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THE JONES POLYNOMIAL OF PARALLELS AND
APPLICATIONS TO CROSSING NUMBER

RICHARD STONG

In this paper we study the Jones polynomial of the parallels of a
link or knot. From the extremal exponents occurring we derive lower
hounds on the crossing number of the knot, reproducing in particular
a number of results of Thistlethwaite. We apply these techniques to
give lower bound on the crossing number of some simple satellites of
adequate and semi-adequate knots (including cable satellites) that are
usually quadratic in the degree of the satellite.

Introduction. Several recent papers have used the Jones polynomial
to study the crossing number of a link. First, Kauffman [2], using the
Jones polynomial, showed that any two reduced, connected, alternat-
ing diagrams for a link have the same crossing number. This result
was extended independently by Murasugi [5] and Thistlethwaite [6]
showing that a reduced alternating diagram has the minimal crossing
number. Thistlethwaite [7, 8] has extended these results, using the
Kauffman (or semi-oriented) polynomial, to show that the writhe of
a reduced alternating diagram of an alternating link is an isotopy in-
variant of L and to show that an adequate diagram of a link, has
minimal crossing number.

In this paper, we will reproduce these results and some other results
of Thistlethwaite using instead the Jones polynomial of the parallels of
a link. Using this method, we will be able to give lower bounds for the
crossing number of the r-fold parallels of an adequate knot, which in
most cases are quadratic in r. We will further show that these lower
bounds are stable under a class of variations. These variants may be
thought of as being the satellites coming from flows that are C1-close
to the parallel flow, in the sense of [1].

The Kauffman bracket polynomial of a planar diagram of an un-
oriented link is an element {D) e Z[A, A~ι] defined by the following
procedure. A state for D is defined to be a map s from the crossings
of D (which we take to be indexed by 1 < / < n) to {-1,1}. Let
sD denote the diagram obtained from D by nullifying the crossings
of D according to s as in Figure 1. For any s, sD consists of dis-
joint simple closed curves. Let \sD\ denote the number of such simple
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a crossing the s=-1 nullification the s=+1 nullification

FIGURE 1. Nullifying crossings.

closed curves. One either defines

(D) = ^2(D\s), where (D\S) = Aτs^{-A~2 - A2γD\-χ

where the second sum is over the vertices of D or derives this for-
mula from a recursive definition of {D). If L is an oriented link
represented by a diagram D with writhe w(D) then the Kauίfman
bracket of D is related to the Jones polynonial of L by VL(i) =
(-A)3w(Dϊ(D), where t = A~4. Good references for the basic proper-
ties of the Kauίfman bracket are [2, 3].

Let 5+ (respectively S-) denote the state that assigns 1 (respectively
-1) to every crossing of D. Then, following Lickorish and Thistle-
thwaite [4], we say that D is + adequate if \s+D\ > \sD\ for every s
for which Σs(i) = n-2. Similarly D is - adequate if \s-D\ > \sD\
for every state s for which Σs(i) = 2 — n. The diagram D is said
to be adequate if it is both + and - adequate, semi-adequate if it
is either + or - adequate and inadequate if it is neither + nor -
adequate.

Equivalently, a diagram D is + adequate if and only if changing
s+ on a single crossing of D always joins two different components
of s+D. A similar remark applies to - adequacy.

For any Laurent polynomial p e Z[A, A~ι] let Mp denote the
maximum exponent of A in p and let mp denote the minimum
exponent. We view the Jones polynomial as a polynomial in A by
setting t = A~4. The following proposition, which is essentially taken
from [4], will be our central tool.

PROPOSITION 1. (a) If D be a link diagram with n crossings then
M(D) <n + 2\s+D\ - 2 with equality if D is + adequate.

(b) If D be a link diagram with n crossings then m(D) > —n —
2\s-D\ + 2 with equality if D is - adequate.

Proof, (a) Clearly M(D\s+) = n+2\s+D\-2. Suppose s is any other
state. Then there is a sequence of states 5+ = SQ , s\, . . . , s^ = s, such
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that 5>_i and sr agree on all but one crossing and on that crossing
5y_i = 1 and sr = - 1 . Therefore Σsr{i) = Σsr-\(i) - 2 and \srD\
and |sr_iZ)| differ by 1; hence M(D\sr-\) > M(D\sr). This implies
the upper bound. If further D is + adequate, then \soD\ = \s\D\ + l.
Therefore M(D\s+) > M(D\sχ) and hence M(D\s+) > M(D\s) for all
other s. Thus M(D) = M(D\s+). __

Part (b) follows similarly or by replacing D with its reflection D.

