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IDEALS OF FINITE CODIMENSION IN FREE ALGEBRAS
AND THE FC-LOCALIZATION

AMNON ROSENMANN AND SHMUEL ROSSET

The topology defined by all finite codimensional right ideals has
interesting properties in the case of the free algebra and the group ring
of a free group. Its open ideals are precisely the finitely generated
essential ones. Finitely generated right ideals are closed and the
Leavitt numbers of the associated localization are 1 and n — 1. The
proofs are, for the most part, applications of Schreier’s method.

This research started when we first became acquainted with the
(known) fact that the maximal ring of quotients of a free ring does
not have the unique rank property, i.e. there are free modules over it
that are of different finite ranks yet they are isomorphic. In fact, since
the free ring, and the group ring of a free group have essential right
ideals that are free of (countably) infinite rank, it turned out that over
the maximal ring of quotients any two finitely generated free modules
are isomorphic (see §5 below). But we noticed also that all the ex-
amples we had of finitely generated essential ideals, either in the free
ring on n generators over a field K or in KG with G a free group
of rank n, are of rank 1+ m(n —1). Our examples were all derived
from subgroups of finite index (where Schreier’s formula holds!) or
by the fractal method, as in our paper [9]. Again, it turns out to be
known, and due to Lewin [8], that Schreier’s formula extends to ide-
als of finite codimension in the free ring or the free group ring over
a field. From here it is natural to conjecture that if one imitates the
construction of the maximal ring of quotients, Qmax, but uses right
ideals of finite codimension only, then the result would be a ring with
the property that two free modules over it are isomorphic if and only
if their ranks are congruent modulo n — 1. This localization we call
Q¢ - It is defined as L(L(R)) where

L(R) = h_n} {Homg(I, R)|I is finite-codimensional in R} .
Note that a right ideal of finite codimension in the group ring KG is
an analogue (and generalization) of the notion of subgroups of finite

index in G: to a subgroup H of finite index in G corresponds the
right ideal of KG generated by the augmentation ideal of KH .
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The critical component in the proof (in §5) that free Qg (R)-
modules, for R a free algebra on n variables or the free group ring
of rank n over a field, are isomorphic if and only if their ranks differ
by a multiple of » — 1 is the interesting fact that in such a ring R
an essential right ideal is finitely generated if and only if it is of finite
codimension in R. This is proved in §3 using strong Schreier bases.
It implies that finitely generated essential ideals can only be of rank
1+/(n-1).

It turns out that in a finitely generated algebra the linear topology
defined by the ideals of finite codimension is a Gabriel topology, i.e.
it satisfies the notorious T4 axiom. In fact, if R is a finitely generated
algebra over a Noetherian commutative ring k and one defines the fc-
topology by saying that I is fcif R/I is a finitely generated k-module,
then this topology satisfies T4 also. We prove this in §1. In §2 we give,
primarily in order to fix the terminology and notations, a short review
of Gabriel’s point of view of localization theory (originally started by
Johnson [6] and Utumi [11]), torsion theory and injective modules.
We also show, in this section, that in the commutative case the fc-
localization is interesting for rings of Krull dimension 1.

The fc-topology, being analogous to the profinite topology of group
theory, has some similar properties. For example, in §4 we show that,
in analogy to a theorem of M. Hall ([5]), finitely generated ideals in
the free algebra or free group rings are closed. For free algebras this
is easy enough (and a related result is already in [8]). For free group
rings the proof is harder and seems, to us, of interest. It is influenced
considerably by an important, and not sufficiently well known, result
of Hall (Theorem 5.1 of [4] and Theorem 3.4 of [5]).

It is difficult to decide, in a paper such as this one, in what gener-
ality to do things. In §3, if one defines a Schreier basis and a strong
Schreier basis over a commutative ring, the definition is complicated
and working with it seems pointless since one loses sight of the main
ideas. We therefore elected to work mostly over a field (except in
§1) and to explain in several places what further generality can be
achieved.

1. The Gabriel topology % . If R is a ring then a Gabriel topology
on R is a “linear” topology, that is, a topology that has a basis %
of neighborhoods of 0 that consists of right ideals, which satisfy the
following special axiom

T4: if I is a right ideal and there exists J € & such that for every
x € J the “annihilator” (I : x) := {a € R|xa € I} is in & , then
les.
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We refer to Stenstrom’s book [10], Ch. VI for an exhaustive discus-
sion of Gabriel topologies.

Gabriel, in his paper [1], gave a 1-1 correspondence between Gabriel
topologies and hereditary torsion theories. Recall that a torsion theory
consists of two classes of modules .7, .7 such that M € .9 if and
only if, for every M’ € ', Homg(M , M') =0, and M' € ' if
and only if, for every M €., Homg(M , M') = 0. The class 7 of
“torsion” modules is closed with respect to quotient modules, direct
sums and extensions. If it is also closed with respect to submodules
the theory is called hereditary. Conversely, a class of modules closed
with respect to all these is the torsion class of a unique torsion theory.

Gabriel’s correspondence goes as follows.

Topology — Torsion: if & is a topology then a module M is
torsion if for every x € M, its annihilator, anng(x), is open, i.e.
is in % . It is torsion-free if it does not have any nontrivial torsion
submodules.

Torsion — Topology: the topology is defined by those ideals I such
that R/I is a torsion module.

