
PACIFIC JOURNAL OF MATHEMATICS
Vol. 164, No. 2, 1994

CONJUGATE POINTS ON SPACELIKE GEODESICS
OR PSEUDO-SELF-ADJOINT

MORSE-STURM-LIOUVILLE SYSTEMS

ADAM D. HELFER

This paper develops the basic theory of conjugate points along
geodesies in manifolds with indefinite metric; equivalently, that of
conjugate points for Morse-Sturm-Liouville systems which are sym-
metric with respect to an indefinite inner product. The theory is rather
different from that for Riemannian manifolds or that for timelike or
null geodesies in Lorentzian manifolds. We find that conjugate points
may be unstable with respect to perturbation of the geodesic: they may
annihilate in pairs. Also the conjugate points need not be isolated: we
construct an example where a whole ray is conjugate to a given point.
Nevertheless, we give an extension of the Morse Index Theorem to
this situation. We also analyze the effects of certain perturbations.

1. Introduction. The study of the length functional on Riemannian
manifolds is fundamental to both classical and modern differential ge-
ometry. Classically, of course, the stationary points of this functional
are the geodesies. The modern exploitation began with the Morse In-
dex Theorem, which identified the index of the second variation (the
"number of decreasing directions") with the algebraic count of the
number of conjugate points along the geodesic. Morse himself used
developments of this theory to prove deep results about the existence
of periodic geodesies on the two-sphere equipped with an arbitrary
metric [11]; Bott was led by a similar analysis of Lie groups to his
celebrated Periodicity Theorem [4].

For Lorentzian manifolds, the existence of conjugate points on null
or timelike geodesies has physical significance. For timelike geodesies,
there is an effect rather like the "twin paradox," except that no ac-
celerations are involved; for null geodesies, one has the phenomenon
of gravitational lensing. Conjugate points along both these geodesies
play a role in the singularity theorems of Penrose and Hawking, as
well. (See [13] for a review.) The Morse Index Theorem and its con-
sequences for these cases were established by Beem and Ehrlich [1-3].
We refer to the timelike and null cases collectively as causal

Although the interpretation of the Morse Index Theorem is different
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in the Lorentzian causal cases from the Riemannian case and requires
the development of new ideas [3], the result itself can be cast as a
generalization of Sturm's theorem in such a form as to be identical in
the Riemannian and causal Lorentzian cases.

MORSE INDEX THEOREM. Consider the system of ordinary differen-
tial equations

(1) ^ b

on the interval [to, h], where Qa

b is a matrix of smooth functions
symmetric with respect to a positive-definite inner product ηab. We
say there is a conjugate point of multiplicity k at t = τ if there is
a k-dimensional family of solutions vanishing at t = to and t = τ .
Assume there is no conjugate point at t = t\. Let

/conjugate > the conjugate index, be the number of points in (to, t\)
conjugate to to, counted with multiplicity\

Spectral > the spectral index, be the number of negative eigenvalues of
the operator

on [to, t\] with Dirichlet boundary conditions, counted with multiplic-
ity,

/quadratic > the index of the second variation, be the largest dimension
of a subspace of the space of square-integrable vector-valued functions
w(t) on which the quadratic form

= ίl[wawbηab + wawbQab]dt

(where Qab = ηacQb) is negative-definite.

1 hen ^conjugate = ^spectral ~ ^quadratic

(Sometimes the function space is taken to be something other than
square-integrable functions; there is some latitude here.) Of course,
one may choose a basis in which ηab is the identity, and then Qab

and Qa

b will have the same components. However, in what follows
it will be important to maintain a conceptual distinction between the
endomorphism Qa

b and the symmetric form Qab .
For the application to the length functional in a Riemannian man-

ifold, the symbols have the following meaning. The interval [to, t\]
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parameterizes an interval along a geodesic γ the vector-valued func-
tions wa(t) take values in the normal bundle to the geodesic and are
connecting vector fields to nearby geodesies; and Qab = Rarbs7rys * s

the Riemann curvature tensor contracted twice with the tangent to the
geodesic. The symmetries of the Riemann tensor guarantee that Qab
acts on the space of vectors normal to γ and is symmetric with respect
to the induced metric on this normal bundle. At a point conjugate to
γ(to), the exponential map from γ(to) fails to have maximal rank; in
particular, the geodesic normal coordinates based at γ(to) can only
be a good chart on a neighborhood up to the first conjugate point.
The eigenfunction corresponding to the most negative eigenvalue de-
termines a canonical deformation of the geodesic which decreases its
length most quickly. The index of the quadratic form is the index of
the second variation: the number of independent perturbations de-
creasing the length.