It is easy to check that, in particular, a reduced alternating diagram
is adequate. Further, Thistlethwaite [8] has observed that every knot
with crossing number at most eleven is semi-adequate in its minimum
crossing number projection. These results illustrate that, at least for
easy knots, semi-adequacy is a fairly common condition.

For any component of a link there is a family of parallels indexed
by an integer, the framing, which is the linking number of any one
parallel with any other parallel. We will use the following notation.
For a diagram D let Dr denote the result of replacing every link-
component of D by r components all parallel in the plane (henceforth
referred to as the r-fold planar parallel of D). If a link L has link-
components 1 < / < c, let U(t\, t2y . . . , tc) denote the result of
replacing link-component / by the r-fold parallel with framing f , .
Thus if D is a diagram for L, then Dr is a diagram for the link
Lr(w\ ,W2, ... 9 wc) where u;,- is the writhe of link-component /. In
general, we get a diagram for Lr(t\, t2, . . . , tc) from D by adding
|ί, - Wi\ small kinks (of the appropriate sign) to link-component /
and then forming the r-fold planar parallel. Denote this diagram by
Dr{t\> h, 9 tc) - With these definitions, we have the following slight
generalization of [4, Proposition 2].

PROPOSITION 2. (a) If D is any diagram, then

\s+Dr(t{ 9t2,...,tc)\ = r (\s+D\ + Σ m a x ( ' / " wi > 0))

and

\s-Dr(t{, t2, . . . , tc)\ = r (\s-D\ + ]Γmax(w/ - ί,, 0)) .

(b) If D is a + adequate diagram and ti > Wi for all i, 1 < / < c,
then Dr(t\, t2, . . . ,tc) is also + adequate.

(c) If D is a - adequate diagram and Wi > tj for all if 1 < / < c,
then Dr{t\, t2, . . . , tc) is also - adequate.

Proof. Clearly adding loops with a +1 crossings does not destroy
+ adequacy or change \s~D\ but it adds one more component to
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the 4-fold parallel of a crossing its s+ nullification

FIGURE 2. Nullification of a planar parallel of a crossing.

s+D. Similarly adding loops with a - 1 crossing does not destroy
- adequacy or change \s+D\ but it adds one more component to
s+D. Thus the proposition holds for r = 1 and we are reduced to
considering the effect of taking r-fold planar parallels.

As indicated in [4] and Figure 2, taking r-fold planar parallels com-
mutes with acting by s+. It follows that \s+Dr(t\, t2, . . . , tc)\ =
r\s+Dι(tx ,t2, . . . , tc)\ = r(\s+D\ + Σmaxfo - wt, 0)) . If D is + ad-

equate, then Dr(t\, t2, . . . , tc) is also + adequate since changing the
state s+ on any crossing to — 1 either joins two different parallels (in
s+Dr(t\, t2, . . . , tc)) of the same component of s+Dι(tχ, t2, -.. , tc)
or joins parallels of different components. Part (c) and the other half
of part (a) follow by replacing D by its reflection.

Combining these two propositions gives the following results.

PROPOSITION 3. (a) Let L be an oriented link with c link-compo-
nents and with a diagram D with n crossings and writhe w, if tι > Wi
(1 <i<c) Then

MV(Lr(tut2,...,tc))

<{n- w)r2 + 2(\s+D\ - w)r - 2

If further D is + adequate, then we have equality.
(b) Let L be an oriented link with c link-components and with a

diagram D with n crossings and writhe w, if Wf > t\ (1 < / < c).
Then

mV(Lr(tut2,...,tc))

> -(n + w)r2 - 2(\s-D\ -w)r + 2

If further D is - adequate, then we have equality.



THE JONES POLYNOMIAL OF PARALLELS 387

Proof, (a) The diagram Dr{tχ, t2, . . . , tc) has (n + £(*,- - Wi))r2

crossings and \s+Dr(t\, t2,..., tc)\ as given above. Therefore

M(Dr(tut2,...,tc))

) 2 ( £> ) r - 2.

Also Dr(t{, ί2, - , tc) has writhe wr2 + £(*/ - wi)rl Therefore

< (n - w)r2 + 2(|^+Z)| -w)r-2

as claimed. If D is + adequate, then Dr(tγ, t2, ... , tc) is also + ad-
equate and we have equality. Part (b) follows similarly or by replacing
D by its reflection.