Now let R be an algebra over a commutative Noetherian ring k.
Let . be the linear topology on R, whose basic neighborhoods of
0 are the ideals of “finite codimension” in R, i.e. those ideals / such
that R/I is finitely generated k-module.

(1.1) THEOREM. If R is finitely generated as a k-algebra, then
is a Gabriel topology.

Proof. For the sake of completeness we recall T1, T2 and T3. Let
F be a topology. Then

T1: if I, C I, are right ideals and I; € ¥ then I, € %,

T2:if 1, L €% then [ N, €5,

T3:if €% and x€R then (I:x)eF .

It is clear that #, satisfies T1 and T2. To prove T3, let I € .
If x € R then the annihilator, in R, of its residue class X € R/I is
precisely (7 : x) and, as XR is finitely generated over k, we see that
(I : x) is indeed in % .

It remains to prove T4. Instead of proving this directly we apply
Gabriel’s theorem and show that the torsion theory associated to the
fc-topology (see [10], Ch. VI) is in fact a hereditary torsion theory.
(This also proves T1, T2 and T3 again.)
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It is clear that if A/ is an R-module and an element u has an open
annihilator then uR is a k-finitely generated R-submodule and each
of its elements also has an open annihilator. The torsion “radical” #(-)
associated to the fc-topology is obviously

t(M) = sum of all R-submodules that are finitely generated as
k-modules.

A module M is torsion iff ¢(M) = M. As above, it is evident that
every submodule of #(M) is in #(M), and that direct sums and quo-
tients of torsion modules are torsion. In order to show that the torsion
theory obtained from the fc-topology is indeed a hereditary torsion
theory it remains to show that ¢(M/t(M)) =0, i.e. the theory is “ex-
tension closed” (see [10]). To do this, it is enough to show that if
z € M is such that zR is k-finitely generated modulo #(A) then
zR is contained in #(M). The assumption on zR means that there
exist elements y;, ..., y, in zR+1t(M) such that, if U = Z;.zl vk,
then zR C U + t(M). We now use the finite generation of R as a
k-algebra. Say R is generated by xj, ..., x,. As y; € zZR+ (M) it
follows that
yiXx; = zajltyt +Uj
t

where u;; € t(M) and aj;, € k foreach j =1,...,r and [ =
1,...,n. Hence, if W is a k-finitely generated R-submodule of
t(M) that contains all uj;’s then for every monomial and hence for
every element x of R,

ij€U+W.

Thus the R-submodule generated by the y’s is finitely generated over
k (since k is Noetherian) and this implies that the same is true of
zR. Thus, zR is contained in #(M), as required. o

(1.2) ExAaMPpLE. It is instructive to see that in the free ring on
infinitely many variables R = k(x;, X, ...) the “augmentation” ideal
I = Y% xR is such that: (i) I is of codimension 1, (ii) I? is of
infinite codimension, (iii) for every a € I, (1% : a) contains I and
therefore is of codimension < 1. Of course, T4 does not hold in the
fc-topology of this algebra.

We observe that Theorem (1.1) has the following curious

(1.3) CoroLLARY. If I, J are right ideals of finite codimension in
a finitely generated algebra over k, then 1J is also of finite codimen-
sion.
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Proof. This is true for every Gabriel topology [10], because (IJ :
a)2J forevery ael. ]

2. Torsion, localization and injective modules. If ¥ is a Gabriel
topology on a ring R and M is a right R-module, we let ¢4 (M) be
the sum of all torsion submodules of M relative to the torsion theory
associated to .# . The following lemma is elementary, but it serves to
clarify the picture a little.

(2.1) LeMMA. If R is torsion-free (relative to F) then every open
ideal is essential.

Proof. Let I be an open ideal. It is enough to show that if x # 0
then 7N xR # 0. But (/ : x), being the annihilator of X € R/I,
is also open, and as R is torsion-free, (I : x) is not contained in
anng(x), for anng(x) is not open. Thus x(/ : x) # 0 and x(I : x) C
INnxR. O

The lemma explains the fact that essential ideals commonly occur in
this domain. Curiously enough, the topology defined by all essential
right ideals may not satisfy T4. Its torsion theory is evidently the
“singular” torsion

Z(M) = {x € M|anng(x) is essential}.

If the ring is non-singular, i.e. Z(R) = 0, then this topology does sat-
isfy T4. There is a topology, the “dense” topology, which is the largest
topology relative to which R is torsion-free. It is the set of (essen-
tial) right ideals I, such that for every x € R, the left annihilator of
(I : x) is trivial.

The localization associated to a Gabriel topology .# is defined as
follows. If M is a right R-module, let

M(y) = 1_1r_}n HOIIIR(I, M) .
IeF
It is an R g-module and an R-module in an obvious way and there
is a canonical map M — My, whose kernel (see [10], p. 196) is
t#(M). Moreover, if M is torsion then M) = 0. Now define

My = h_n)1 HOI‘DR(I, M(gr)).
IeF
One proves that Mg = (M/t{(M))s). In particular, if M is torsion-
free then Mg = M4, i.e. the second step of passing from M s to
Mg is redundant.
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(2.2) ExaMmpLEs. (i) The “maximal” localization, associated to the
dense topology, is a very important object. It is denoted by Mpn,x and
the ring by QOmax(R) or Rpyax. If F is any Gabriel topology on R
such that R is torsion-free relative to # then all open ideals in F are
dense, i.e. .# is contained in the dense topology, and the natural map
Rg — Rpax is an embedding. If R is non-singular this localization
was described by Johnson [6], the general case is due to Utumi [11].