For timelike geodesies in a Lorentzian manifold, essentially the
same interpretations of the symbols apply. The only difference is that
the metric ηab on the normal bundle is now negative-definite (with our
conventions a Lorentzian metric has diagonalized form + 1 , — 1, - 1 ,
. . . ) , but the only modification needed to the Morse Index Theorem as
stated above is to reverse the sign of $. Conjugate points still signal
a drop in rank of the exponential map. The eigenfunction with the
most negative eigenvalue now determines a canonical deformation of
the geodesic increasing its length most quickly (the variational prob-
lem for timelike geodesies is to maximize their lengths; see [3, 12]).
The index of the quadratic form is the index of the second variation.

For null geodesies, the situation is a little more complicated. Here
one must consider not the normal bundle, but the quotient of the
normal bundle by the vectors proportional to γa (which, being null,
is both tangent and normal). Once this is done, however, again η^
is a negative-definite form and the Morse Index Theorem, as given
above, can be applied. Conjugate points determine a drop in rank of
the exponential map. The interpretation of the other two indices is a
little more involved: see [3].

For spacelike geodesies, however, the form η^ on the normal bun-
dle is itself Lorentzian, and therefore the system of differential equa-
tions above is not self-adjoint with respect to a definite symmetric
form. The Morse Index Theorem cannot be applied. This is tied to the
fact that spacelike geodesies are never extrema of the length functional;
indeed, there is always an infinite-dimensional family of deformations
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shortening the spacelike geodesic, and an infinite-dimensional family
lengthening it: many of the usual techniques simply fail to apply here.

There has been little impetus from physics to investigate spacelike
geodesies, since they are traversed by particles moving faster than
light, which have never been observed and are believed not to exist.
However, there is now, in addition to the mathematical motivation,
a physical reason for studying these geodesies. This is that there are
now good enough global existence theorems for Einstein's equation,
due primilarly to Friedrich (see [6] for a review), that the focus of these
investigations has shifted to spacelike infinity. This is a regime of ideal
points which roughly speaking are endpoints of spacelike geodesies; it
is now important to understand their geometry.

There is a further reason, both mathematical and physical, for study-
ing the Morse Theory of spacelike curves. This is that it is the simplest
of a family of variational problems encountered in relativity for which
the functionals are bounded neither above nor below, and whose sta-
tionary points are never extrema. Virtually all of the relativistic field
equations we have can be derived, and arise naturally, as stationary
points of Lagrangians. At the moment, we are limited to rather formal
uses of this fact, since there is not the mathematical technology avail-
able in this case analogous to what would exist for a minimization or
maximization problem. One would like to know if it is possible to
develop a theory complementary to that for positive-definite spaces.
However, in general there may be two factors contributing to the un-
bounded nature of the relativistic variational problems, and only one
is present in the treatment of spacelike geodesies. This is that the test
functions take values in a space equipped with an indefinite metric.
The other factor, which is not present in this paper, is that the dif-
ferential equation characterizing stationarity may be hyperbolic, and
hence the differential operator may not be semi-bounded.

In this paper, some of the basic theory of conjugate points on space-
like geodesies, and more generally on geodesies in semi-Riemannian
spaces, is established. The first difference here with the causal
Lorentzian or Riemannian theory is that conjugate points on space-
like geodesies may be unstable. That is, a perturbation of the system
may destroy the conjugate points. Also conjugate points may accumu-
late, indeed, we give an example where a ray of points is conjugate to
a fixed point. It turns out however that a version of the Morse Index
Theorem does exist, and this is our main result.