The quantity w — J^Wi can be rewritten as

where Lf denotes the /th link-component of L and is an isotopy in-
variant of L. Further, MV(U{t\, t2, . . . , ίc)) is a n isotopy invariant
of L for all r and {£;} and under the hypotheses of the proposition
above it has the form ar2 + 2br - 2 - 2cr(r - 1), where c is also an
isotopy invariant depending on { ί j and a and b independent of
r and {£;}. Thus α and δ are isotopy invariants of L. Therefore
if L admits a + adequate diagram with n crossings and writhe w,
then n-w is an isotopy invariant of L. Further, if D1 is any other
diagram representing L, with say n' crossings and writhe w', then
n' - w' > n - w. To rephrase this let c+(L) (respectively c_(L))
denote the minimum number of sign +1 (respectively -1) crossings
in any projection of L. Let c(L) denote the crossing number of L.
Then we have the following corollary (which is essentially [8, Corollary
3.1] rephrased).

COROLLARY 3.1. (a) If L is a link that admits a + adequate dia-
gram D with n- sign - 1 crossings, then C-(L) = n-. In particular,
D is not regularly isotopic to a diagram with fewer crossings.

(b) If L is a link that admits a - adequate diagram D with n+
sign +1 crossings, then c+(L) = n+. In particular, D is not regularly
isotopic to a diagram with fewer crossings.
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(c) If L is a link that admits an adequate diagram D with n cross-
ings and writhe w, then c(L) = n and any other n crossing diagram
for L has writhe w.

Thistlethwaite actually obtains a slightly stronger statement in [8].
In our terminology, he shows that if L admits a + adequate diagram
with n- sign -1 crossings, then c~(L) = it- and any other diagram
for L with n- sign -1 crossings is + adequate. The quantities
c+(L) and C-(L) would seem to be almost completely uncomputable
without the Jones polynomial techniques above or the Kauffman poly-
nomial techniques of [8].

This corollary together with the trivial bound c(L) > c+{L) + C-(L)
gives bounds on the crossing number of certain cable satellites of semi-
adequate knots. One also gets similar lower bounds for links but with
more complicated conditions.

COROLLARY 3.2. (a) Let K be a knot with a + adequate diagram
D with n crossings and writhe w. If q > wr and K(r, q) denotes
the (r, q)-cable satellite of K, then

c(K(r,q))>C-(K(r,q))>ι

Ί(n-w)r2.

(b) Let K be a knot with a - adequate diagram D with n cross-
ings and writhe w. If q < wr and K(r, q) denotes the (r, q)-cable
satellite of K, then

c(K(r, q)) > c+{K{r, q)) > \{n + w)r\

This result depends very heavily on the assumption of semi-
adequacy. If K is as above and we obtain a link L from K(r, q)
by introducing even a single sign - 1 crossing the method of proof
breaks down completely. In principle, we have lower bounds on c+(L)
and C-(L) coming from the Jones polynomial of the highly twisted
parallels (or using [8] the Kauίfman polynomial). Unfortunately for
an arbitrary knot K it is difficult to calculate the extremal powers in
the Jones polynomial of highly twisted parallels of its satellites (or the
Kauffman polynomial of its satellites). For a certain restricted class
of satellites, which we will now define, this is however possible.

Recall that the r-string braid group Br is the group with presenta-
tion

Br = (σι, σ2, . . . , σr_i: σ/σ,- = σ, σ/ if |z" - j \ > 2,

0707+107 = 07+10707+1).
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FIGURE 3(a). The element a = e Br,

FIGURE 3(b). The braid α glued into the 5-fold planar
parallel of the trefoil knot.

Elements of Br can be viewed geometrically as r strings traversing
a box monotonically from left to right as shown in Figure 3(a). For
a knot K with diagram D (with writhe w) and a e Br let D(r; a)
denote the diagram obtained from the r-fold planar parallel Dr by
gluing in a as in Figure 3(b) and let K(r, w a) denote the corre-
sponding knot. Note that K(r, w a) depends only on the conjugacy
class of α. In some sense, if a is not too large, our prior results go
through for K(r, w α ) .