(i) If R is finitely generated over a Noetherian commutative ring
k then the fc-topology is Gabriel as shown in (1.1). Thus, if R does
not have right ideals that are finitely generated as k-modules then the
localization Ry, is contained, canonically, in Rpy -

It is useful to have criteria that ensure that M) = Mg . One useful
criterion has already been mentioned, and it is that A/ be torsion-free.
Another one is:

(2.3) LeMMA. If all the ideals in F are projective as R-modules
then, for every module M, Mg = Mg .

Proof. The exact sequence
0—-t(M)> M- M/t(M)—-0
induces
0 — Homg(7, t(M)) — Homg(I, M)
— Hompg(I, M/t(M)) — ExtL(I, t(M)) =0
where Ext}g(I , —) = 0 since I is projective. As the direct limit is
exact and ¢(M)g) =0 (see [10]) we get an isomorphism
Mgy = lim Homg(I, M) — lim Homg (I, M/{(M))=Mg. O
This lemma is useful when R is a free algebra or a free group ring

over a field, since then ideals are free.
If I is an open ideal in the topology .# then the exact sequence

0—-I—-R—R/I->0
gives rise, when Hompg(—, R) acts on it, to
0 — Homg(R/I, R) — Homg(R, R)
— Homg(I, R) — Extk(R/I, R) — 0.
Identifying Hompg(R, R) with R and passing to the limit, over 7,
gives
0 — t5(R) = R — R(g) — lim Extg(R/I, R) — 0.
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Here we identified #(R) with
h_r)n Homg(R/I, R).

Assume now that R is torsion-free. Then we know that R gy = Rg =
O« (R) and we get the exact sequence

(2.4) 0— R — Qs (R) — lim Extg(R/I, R) = 0.

We can use this exact sequence to analyze Q. (R), when R is a com-
mutative, finitely generated, Cohen-Macaulay algebra over a field.

(2.5) PRoOPOSITION. With these assumptions, if dim(R) > 2 then
Or(R)=R. If dim(R) = 1 then

lim Extx(R/I, R)

is the direct sum of local cohomology groups HL(R), where m runs on
the maximal spectrum of R.

Proof. If I is a finite codimensional ideal in R then clearly the
ideals associated with R/I are maximal ideals. For every maximal
ideal m

R ®r Extp(R/I, R) ~ Extg (Rum/IRm, Ru),

and IR,, is either R, or mR,-coprimary if m € ass(/). Since
R,, is Cohen-Macaulay, it follows that if dim(R) > 2 then R, ®gr
Extk(R/I, R) = 0 for every maximal ideal and so Extk(R/I, R) =0.
Since this is true for every I we see that Qg.(R) = R in this case. If
dim(R) =1 then

lim Extg(R/I, R)

is clearly the direct sum, on all of the maximal spectrum of R, of the
groups
lim Extz (Rm/m"Ru, Rm)
n
and this is known (see e.g. [2]) to be the local cohomology group
HL(R). a

The local cohomology groups are of great interest. They are tools
in duality theory and, for example, when R is a local Gorenstein ring
of dimension 1 with residue field k¥ then HL(R) is an injective hull
of k.

The appearance of injective modules is not accidental. Return-
ing now to the general case of a ring R and a Gabriel topology &
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on it, one says that a module E is % -injective if for every injec-
tion 0 — M’ — M whose cokernel is torsion the restriction map
Hompg(M, E) — Homg(M’, E) is onto. It is then known (see [10],
Ch. IX) that if M is a torsion-free module then the canonical map
M — Mg is an ¥ -injective envelope. Since injective modules are of
such wide applicability this connection further justifies the study of
various localizations.

3. Free algebras and free group rings. If R is an integral domain
(such as the free non-commutative algebra over a Noetherian com-
mutative integral domain k), a right ideal I of finite codimension
is essential because every right ideal is not finitely generated as a k-
module and hence must intersect I non-trivially (this also follows
from Lemma (2.1)). From the Schreier method it is known (see e.g.
[8], where everything is done over a field), that in a finitely generated
algebra over k, an ideal of finite codimension is finitely generated.
We prove now that, in finitely generated “free algebras”, being finite
codimensional is the same as being finitely generated and essential.
As mentioned before, we restrict the discussion to the case of a base
field; the same result over a commutative Noetherian domain is much
more cumbersome but not more difficult in principle.

We start by defining a Schreier basis and a strong Schreier basis,
assuming that K is a field. So let R be a finitely generated K-algebra,
with a given set of generators x;, ..., X, and I a right ideal of R.

(3.1) DeFINITION. A Schreier basis for R/I, relative to a given
set of generators x;,..., X,, is defined as a set B of K-linearly
independent monomials in X, ..., X, , that spans a subspace V' in R
that is complementary to I (thatis, /+V = R, INnV = 0), and which
is closed to “taking initials”. This means that every element b in B
has a presentation b =x; X (i€ {1,...,n} for j=1,...,7r)
such that all its initial segments Xi o Xi s 0<s<r,arealsoin B
and are distinct. Here the empty word is taken as the unit element 1.