We may view the geodesic deviation equation with appropriate ini-
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tial conditions as giving rise, by a Legendre transformation, to a curve
in the space of Lagrange planes. Then the conjugate index may be de-
fined as the intersection number of this curve with a certain variety. In
"generic" situations, this index is equal to the number of timelike con-
jugate points minus the number of spacelike conjugate points, where
a conjugate point is classed as timelike or spacelike according to the
value of wa there. This conjugate index is equal to the spectral index,
defined (generically) as the number of timelike minus the number of
spacelike eigenfunctions of the operator

(with Dirichlet boundary conditions) with negative eigenvalues, where
an eigenfunction wa is timelike or spacelike according to the sign of

/ wawadt.

The proof is by homology arguments in the space of Lagrange planes.
We give a number of related results analyzing the motion of con-

jugate points under certain perturbations. Inspecting these, it will
be evident from the number of places signs enter that the theory is
quite different from the definite case. We also show that our tech-
niques extend to treat a somewhat more general class of problems, the
Morse-Sturm systems.

This paper is entirely devoted to the study of the Morse Index The-
ory as a problem in ordinary differential equations. Applications of
this to the geometry of space-time and Morse homology theory (as
refined by Thorn, Smale, Witten and others) will be given elsewhere.

This is the organization of the paper. In §2, we give the basic def-
initions that will be used. In §3, we show that every equation of the
form (1) with Qa

b symmetric with respect to an indefinite form really
is the geodesic deviation equation along some geodesic in a manifold,
so all the phenomena discussed here can occur geometrically. Sec-
tion 4 reviews the geometry of the Lagrange Grassmannian. Section
5 computes the conjugate index as an intersection number. Section 6
gives the spectral theory of the operator (2) and computes the spectral
index. In §7, the index theorem is proved, and also an alternation
theorem. Section 8 analyzes the effects of certain perturbations. Sec-
tion 9 discusses focal points to hypersurfaces. Section 10 treats the
Morse-Sturm problem. Section 11 gives some examples, in particular
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that of a point with a whole ray of conjugate points, and can be read
before the other sections. Section 12 gives some final comments.

Acknowledgments. It is a pleasure to thank members of the Mathe-
matics Department at the University of Missouri, Columbia, for use-
ful discussions. I am particularly grateful to John Beem and to Fritz
Gesztesy.

2. Preliminaries. The following symbols and terminology will be
used.

The symbol Θ stands for symmetric tensor product; the symbol =
for isomorphism of vector spaces; a dot will be used for d/dt.

A null vector will always mean a vector whose squared length, with
respect to a given indefinite inner product, is zero. The term will not be
used for an eigenvector with eigenvalue zero. A vector whose squared
length is positive or negative will be called timelike or spacelike (with
respect to the inner product).

The positive, negative and null type numbers of a quadratic form are
the numbers of positive, negative and zero entries on the diagonal in
its matrix of components with respect to a basis in which this matrix
is diagonal. The signature of a quadratic form is its positive type
number minus its negative type number.

The following definitions apply throughout this paper.
Let V be a real ^-dimensional vector space. It will sometimes

be convenient to denote the elements of the tensor algebra of V by
quantities with indices in the usual fashion. When this is done, we
represent the elements of V by symbols with small italic superscripts:
va, wa, etc.; and elements of the dual by quantities with subscripts:
λa, etc. Contraction over repeated indices is understood. We will fix
a nondegenerate symmetric bilinear form /; on F . Indices will be
raised and lowered with η and its inverse (also denoted η).

Let Qab(t) be a smooth symmetric form. (For differential geometry,
"smooth" may be taken to mean C°° . However, for our purposes one
could take Q^ to be C°.) We shall call the differential equation

(3) ^ w a = Qa

bw

a Jacobi equation symmetric with respect to η. A solution wa to
this equation is a Jacobi field. The phase space is defined to be Γ =
{(w, w)\w, w e V} = F φ K it represents the specifiable data for a
solution at any fixed t. The symplectic form on Γ is defined by

ω((v ,ϋ),(w, w)) = η(v , w) - η(w , v).
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This form is preserved by evolution according to the differential equa-
tion: if va(t) and wa(t) are solutions to (3), we have

-jjU>({v, ϋ),(w, w)) = 0

by virtue of the symmetry of Qab, independent of boundary condi-
tions.