Let T be the subset of Br consisting of all elements of the form
(τfισfι --σfx where /; + 1 > z7- + 1 for all j . We define the length of

l l l2 lk J J

a to be the least n > 0 such that a e Tn , and denote it by l(a). To
motivate the use of the word "length", note that since the generators
of Bn occurring in any element of T commute any element of T can
be drawn unambiguously as a layer one crossing long. A braid a of
length /(α) can then be drawn as the union of l(a) layers where each
layer is one crossing long. (One can define many other versions of the
length for example versions that treat positive and negative crossings
differently and derive stronger versions of the results below.)
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In some weak sense, if I (a) < Cr, then one should regard
K{r9 w a) as being derived from a flow C1-close to the flow pro-
ducing the r-fold w-twisted parallel K(r, w; 1). Roughly the dis-
tance between neighboring strings is O(r~ι) and strings C1-close to
parallel can angle towards each other only slowly. Therefore the only
new crossings introduced occur as a braid a and each new crossing
introduced requires a distance that is O(r~ι). Thus a has length
that is at most O(r). The precise context in which K(r 9 w; a) is a
C1-approximation is at present still a little unclear.

If a G Br, we let a(s) denote the 5-fold planar parallel of α,
viewed as an element of Brs. Note that for any a we have l(a(s)) <
(2s — l)/(α). Using more information about a one can write down
stronger linear bounds. If a can be written as a = t\tit-$ ί/ where
ίι G T and no σ7 occurs in ί/ and ί/+i (where ί/+1 = ίi), then
l{a(s)) < si. Note that full twists have this nice form.

PROPOSITION 4. Let K be a knot that admits a + adequate diagram
D with n crossings and writhe w. Suppose β G Br contains only
positive crossings and aeBr satisfies I (a) < nr/2. Then

MV(K(r9w;βa))

= (n- w)r2 + 2(\s+D\ -w)r-2- 2r(r - l)w - 2w(βa),

where w(βa) denotes the writhe of βa.

Proof. View D(r βa) as being composed of two sections each of
which connects r adjacent entrance points to r adjacent exit points.
The first section S\ consists of the r-fold planar parallel of D with
a small section removed. The second section S2 consists of βa. Let
u be a map from the crossings of S2 to the set {-1, 1}, thought of
as a partial state. Let D(u) and S2(u) denote the results of nullifying
the crossings of D and S2 according to u. Then as above we have a
state formula for (D(r\ βa)).

The diagram D(u) can be simplified using Reidemeister moves of
type II (which do not change the Kauίfman bracket). The diagram
Siiu) consists of some number, say μ, of simple closed curves and
disjoint paths joining pairs of the 2r entrance and exist points. If
S2{u) joins two adjacent exit points then the resulting loop may be
pushed through S\ using type II moves (possibly increasing μ) (see
Figure 4). Continue pushing through loops as long as possible. Let m



THE JONES POLYNOMIAL OF PARALLELS

(a) The initial diagram D(u) for K the trefoil, α as in Figure 3 and some u.

391

(b) The diagram after a first simplification.

(c) The diagram after all simplifications.

FIGURE 4. Simplification of D(u) by Reidemeister moves
of type II.
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be the number of loops pushed through. Then the remaining diagram
consists of the r - 2m fold parallel of D together with μ simple
closed curves.

Suppose first that u is the state UQ that nullifies each crossing of
S2 to produce r parallel lines (i.e. UQ is 1 on sign +1 crossings and
- 1 on sign - 1 crossings). Then D(UQ) is the r-ϊold planar parallel
of D and

m(AΣu^(D(u0))) = nr2 + 2\s+D\r -2 + w(βa).

If u is any other state let M+ and M- be the number of +1 and
- 1 sign crossings on which u disagrees with UQ. Then Σu(i) =

w(βά) - 2M+ + 2M- . Also 2M+ + 2A/_ is the number of direction
changes introduced so μ < 2M+ + 2M- . Therefore

M(AΣu^(D(u))) < n(r - 2m)2 + 2\s+D\{r -2m)-2

+ 2μ + w(βa) - 2M+ + 2M_ ,

< nr2 + 2\s+D\r - 2 + w(βa)

- 4(rnm - m2n + m\s+D\ - M-).

We will show below that because I (a) < nr/2 we have M- < \rnm.
Therefore the rightmost term is negative (since m <\r) and

M(D(r; βa)) = M(AΣu^(D(u0))) = nr2 + 2\s+D\r - 2 + w(βa).

This gives the stated value for MV(K(r, w\ βa)).
To see that M- < \rnm, view a as being built from I (a) layers

which are elements of T. If one of the layers has k crossings on which
u Φ UQ, then only r - 2k paths in Sι{u) go through that layer and
hence k < m. Therefore summing over layers M- < ml(a) < \rnm.

As a result of this proposition we have the following theorem.

THEOREM 5. (a) Let K be a knot that admits a + adequate diagram
D with n crossings and writhe w. Suppose a e Br has l(a(s)) <
nrs/2 then

c{K(r, w;ά))> C-(K(r, w a)) > (n - w)r2/2.