A strong Schreier basis is a Schreier basis that has the additional
property that every monomial Xi o Xi of “length” m lies in I+
(the linear span of the elements of length < m in B). Here the
length of an element of B is the minimal length of a presentation of
it which is closed to taking initials.

REMARK. It seems that the definition of a Schreier basis that is
usually given does not include the requirement we make for “strong
Schreier basis”. On the other hand, the Schreier bases that are ob-
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tained by well ordering techniques are more than “strong” (see e.g.
[8]). Our Lemma (3.2) shows that one can construct strong Schreier
bases in a very simple inductive way.

The way the Schreier basis gives a generating set for 7 is well known.
In the notation above, if 7: R — V' denotes the projection onto V
(with kernel I) then I is generated by the set

{bx; — n(bx;)lbeB, i=1,...,n}.

(3.2) LeMMA. If R is a finitely generated algebra over a field K
and 1 is a right ideal then for any finite generating set {xy, ..., Xn}
Jor R there is a strong Schreier basis for R/I relative to this set.

Proof. We construct inductively such a basis B. If I = R let
B = @. If not, let By = {1}. For clarity we define B; explicitly.
If I+K-1 =R then B; = By. If not, then 7 + K -1 does not
contain the subspace )/ ;K -x;. Let B] be a maximal subset of
{x1, ..., Xn} which is linearly independent modulo 7 + K - 1. Then
By = ByU B . Assuming now that B, and B, have been defined, let
B, | be a maximal subset of the set of monomials (of length 7 + 1)

{bx;lbeB,,, i=1,...,n},

which is linearly independent modulo I+ ,.p K-b. Then B, | =
B,UB, . If B, , = @, the process stops at this stage. Finally, define
B = B, if B, ; = @, and if the process does not stop after finitely

many steps let
o0
B=|JB;.
j=0

It is clear that, as constructed, B is a linearly independent set that
spans a subspace ¥ such that 7NV = 0. It is also clear that B
is closed with respect to taking initial segments. We now prove, by
induction, the “strong Schreier” property of B—that every monomial
of length 7 is in the linear span of B, modulo /. For n =0 this is
trivial. Assuming the result for monomials of length <n—-1 (n > 1),
let g be a monomial of length n. Then g = g’x; for some g’ of
length n — 1 and some i. We denote the linear span of B; by V;.
Then we know, from the inductive hypothesis, that g’ € I + V,,_;.
From the maximality of B, it is seen that forevery i=1,...,n,
if 4 is a monomial of V,_; then Ax; is in I + V,. In particular,
I +V = R and the proof is complete. o
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(3.3) THEOREM. If R is a free algebra K(x,, ..., X,) or the group
ring KG of a finitely generated free group then a right ideal is finite
codimensional if, and only if, it is finitely generated and essential.

Proof. By the above, it remains to prove that a finitely generated
and essential ideal is finite codimensional.

We use the letters x;, ..., X, to denote both the free variables in
the free algebra as well as a basis of the free group.

If n=1 then K(x) and KG are principal ideal domains and the
result is trivial. Thus, we assume that n > 2.

Let I be a finitely generated essential ideal in the ring, and let
B be a strong Schreier basis for R/I, relative to the generating set
Xty ..oy Xn if R=K(x,...,xn),or the set x;,x7', ..., xn, x;!
if R = KG. We must prove that B is finite. Assume not. Let V
be the linear span of B, so that 7 + V' = R is a direct sum, and let
n: R — V be the corresponding projection onto V', “parallel” to 7.
According to Lewin [8], I is freely generated by the set

{bxi —n(bx;)li=1,...,n, beB, bx;—n(bx;) #0}.

Since I is assumed to be finitely generated, this last set must be finite.
It follows, in particular, that there exists » > 1, such that for every
b € B of reduced length > r, all the monomials bx;, i=1,...,n,
are alsoin B. If R=K(x;, ..., X,) this means that a// monomials
of length > r, that have an initial segment of length r which is in
B, are also in B. In other words, if b € B is a monomial of length
r then the right ideal bR intersects I trivially (as follows from the
properties of Schreier basis). This contradicts the essentiality of 7
and completes the proof in the case of a free algebra.

If R = KG then an argument similar to the above works but it may
be instructive to give the following direct proof. We claim that for
every b € B of reduced length >r+1, every bxi"l, i=1,...,n,is
alsoin B. If b = b'x;, with [(b') =[(b) -1, | denoting the reduced
length, then bx; = p’ isin B as it is an initial segment of b. If
bx;! satisfies /(bx;') =I(b)+1 (i.e. b does not end in x;) write

4
bx;'=> ajbj (modI), a;€K, b;eB.
j

As B is a strong Schreier basis, we know that [(b;) < [(bx] 1) for
every j. We now analyze the equality

(*) b= Z ajbjx,- (modI)
J
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in light of everything we know. Since the Schreier basis is strong, when
[(bj) < I(b) — 1 and b;x; is written out as a linear combination of
elements of B (modI), these elements are of length < /(b). Thus,
in the sum (*) they must all cancel out. If /(b;) > I(b) — 1 then
[(b;) > r and we know that b;x; is in B. Note that by all the above,
as b € B, it follows from the properties of a Schreier basis that the
equality (x) implies that b is equal to one of the summands bjx; on
the right. But if b = b;x; then, of course, bx;' = b; € B. This
proves that every group element, which when written in reduced form
has an initial segment b € B of length > r,isin B.