A generalization of the Jacobi equation (3) is the system

^(rab(t)wb(t)) = Qab{t)wb{t)

where rab{t) is a C 1 non-degenerate symmetric form and Qab is
C° and symmetric. We shall call this a Morse-Sturm equation. (So
a Jacobi equation is the special case where rab = ηab is constant.)
Although we are primarily interested in Jacobi equations, our tech-
niques apply with only a few changes to Morse-Sturm equations, and
a discussion of these is given below.

3. Every Jacobi equation is a geodesic deviation equation. It is clear
that every geodesic deviation equation in a semi-Riemannian manifold
is a Jacobi equation. We show that the converse is also true. Thus all
the phenomena we describe for Jacobi equations can also occur for
the geodesic derivation equation.

Let M be an (n + 1)-dimensional manifold and gab a non-
degenerate metric on M. Let O be an open interval of real num-
bers and γ: O —> M an affinely parameterized geodesic. We recall
that a Jacobi field on γ is a connecting vector field to a family of
geodesies; it satisfies the geodesic derivation equation

(4) {y.V)2wd = Rabc

dγafwb.

If we assume that γ is without self-intersections, then nothing is lost
in pulling back the tangent bundle of M to γ, and trivializing this
bundle by parallel propagation. We shall do this from now on. Then
with Qd

b = Rabcdyayc > the geodesic deviation equation becomes

wd = Qd

bw
b.

As a consequence of the symmetries of the Riemann tensor, any vector
proportional to ya will be a solution of the geodesic deviation equa-
tion. Such solutions are not of interest for the theory of conjugate
points. We therefore factor the space of solutions by these vectors.
If γa is not a null vector, and we shall henceforth assume this, then
we may equivalently require w γ = 0. (This can always be arranged
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by adding a suitable multiple of γ to w .) We therefore consider (4)
as an equation on the n-dimensional space of vectors w orthogonal
to γ note that Q acts on this space anyway. Denote by ηab the
projection of the metric to the space orthogonal to γ then η is a
non-degenerate symmetric form and Q is symmetric with respect to
it.

We show now that every Jacobi equation does in fact arise in this
manner. In other words, we show that every smooth function Qb

a,
symmetric with respect to ηab, does arise as Rabcd7a7c f° r some
semi-Riemannian manifold. This is a problem local to the geodesic:
we must show that the metric can be chosen in the neighborhood of
the geodesic so that its curvature has the requisite form.

This can be done as follows. Let (M, hab) be a semi-Euclidean
space (that is, M = R"+1 and hab is a symmetric non-degenerate
form, constant with respect to the Cartesian coordinate system). Let
γ be a geodesic in (M, hab), timelike or spacelike as required, and
let the type numbers of hab be such that the orthocomplement of γ
has the same type numbers as η. We choose a conformally related
metric gab = Ω2hab , where

Ω = 1, VαΩ = 0 on γ.

(Here Va is the covariant derivative with respect to hab .) Since VaΩ
vanishes on γ, this curve will be a geodesic for gab . A direct calcu-
lation shows

Qb

d = the projection of y2V^V^logΩ orthogonal to γa

f°Γ gab o n 7 - We may choose this second derivative arbitrarily.

4. The Lagrange Grassmannian. The key step in the analysis of
the Jacobi equation is to pass to the Lagrange Grassmannian, that
is, the manifold of Lagrange planes in phase space. We review here
those elements of the geometry of this space which will be needed
below. Most of this material is standard, and for such results we give
only as much of the proofs as will be necessary for understanding the
remainder of this paper. For more details, see for example [9, 14].
We try to adhere to the conventions of these authors.

