when L\ Φ 0, LQ must be infinite
dimensional by Theorem 3.5.

We continue with
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EXAMPLE 3.7. Let L = Lo θ Lx where Lo = (x, x^ 1 , x^ 2 ] , . . . )>
Li = (yι, ^2 5 ^3 ? ) a n d the only non-trivial bracket relations are
[x^ , j//] = y/+/7«, for all / > 1 and n > 0. There are several ways to
see that u(L) is prime. First, u(L) is isomorphic to the differential
operator ring E[t, δ], where E is the infinite dimensional Grassmann
algebra on {y;} , and δ is the derivation yf = yi+χ. This differential
operator ring was shown to be prime in [BMP]. Another approach is
to let BL = {/ G L\ [L, I] is finite dimensional}; in this example it is
easy to see that ΌL = 0. However, in [BP] it is shown that if BL = 0
then u(L) is prime.

In Examples 3.5 and 3.7, u(L) is prime. However in Example 3.7,
[L\, Lχ\ = 0 and L\ is infinite dimensional. We now show that if
[L\, Lχ\ = 0 then I,! must be infinite dimensional for u(L) to be
semiprime.

COROLLARY 3.8. If u{L) is semiprime with L\φQ and [L\, L\] =

0 then both LQ and L\ must be infinite dimensional.

Proof. By Theorem 3.5, L o must be infinite dimensional. Now if
[L\, L\] = 0 then I,! is a homogeneous L-invariant subspace of L.
Thus, by Lemma 1.1, L\u(L) = u(L)L\. If Li is ^-dimensional,
then the product of any n + 1 elements of L\ is zero in u(L).
Therefore Lχu(L) is a nilpotent ideal of M(L) as (Lιu(L))n+ι =
u(L)L"+ιu(L) = 0. As a result, if w(L) is semiprime then Li must
be infinite dimensional.

The flavor of many of the results in this paper is that L\ being
non-zero is, in some sense, an obstruction to u(L) being prime or
semiprime. We conclude this paper with an example showing that
this is not necessarily the case. More precisely, in our example u(L)
will be prime even though u(Lo) is not.

EXAMPLE 3.9. We slightly enlarge the Lie superalgebra from Exam-
ple 3.7. We let L = L0®L{ where Lo = (z, x, x™, x^,...),
L\ = (vi, yi, yι, . . .) and the only non-trivial relations are those of
Example 3.7 along with z ^ = z and [z, y/] = y, , for all / > 1. It is
again easy to check that ΌL — 0, thus, by the result in [BP], u(L) is
prime. However, u(L0) is not prime since it is commutative, but not
a domain as (zp~ι - \)z = 0.



RESTRICTED ENVELOPING ALGEBRAS 11

REFERENCES

[A] E. Abe, Hopf Algebras, Cambridge University Press, Cambridge-New York,
1980.

[BMP] J. Bergen, S. Montgomery and D. S. Passman, Radicals of crossed products
of enveloping algebras, Israel J. Math., 59 (1987), 167-184.

[BP] J. Bergen and D. S. Passman, Delta methods in enveloping algebras of Lie
superalgebras, Trans. Amer. Math. Soc, 334 (1992), 259-280.

[FM] J. W. Fisher and S. Montgomery, Semiprime skew group rings, J. Algebra, 52
(1978), 241-247.

[H] G. P. Hochschild, Representations of restricted Lie algebras of characteristic
p, Proc. Amer. Math. Soc, 5 (1954), 603-605.

[J] N. Jacobson, Lie Algebras, Interscience, New York-London, 1962.
[LS] R. G. Larson and M. E. Sweedler, An associative orthogonal bilinear form for

Hopf algebras, Amer. J. Math., 91 (1969), 75-94.
[NZ] W. D. Nichols and M. Bettina Zoeller, A Hopf algebra freeness theorem,

Amer. J. Math., I l l (1989), 381-385.
[R] D. Radford, The structure of Hopf algebras with a projection, J. Algebra, 92

(1985), 322-347.
[Sc] M. Scheunert, The Theory of Lie Super algebras, Lecture Notes in Mathemat-

ics, vol. 716, Springer-Verlag, Berlin, 1979.
[Sw] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.

Received August 25, 1991. Research supported in part by National Security Agency
Grant MSP08491.

DEPAUL UNIVERSITY

CHICAGO, IL 60614-8250