We can now complete the proof in a way that is analogous to the case
of K(x) above. Let b; and b, be elements of B of the same length s,
s > r, that end differently, i.e. when written in reduced form their last
letters are different. We claim that the principal right ideal generated
by b; + b, has trivial intersection with /. Indeed, if 0 # o € KG
let g € G be a monomial of maximal length appearing in «. Then
it is clear that either b; g or b,g is of length s + /(g) and thus, as
we showed above, is in B. This last element is linearly independent
(mod ) of all other group elements occurring in (b; + b,)a. So, we
see that

In(b; + by)R = {0},
which contradicts the essentiality of 7.

It follows that B is finite, i.e. I is of finite codimension, as

claimed. O

It is well known that in a finitely generated free group a finitely
generated normal subgroup is of finite index. This result is analogous
to (and is also implied by) the following consequence of the above
theorem.

(3.4) CorOLLARY. Let R be as in (3.3). Then a two-sided ideal
of R is finitely generated (as a right ideal) if, and only if, it is finite
codimensional.

Proof. This follows from (3.3) since a nontrivial 2-sided ideal in an
integral domain is essential. O

4. Finitely generated ideals. The fc-topology of the group ring is
evidently an analogue of the profinite topology of the group. In 1950
M. Hall proved ([5]) that a finitely generated subgroup of a free group
is closed in the profinite topology. He did this by proving that if
x € G— H, where G is free and H is a finitely generated subgroup,
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then there is a subgroup of finite index containing H which does
not contain x. His proof was an application of a result of Hall and
Rado ([3]) which is, in a sense, a converse to Schreier’s theorem. They
proved that a prefix-closed set B (satisfying another restriction, which
disappears when B is finite) in a free group is a Schreier system for
an appropriate subgroup. In this section we show that a similar result
holds for the free algebra and the free group ring.

We start by showing that the following analogue of Theorem 3.3 of
Hall’s paper [5] is true.

(4.1) ProrosITION. Let F be a linear topology on the ring R.
Then a right ideal is closed in this topology if and only if it is the
intersection of all open ideals that contain it.

Proof. Since an open ideal is closed (as its complement is a union
of its cosets, which are open), the condition is clearly sufficient.

Conversely, if I is a closed ideal and z ¢ I, then there exists an
open ideal J such that (J+z)NI =@. Let L be the ideal J + 1.
As L contains J, it is open. From (J + z) NI = @, it follows that
z ¢ L. Thus, I is equal to the intersection of the open ideals that
contain it. O

Now let G be the free group on x;, ..., x,. Let B be a Schreier
system, i.e. a prefix-closed set of elements of G (written in reduced
form relative to the generators x;, ..., X,). Foreach i, 1<i<n,
define

BU) = {b € B|bx; € B},
and

BU-) = {b e Blbx;' € B}.
Recall that if I is a right ideal of R = KG and B is a Schreier basis
for R/I then we denoted by n(a) the coset representative of a € R
(relative to B). The vector space spanned by B is denoted by sp(B).

(4.2) THEOREM. If I is a right ideal of KG and B is a Schreier
basis for KG/I then for every i, 1 <i<n, the set

{n(bx;)|b € B}

is a K-basis for sp(B).
Conversely, assume B is a Schreier system and

n:{bxjlbeB, i=1,...,n} — sp(B)
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is a function which satisfies
(i) n(b)=>b if b="b'x; with b, b’ € B, and
(ii) for every fixed i, 1 < i < n, the set {n(bx;)|x € B} is a
K-basis for sp(B).
Then
{bx; —n(bx;)lbe B—BY), i=1,...,n}

freely generates a right ideal 1, and B is a Schreier basis for KG/I .

Proof. Let I be a right ideal of KG and let B be a Schreier basis
for KG/I. Suppose that };a;n(bjx;) =0, a; € K, bj € B. Then
>.;ajbjx; € I, and hence also }>;a;b; € I. But since the b; are
linearly independent (modI) then a; = 0 for each j and we see
that the set {n(bx;)|b € B} is linearly independent for every i, 1 <
i < n. Moreover, this set also generates sp(B). For if b € B, then
n(bx;') =3 ;a;b;, aj€ K, bj € B, and hence b = n(3; a;b;x;) =
Zj ajn(bjxi) .

For the converse, we will show first that, with the given assumptions,
the elements

up ;= bx; — n(bx;),

with b runningon B—B(+) and i =1, ..., n, are independent over
the ring, i.e. they generate a free module of which they are a basis.
To do this, we need to show that if a), ; € KG, where only finitely
many of them are # 0, and Y u;, ;a5 ; =0 then a5 ; =0 for every
be B-BW and every i = 1,...,n. Each ap ; is a sum, with
coefficients in K, of group elements and, as in §3, we use the length
of the group elements. The simplest case is when a group element
g of maximal length (among all those that appear in all a; ; above)
appears in an ap i and is such that its first letter is not x,.: 1 Then we
claim that the element box; g, which comes from u, ; ap ; , cannot
cancel. This is because bpx; is not a prefix of any of the elements
bx;, be B—BW)  j=1,...,n,and (b, i) # (by, ip) , and of any of
the group elements in 7(bx;) (without any exception, even including
7(box,)