Recall that V is an rc-dimensional real vector space equipped with
a non-degenerate symmetric form η, and Γ = V ® V is equipped
with the symplectic form

ω((υ , ϋ), (w , w)) = η{υ , w) - η{w , ϋ).
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An n-dimensional subspace L of Γ is called a Lagrange plane if
ω restricts to zero on L. The space of Lagrange planes forms an
n(n + l)/2-dimensional compact manifold Λ, called the Lagrange
Grassmannian. Two Lagrange planes are complementary if their di-
rect sum is Γ. We shall call two Lagrange planes which are not com-
plementary conjugate. (Here and throughout we shall be careful to
distinguish the capital lambda Λ, which is meant to suggest Lagrange,
from the wedge Λ, which denotes antisymmetry.)

If LQ , L\ form a pair of complementary Lagrange planes, then the
symplectic form can be used to identify each as the dual vector space
of the other. We make the convention that the map

is given by

v »-• ω(v , •).

Although this is natural, it is not completely canonical; one might
have chosen the map to be v ι-» ω( , v) = -ω(υ, •) instead. This will
not be important. There is however a sign issue which is important:
given our convention for the map Lo —• L\, note that the dual map
LQ <— L\ is given by ω( , υ) *H v . Thus the identification L o —• L\
really depends on the pair L o , L\: reversing their order introduces a
sign change. ^

Similarly, for each Lagrange plane L we fix an isomorphism

Γ/L -> L*

by

If L o , L\ form a complementary pair of Lagrange planes, this iso-
morphism and the one above are compatible in the sense that the
diagram

LQ —• L\

I I

commutes, where the horizontal maps are the isomorphisms given
above and the vertical maps are projection and the identity.

We now take up the structure of complementary pairs of Lagrange
planes.
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PROPOSITION 4.1. Let L o , L\ be complementary Lagrange planes,
and e = (e\9e29 ... , en) a basis for Lo. Then there is a unique basis
f=(fl,f2,...,fn)forL{ such that

The basis / guaranteed here will be called complementary to e. In
terms of components with respect to these bases, the canonical map
LQ —• L\ is given by the identity. We have further

PROPOSITION 4.2. Let L o , L\, e, f be as above. Then any La-
grange plane complementary to LQ has a basis of the form

Γ + βijej

for some unique symmetric matrix βij, and conversely any symmetric
matrix determines a Lagrange complement to LQ by this formula.

This shows that the set of Lagrange complements to LQ is an affine
space modeled on LQΘLQ. If L\ is chosen as the origin of the space,
then the set of complements is identified with LQΘLQ by identifying a
complement whose components are βιJ with β^ei®ej. Let us define
more generally, for any L e Λ,

Ak(L) = {M e Λ| dimL n M = k}

for k = 0, 1, 2, . . . , n . Then Λ°(L) is the set of Lagrange comple-
ments to L, and Λ,= \Jl=0A

k(L).

DEFINITION 4.1. Let L o , L\, e, / be as above. The canonical chart
they determine is the diffeomorphism Λ°(L0) —• Rw("+1)/2 defined by
L ι-+ βιj as above.

Now we identify the tangent vectors.

PROPOSITION 4.3. The tangent space at L e Λ is canonically iso-
morphic to L* Θ L*.

Proof. Take L = L\, above. Then the tangent space is identified
with the tangent space to an affine space modeled on LQΘ LQ. This
tangent space may be identified with Lo © LQ itself, and we have LQ
canonically identified with L\. (The isomorphism TL = L* © L* we
have constructed does not depend on the sign of the identification of
LQ with L\.) Ώ

Note that with respect to the basis e for LQ , a tangent vector L at
LQ has components L / ; . (So L = Lije*1 0 e*j , where e* is the dual
basis to e.)
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PROPOSITION 4.4. Let LQ , L\ be as above. Then the image of
Ak(L\) in the canonical chart is the set of symmetric matrices of nullity
k. This subspace, and hence Ak{L\), has codimension k(k + l)/2 in
Λ.

Proof With e and / as above, let L e A°(LQ) be given by L =
span{/' + βiJej} . Then Lx = span{/'} , so

LnLι = {aif
i\aiβ

ij = 0}. D

The codimension of Aι(L) is one in Λ; and the codimension of
Λ2(L) in Λ°(L) is three. We shall use these observations to construct
the Arnol'd-Maslov cycle of L, which will be central to our later anal-
ysis. For any L G A, let

A(L) = A-A°{L).