In particular this condition holds if I (a) < nr/4, or if a consists of
fewer than n/4 full negative twists.

(b) Let K be a knot that admits a - adequate diagram D with
n crossings and writhe w and suppose a e Br has l(a(s)) < nrs/2.
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FIGURE 5. The diagram D for K the trefoil, a =

e i ? 3 , r = 3 , s = 2 , < z i = 0 , α 2 = l and <z3 = 2 .

Then

c(K(r, > c+(K(r, w;a))>(n + w)r2/2.

Proof. It is sufficient to prove part (a). Let L = K(r, Ή; α ) . We
will use the proposition above to calculate the highest exponent of
A in the Jones polynomial of L2(t\, t2, . . . , tc) for U large. This
together with the previous bounds will give the desired result.

A diagram D for U{tx, t2, . . . , tc) can be built as follows. The
diagram D consists of three sections cyclically ordered, each of which
has rs parallel incoming strings and rs parallel outgoing strings (see
Figure 5). The first section *SΊ consists of the rs-fold planar parallel of
D with a small section removed. The second section S2 consists of the
5-fold planar parallel of r parallel segments with at full twists added
to segment / (the α, are chosen so that the sum of the αf 's in segments
in link-component number k is tk-wk and hence Σai = Σί ' i""^/))
The third section S3 consists of the 5-fold planar parallel of a.

This description shows that Ls(tϊy t2, . . . , tc) has the form
K(rs, w βa(s)) where β is the braid consisting of the αf twists (all
positive crossings) followed by the 5-fold planar parallel of a which
satisfies l(a(s)) < \rsn. Therefore the proposition above applies and
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MV(L2(tl9t29...9tc))

= nr2s2 + ^2 diS2 + 2rs\s+D\

+ 2 Σ UiS ~ 2 + w(a)s2 ~ 3 (wr2s2

= (n - w)r2s2 + 2(r\s+D\ - wr2 - w(a))s

- 2 - 2

From this and the earlier results it follows that C-(L) > \{n - w)r2.
The proof above used only the quadratic dependence of the highest

power of the Jones polynomial of a cable satellite, thus prompting the
following definition.

DEFINITION. A framed knot K, say with framing t, is said to be
quadratic (or for definitiveness α-quadratic) if MV(K(r, t\ 1)) =
(a-t)r2-2r(r-l)t + O(r).

A similar definition could be made for the lowest exponent but to
save notation we will omit this definition here. Proposition 3 can be
rephrased as saying that if K admits a + adequate diagram D with n
crossings and writhe w , then K with the w framing is ^-quadratic.
It is unclear whether all framed knots are quadratic or whether all
knots are quadratic for sufficiently large t. With this definition we
have a slightly weaker version of Proposition 4 for quadratic knots.

PROPOSITION 6. Let K be a framed knot, with framing t, that is
a-quadratic. There is an R such that for all r>R, if aeBr satisfies
I (a) < ar/2, then

MV(K(r9 t\a))= MV(K(r, t 1)) - 2w(a),

where w(ά) denotes the writhe of a.

The proof is exactly the same as that of Proposition 4. We have a
number of easy corollaries of this proposition including the obvious
generalization of Theorem 5.

COROLLARY 6.1. (a) Let K be an a-quadratic framed knot with
a > 5, and let Kr be the same knot with one lower framing. Then K'
is {a - \)-quadratic

(b) Let K be an a-quadratic framed knot with a > 0, and let K' be
the same knot with one higher framing. Then K1 is {a + \)-quadratic.

Proof. Apply the proposition to a a full negative or full positive
twist.
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This is not the strongest result possible, a detailed analysis of the
effect of gluing in a full negative twist shows that a > 1 is sufficient. If
K is O-quadratic, then at least in the + adequate case and probably
in general, so is the framed knot Kr obtained by lowering the framing
by one.

COROLLARY 6.2. Let K be a knot that admits a + adequate dia-
gram with n crossings and writhe d and let (K, t) denote K with
the t framing. Then (K, w - t) is (n — t)-quadratic for t < n - 4.

THEOREM 7. Let K be a framed knot, say with framing t, that is
a-quadratic and suppose aeBr has l(a(s)) < ars/2. Then

c(K(r, t α)) > C-(K{r9 t α)) > (a - t)r2/2.

In particular this condition holds if I (a) < ar/4, or if a consists of
fewer than a/4 full negative twists.
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