It remains to prove that the o, ; vanish even when, for every i =
1,...,n and b € B — Bt every group element of maximal length
that appears in o, ; starts with x;'. (Here, as before, an element
of “maximal length” is one which is longest among all group elements
that appear in all a4, ;.)
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Fix i such that a group element of maximal length appears in ap ;-
For each b € B — B(it) write

n(bx;) =vp,i+0p,;

where y; ; isin the linear span of B(~) and d; ; in that of B—B(7).
We claim that the set

{0y ilb € B— BU")}

is linearly independent. For suppose that

> Ap,i=0,

beB—B™

with 4; € K. This implies that
(%) S mbx)= Y Ay

beB—B" beB—B")

However, each element of B(~) is of the form bx; where b € BUt) .
Hence the span of B(~) is equal to that of the elements of
n(bx;) = bx;, b € BUY, and Y, p peAp¥p,; can be written as
> pepto UpT(bX;). Substituting the last expression in the right-hand
side of () we get a linear dependence among the elements 7n(bx;),
b € B. Since we assumed that they are linearly independent, the
Ay, b € B — BU+) must all vanish.

It remains to show that in the sum Y u, ;a; ;, where b € B— B
and j =1, ..., n, there appears a summand, this time of the form
n(bx;) times a group element of maximal length, that does not cancel.
Here i is the index chosen above. Let g be a group element of max-
imal length that appears in o, ;, b € B— BU*). Then we know that
g starts with x7! (i.e. g = x;'g’ when written in reduced form).
Our purpose is to show that for some group element 4 appearing in
some J, ; (b€ B— BU+)) the product hg does not cancel.

To do this, we will use the notion of “distance” from the Schreier
set B. If z € G is of reduced length » and a maximal prefix of
it in B is of length m then the distance of z from B is defined
to be n — m. We denote this function by d(B, z). By the linear
independence of the J; ;, it is clear that there is a group element 4
that appears in some J, ; (b € B—B("), | fixed as above) such that
inthe sum 7, o o dp ;05 ;, the element hg does not cancel. The
distance of ~g from B is evidently the length of g. We claim that
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this element does not cancel also in the sum -, o oo Up ;jap ;. For
write each u; ; as

Up i =bxi—yp,i—0p ;.

In the product bx;g, the x; cancels, so the distance from B of bx;g
(b € B—B()) isless than d(B, hg). This shows that Ag does not ap-
pear in any bx;g. Butas g is of maximal length in a; ;, hg cannot
appear also in any bx;a, ;. Similarly, as for every element appearing
in y, ;, b€ B— B+ its right multiple by x;! isin B, the distance
from B of this element multiplield by g is less than d(B, hg). This
completes the proof that g does not cancel in >, 5 pon Up jop ;-
The proof will be finished once we show that the element g does not
appear in any u, jo, ; for j # i and b € B — BU+). This follows
directly from our assumption that every group element of maximal
length appearing in oy ; starts with xj‘1 . This completes the proof
that the u, ;, b€ B—BUY), j=1,...,n, are independent over
R=KG.

It only remains to verify that B is a Schreier basis for R/I when
I is the right ideal generated by the elements u; ; as above. To
show that I + sp(B) = R, we use induction on the distance from B.
Recall that for every group element g we defined its distance from
B, dB,g). If r e R is a combination r = ) ;4;8;, 4 € K, we
define d(B, r) as max;d(B, g;). If r € R is such that d(B,r) =0
then, of course, r € sp(B). Assuming that elements of distance < n
from B are in I + sp(B), let r be of distance n + 1 from B. r
is a sum of group elements (with coefficients), each of which is of
distance < n+ 1 from B. So, it suffices to show that every group
element of the form bg, with g of length n+ 1 and b € B, is in
I+sp(B). If g =x;g’ then bg = bx;g’ and bx; € I + sp(B), for
either bx; € B or bx; = up ; +n(bx;). Thus, bg is contained in I+
the subspace spanned by the group elements of distance < n from B,
and these last are covered by the induction hypothesis. If g = x; lgr,
and bx; 1 ¢ B, then since we assumed that the set n(bx;), b € B,
is a basis for B, we can write

b= dyn(b'x;)
b'eB
= > dybxi+ Y. Ayb'xi—uy ), Ay €K,
b'eB"™ b'eB—B")
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where only finitely many coefficients are # 0. Then
bxi'= ) At + > (b —Ayuy x7Y), Ay €K,
b'eBM b'eB—B"™
and the induction continues as before.

To show that B is indeed a Schreier basis for R/I we only need to
show that the elements of B are linearly independent modulo 7. But
in the proof above it is shown that every non-trivial element of 7, i.e.
an element of the form } u; ;o j, contains summands of positive
distance from B, thus no non-trivial linear combination of elements
of B isin I. O

(4.3) THEOREM. Let R = K(xy, ..., Xn), the free algebra, or the
group ring of a free group of rankn. If I is a finitely generated right
ideal of R there exists a finitely generated right ideal J such that I+J
is of finite codimension and the sum is direct. Moreover, if z is any
element of R — I then J can be so chosen that z isnotin I +J. In
particular, I is closed in the fc-topology.