We shall show that the variety A(L) defines a cycle (in the sense of
singular homology) and that this cycle has a natural transverse ori-
entation. We noted above that in the sense of analytic varieties the
regular set of A(L) is Aι(L) and the singular set has codimension
two in Aι(L) and codimension three in Λ. Thus A(L) determines
a cycle of codimension one in Λ. Since the codimension is one, in
order to determine a transverse orientation it is enough to distinguish
those transverse vectors which are positive from those which are neg-
ative. Let M G Aι(L), and suppose M e TM{A) is transverse to
Aι(L). This means that M viewed as a quadratic form on M does
not restrict to zero on the one-dimensional subspace LnM. We de-
fine M to be positive if it restricts to a positive form on this space,
and negative if it restricts to a negative form. This oriented cycle is
the ArnoΓd-Maslov cycle μ^ defined by L. The Arnol'd-Maslov cycle
may be viewed as an element of Hι(A, Z).

We now define the Maslov index of a curve. We need a slight
generalization of the usual definition.

DEFINITION 4.2. Let y : [ α , i ] - ^ Λ b e a curve with endpoints not
on A(L). Then the Maslov index of γ relative to L is the intersection
number γ μL .

If γ: [a, b] -* Λ is a curve with γ(b) φ. A{L) and γ(a) G A(L) but
γ(t) $. A{L) for t G {a, a + ε] for some ε > 0, then the Maslov index
of γ is defined to be the intersection number of γ: [a + ε, b] —• Λ
with A{L).

(Of course, we could also consider curves which behave near t = b
in a fashion similar to that hypothesized in the second paragraph near
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t — a, but we shall not need this.) If neither γ(a) nor γ(b) lie
on A(L), then the Maslov index is an invariant of homotopies of
γ preserving y{ά) and γ(b). In the case of the second paragraph,
the Maslov index is also a homotopy invariant for homotopies of
curves satisfying the boundary conditions. That is, if γ(t, s): [a, b] x
[0, 1] —> Γ is continuous and for each s e [0, 1] we have

y{t9s)φA{L) forte(a,a + εs),

γ(a,s) = γ(a,0), γ(b, s) = γ(b, 0),

then the Maslov indices of y( , 0) and y( , 1) are equal. (The proof
of this is elementary and will be omitted.)

If γ: (a, b] —• Λ is smooth and intersects only the regular part of
A(L) and that transversely, the Maslov index is equal to the number
of positive minus the number of negative tangents of γ at points of
intersection. A more general result is the following.

PROPOSITION 4.5. Let γ: [a, b] —> Λ be a curve. Suppose that for
some τ e [a, b] we have γ(τ) G A{L) and γ is one-to-one on an
open interval containing τ. Choose Lo complementary to both γ{τ)
and L and let L\ = L. Let φ: Λ°(L0) —> LQ Θ L O be the canonical
diffeomorphism defined by the pair L o , L\. Then the contribution to
the Maslov index of' γ at τ is one-half the change in signature of φ o γ
as t passes through τ.

Proof. Let us write

as before. Suppose first that γ crosses Λ^Li) transversely at t = τ.
Then γιJ'(τ) has nullity one, but γιJ{t) has nullity zero for / near
enough to, but unequal to τ . Let ζι be a non-zero column-vector in
the kernel of γιJ(τ), so

Then by definition γ(τ) is positive or negative according to whether
γιjζiξj is. If γ is positive, then, the positive type number of γij must
increase by one as t increases from τ, and the negative type number
decrease by one as t increases to τ . Thus if γ is positive, there will
be a net change of +2 in the signature of γtJ as t increases through
τ . Similarly, if γ is negative there will be a net change of - 2 .