It is not hard to exhibit closed ideals that are not finitely generated
and also ideals that are not closed. For example, every non-zero two-
sided ideal I is essential, and if R/I is not finite dimensional over
K then, by (3.4), I is not finitely generated. It is easily seen that 7
is closed if the fc-topology of R/I is Hausdorff, and this is true for
many ideals 7, e.g. when R/I is itself a free algebra.

On the other hand, let I be a two-sided ideal in a ring R such that
R/I is a simple ring and is not finite dimensional over K . Such ideals
are easily available. For example, R/I may be a Weyl algebra. We
will show that the closure of I is R. Denote R/I by T. We claim
first that the fc-topology of T is trivial. Indeed, if J is a right ideal
of T of finite codimension then the annihilator of 7/J is a two-
sided finite codimensional ideal of 7', and no such exists. It follows
that if I’ is any open (i.e. finite codimensional) right ideal of R then
I+I' = R. Since it is known that the closure of I is the intersection
of all I+ I', with I’ an open ideal, it follows that indeed the closure
of I is R.

Proof of (4.3). The proof in the case of the free algebra is much
easier than in the case of the free group ring. Also, a closely related
result appears in [8]. So we concentrate on the group ring case.

Let I be a finitely generated right ideal. If I is of finite codimen-
sion then there is nothing to prove. So, assume this is not the case. Let
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B be a strong Schreier basis for R/I, relative to the basis xi, ..., X,
of the group (i.e. relative to the generating set x, x; L X, xy!
of R). As shown in (3.3) there exists r > 1 such that all group ele-
ments of length > r that have a prefix of length r which is in B, are
also in B. Denote by B, the set of all elements of B of length <r.
Then for each b€ B, and i=1, ..., n, define n'(bx;) to be in the
linear span of B, such that

(i) for bx; of length < r, 7m/(bx;) is the original coset represen-
tative function of I: this is valid since the Schreier basis for R/I is
strong.

(ii) For bx; of length r+1, n'(bx;) is defined such that for every
fixed i the set

{n'(bx;)|b € B}

is linearly independent.

Note that since the elements n’(bXx;), for a fixed i, mentioned in (i)
are linearly independent (by Theorem (4.2)), the whole set 7n'(bx;),
for a fixed i, is a linear basis for sp(B;), since it is a finite linearly
independent set whose cardinality is equal to the dimension of sp(B;).

Let J be the right ideal generated by the elements

up,; :=bx;—n'(bx;),

where b € B,, length(bx;))=r+1,i=1,...,n.

Note that the non-trivial elements of the form bx; — n’(bx;), where
b € B, is of length less than r, are a basis, over R, for I. It follows
from the last theorem that 7+ J is a right ideal of finite codimension
and B, is a Schreier basis for R/(I + J). Clearly, the sum I + J is
direct. Finally, if z is an element of R — I of length s, then taking
r to be greater than s will ensure that z will not be in 7+ J (here
we are using the fact that the Schreier basis is strong). By Proposition
(4.1) I is closed in the fc-topology. )

5. Leavitt numbers. If R is a ring one can define an equivalence
relation ~ on the set of natural numbers, according to which p ~ ¢
if the free right R-modules of rank p and of rank ¢ are isomorphic.
It is known ([7]) that this equivalence relation can be described by
two integers u(R), v(R), where u(R) is allowed to be oo, such that
if p < u(R) then the equivalence class of p is {p}, and if p > u(R)
then p ~ g if and only if p = ¢ (modv(R)) and g > u(R). If
U(R) = oo then R is said to have the unique rank property and in
this case v(R) is an irrelevant number.
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The numbers u(R), v(R) are called the Leavitt numbers of R. Ex-
amples of rings for which the Leavitt numbers are any pair of positive
integers have been given by Leavitt ([7]) and by others.

Since rings of quotients are generally thought of as “simplifying” the
original object, it may appear surprising that there exist rings that have
the unique rank property whose maximal ring of quotients, Qmax(R),
and Qr(R) too do not have this property. In fact, it seems to be
known among the experts that Omax Of a free ring does not have the
UR property. We show that in the free case one can give precise
results. Again, we work over a field XK.

(5.1) THEOREM. If R is the free algebra K (x|, ..., x,) (n>2)
or the group ring of a free group G on n generators (also called
X1y ..., Xn) then

L(Omax(R)) =1, v(Omax(R)) =1;
U(Qr(R) =1, v(Qw(R)=n-1.

Throughout this proof we often write R for Q4 (R).

Proof. We claim, quite generally, that if a non-singular ring R (e.g. a
domain) contains a right ideal J which is essential and free of infinite
rank,! then the Leavitt numbers of Qmax(R) are 1, 1. This means
that we have to show that every two finitely generated free modules
are isomorphic. To see that, let J be such an ideal. Evidently, J
is isomorphic to J @ J, e.g. through any bijection between a base
of J and a base of J & J of the same cardinality. We denote the
maximal localization of a module M by Mpy.x. Then, obviously,
Jmax & Jmax ® Jmax and it remains to show that Jy.x is free of rank
1 over Qmax(R) = Rmax - This, however, is a general fact: the exact
sequence

0—-J—R—R/J—-0
gives, for every essential ideal 7/,
0 — Homg(7, J) — Homg(/, R) — Homg(I, R/J).
Taking the direct limit, over I, gives
0 — Jmax — Rmax — 0

since R/J is a torsion module and so

&n Homg(I, R/J)=0.
I

'In fact, many non-trivial free products of two integral domains have such ideals.
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Thus, Jnax is isomorphic t0 Rpax and also to Jyax @ Jmax , proving
that the Leavitt numbers of Ry are u=1,v =1.