Now consider the case of a possibly non-transverse crossing. Let
O be an open interval around τ small enough so that for t e O
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the curve intersects A(L) only at t = τ . Note that the signature of
γιJ(t) is locally constant on O - {τ}. Now perturb γ slightly in a
closed subinterval F of O to a curve crossing only Λ1 (L) and only
transversely. At each crossing the signature will change by +2 or - 2
according to whether the tangent is positive or negative. Thus, for the
perturbed curve, the total contribution to the Maslov index will be one-
half the change in signature. However, since the signature is locally
constant on the complement of the image of A{L), this change in
signature for the perturbed curve must be the same as for the original.

5. The conjugate index. The Jacobi equation descends to Λ. We
consider the system

where / = (I\, Iι, . . . , In) is a fixed basis for V. We regard this as
a system of first-order equations for the pairs (Wj, wj) e Γ. Since at
t = to, the initial data determine a Lagrange plane, and since the sym-
plectic form is preserved by evolution, we conclude that the solution
to the system determines a curve L(t) in Λ. This curve satisfies

If the space of Wj's satisfying Wj(t) = 0 has dimension k, we say
t is conjugate to ίo of multiplicity k. Evidently, this will be the same
as dim L(t) n LQ = k, which is to say L(t) e Ak(Lo).

DEFINITION 5.1. Let ί E [ίo, fi], a n d suppose that the quadratic
form 0(Bη restricted to L(t)Γ\Lo has positive, negative and null type
numbers P, N and Z . We say there is a timelike conjugate point
of multiplicity P, a spacelike conjugate point of multiplicity JV, and
a null conjugate point of multiplicity Z at parameter value t. The
signature of the conjugate point is P - N.

The multiplicity of the conjugate point at t is P+N+Z = dimL(ί)n
LQ . If the multiplicity is unity, we say there is a simple conjugate point
at t. A simple conjugate point is said to be timelike, spacelike or null
according as P, N or Z is unity.

Two remarks are in order. First, there is another notion of signature
common in symplectic geometry, that of a triple of Lagrange planes.
No confusion should arise. Second, the multiplicity of the conjugate
point at t may be strictly less than the order of vanishing of detw?.
An example will be given later.
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Now let us work out the tangent to L(t). We write

and let f{t) be a complementary basis to e{t). (Although we shall
not need these formulae explicitly, we note that fι{t) = (uι(t), u*(t))
where uai{t) is a solution of the equation uai = QabUbi with initial
conditions determined by the requirement that /(ίo) be a comple-
mentary basis to e(to).) Then for τ near zero we may write

(Wi(t + τ), wt(t + τ)) = ait) + Lij(t + τ)fj(t)

with

τ), wj(t)) - η(Wi(t + τ),= ηyWiKi + τ), Wj{i)) - η[Wi{i -h τ), Wj\i))

the components of L(t + τ) with respect to the pair (e(t), f(t)). The
components of the tangent vector with respect to this pair are

= η(wi(t),wj(t))-η(wi(t),wj(t))
τ=0

Thus L(t) is equal to the restriction of the bilinear form -Qab θ ηab

on V θ V to L(ί). We exploit this.

PROPOSITION 5.1. (a) The curve L: [to, t\] —• Λ intersects Aι(Lo)
tranversely at t iff at this value of t there is a simple conjugate point;
the intersection is positive or negative according to whether the conju-
gate point is timelike or spacelike.

(b) If every intersection of L{t) with A(LQ) is of finite order, then
there are only finitely many conjugate points and the Maslov index of
L(t) is the sum of the signatures of the conjugate points,

(c) For an open dense set of Qab(t) 's (in the C° topology), the
conjugate points have only finite multiplicity; indeed det wa has only
simple zeros for generic Qab.

Proof, (a) We have

L(t) ΠLQ = {A\wf, wf)\Aiwf = 0}.

The bilinear form L(t) restricts to 0 θ ηab on elements of this space.
(b) Since A(LQ) is compact, any infinite sequence of values of t for

which L(t) G A(LQ) must have an accumulation point which must be
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an intersection of infinite order. Therefore under the present hypothe-
ses there can be only finitely many conjugate points.

The second part of the claim follows from our discussion of the
contributions to the Maslov index from general crossings of A(LQ) .

(c) By transversality, the zeros of a C 1 function on [to, t\] are
generically simple. Since the function detw? depends continuously
on the function Qa^ (holding fixed the initial conditions), the set of
Qa

b 's for which the zeros of det wa are simple is open. We now argue
that this set must be dense as well.