Note that the isomorphism Jpax & Rmax does not imply that the
canonical image of J in Rpnax generates the unit ideal. In fact, if J
is not finitely generated this is not true, as follows from the consider-
ations below, i.e. Lemma (5.2).

It remains to show that the free algebra and the free group ring (on
n > 2 variables) have essential right ideals that are free of infinite
rank. This follows most naturally from the fractal method of [9].
Another way is to note that every two-sided ideal 7 of R is essential
as a right ideal, and if R/ is not finite dimensional over K then /
is not finitely generated, as shown in Theorem (3.3).

We now turn to Qr.. We observe, to begin with, that it is easy to
see that u(Qs(R)) =1 and v(Q¢(R)) divides n — 1. Indeed, x4 of
a ring is known to be the “smallest” rank of a free module that is not
unique; and if two free modules are isomorphic then the difference of
their ranks is divisible by v of that ring. In our case, since R has
an ideal I (the augmentation ideal) of codimension 1 which is free
of rank » then, as above, one proves that Ir. ~ Ry, which gives that
the free Ry, modules of rank 1 (i.e. Rg) and of rank n (i.e. Iy) are
isomorphic. This proves that u(Rs) =1 and v(Rg) divides n— 1.

Note, however, that in contrast to the case of an infinitely generated
ideal, here the canonical image of I in Rj, generates the unit ideal.

If o € Qg(R), where R is as in the statement of the theorem,
then « is represented by an element of Homg(I, R), for some finite
codimensional ideal 7. It is not hard to see that there is a unique
“maximal right ideal of definition” for «: this follows since, as R
is an integral domain, the extension of a to a larger ideal is unique
and so the “maximal” ideal of definition is the sum of all ideals of
definition. We denote the maximal ideal of definition of a by D,,
and its image a(D,) by Im(a).

In what follows we repeatedly use the fact, which follows from the
definitions, that if o € Qw(R) and r;,r, € R, then ar; = r, in
Ot(R) if and only if r, € D,, r; € Im(a) and a(r;)) =r,.

(5.2) LEMMA. Assume that a; € Qs (R) (i in some index set).
Then the «; generate an essential right ideal of Q¢.(R) if and only if
> ;Im(qa;) is an essential right ideal of R.

Proof. Assume that I = 3, a;0x(R) is an essential right ideal
of Qg(R) and let 0 # r € R. Looking at r as an element of
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Os(R), there exists B € QO (R) such that 0 # rf € I. Thus,
rp = Z§'=l aijﬂj, for some /, where f; € Q(R). By the fact
that for every 0 # y € Qg (R) there exist r;,r, € R such that
yr1 = r, # 0, it is easily seen that there is an element s € R such
that 0 # rs = Zézlaiij and s;, a,-]éj €R for j=1,...,]. As
noted above, this implies that o (s;) € Im(ai]) , and that ), Im(a;)
intersects non-trivially every right ideal of the form rR and so is es-
sential in R.

Now assume that J = ), Im(«;) is an essential right ideal of R and
let 0 # B € Qs.(R). So there exist ry, r, € R such that 0 # fr; € R
and 0 # Brir, € J. But again, as «;(r) = s(r, s € R) implies that
a;r =5 in Qg(R), it follows that frin el =3 ,0;0w(R), and I is
an essential right ideal. O

(5.3) LeEMMA. Assume that a; € Qi (R) (i in some index set)
generate freely a right ideal of Qs (R). For each i let {r;;j} be a basis
(over R) of the ideal of definition D, . Then the elements o;(rij)
generate freely a right ideal of R.

We observe that the converse of this lemma is also true (and easy
to show), but we do not need it.

Proof. Suppose that
t

m '
Zzai(rij)uij=0, ujj €R.

i=1 j=1
Then, looking at the «; as elements of Homg(D,, R) we get

m A
Zai (Zriju,-,) =0.
Jj=1

i=1

And as elements of Qg (R), as the «; generate freely an ideal, it
follows that

t
1
Zrijuij=0, i=1,...,m.
j=1

But D, is generated freely by the r;; and so u;; = 0 forall 7, j,
which gives the result. O

Completion of proof of (5.1). It remains to prove that v(Qs.(R)) =
n—1. It is enough to show that if Q. (R), as a right Q¢.(R)-module, is
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also free of rank m # 1, then n—1 divides m—1. So, let us suppose
that the elements a;, ..., an € O (R) generated Qs (R) freely. Let
D, be the corresponding ideals of definition. Each D, is open in
the fc-topology, i.e. it is of finite codimension, say e;. Therefore,
by the Schreier-Lewin formula [8] it is free of rank 1 +¢e;(n—1). It
follows from Lemmas (5.2) and (5.3) that 37", a;(D, ) is an essential
right ideal of R, which is free of rank g = m + (3°12, €;)(n — 1). By
Theorem (3.3) we get that this right ideal is of finite codimension, and
again by the Schreier-Lewin formula ¢ =1 (mod(n — 1)). Therefore
m=1 (mod(n — 1)), which completes the proof. o
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