Let Qaij be given. We may perturb it by an arbitrarily small amount
to an analytic function. Then the perturbed wa and hence the per-
turbed detwj will be analytic. Then det it;? can have only finitely
many zeros on [to, t\], and those which it does have can only have
finite order. We now show that by a further arbitrarily small ana-
lytic perturbation, we can make each of the zeros (which survives the
perturbation) simple. It is enough to show that there is a perturba-
tion destroying the degeneracy of any given zero (since then a finite
sequence of such perturbations can be used to destroy all multiplic-
ities). However, if this were not true, then there would be one zero
whose degeneracy was preserved by arbitrary (sufficiently small) an-
alytic perturbations. However, by analyticity, the degeneracy of this
zero would then be preserved by arbitrary analytic perturbations. This
is clearly impossible. D

COROLLARY. At a simple null conjugate point, the curve L cannot
be transverse to Λ1 (Lo) , and det wa must vanish to order greater than
one.

Motivated by these results, we make the

DEFINITION 5.2. Assume there is no conjugate point at t = t\.
The conjugate index of the Jacobi equation, denoted /'conjugate > *s the
Maslov index of L.

For the initial conditions we are considering, we are guaranteed
there is no conjugate point in some interval (to, ô + ε], so the conju-
gate index is well-defined.

6. Spectral theory and the spectral index. We begin with a result in
the finite-dimensional case, which is of some interest in the present
situation.

PROPOSITION 6.1. Let Sab be an endomorphism on V, symmetric
with respect to η. Then there is a (complex) basis for V in which 5α^
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takes the Jordan canonical form and the metric is block-diagonal with
blocks of the same size and location as the Jordan blocks, each block of
the metric being of the form

Li

Π

{blank places are occupied by zeros).

See for example [7].
Two points are worth mentioning. First, the possible sizes of the

blocks and combinations of ± signs are restricted by the signature
of η. For example, in the case of physical interest for this paper,
spacelike geodesies in a four-dimensional Lorentzian space-time, the
only possibilities for η are

1
- 1

- 1

- 1

1

- 1 -.1

- 1

(and permutations of the blocks in these). Second, the direct sum
decomposition defined by the Jordan blocks is an orthogonal direct
sum.

We now turn to the eigenvalue problem for the Jacobi equation with
Dirichlet boundary conditions. There is some choice in the function
space to be used for the operator-theoretic analysis. The freedom
involved is not significant for us, and it will be technically simplest to
use an analog of the familiar Hilbert-space analysis. Fix an arbitrary
positive-definite form hab (independent of t), and consider the space
of K-valued functions which are in the L2 space defined by h^ on
[to, t{\. This topological vector space, which we denote by H, is
independent of the choice of hab . It is therefore a Hilbertable space,
that is, a topological vector space which is topologically isomorphic to
Hubert space, but not equipped with any preferred norm. In fact, we
equip H with the indefinite norm

= f' VabWawbdt.
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We write the inner product on H as

(u,w)= / ι ηabu
awbdt.

Then the inner product is a continuous bilinear form, and the map
w ι-> (w, •) determines a topological isomorphism H —• H*. An
element of 77 is said to be timelike, null or spacelike according to
whether its squared norm is positive, zero or negative.

To treat the eigenvalue problem

-wa + Qa

bw
b =λwa,

it will be convenient to consider the differential equation

(5)

tbf(t0) = If.

(The function wf is thus understood to depend on λ, although we do
not usually write this dependence explicitly.) Then λo is an eigenvalue
with eigenspace of dimension k iff wf(t\) has nullity k at λ = XQ.
Thus no eigenspace has dimension more than n.

We also note the following elementary facts. First, wf{t\) and
^ ( ) are analytic functions of λ; hence they have zeros of fi-

nite multiplicities only, and so eigenvalues can accumulate only to
infinity. Second, because Qa

b is bounded as a linear operator on the
Hilbertable space, the real parts of the eigenvalues are bounded below
by π2/(t\ - ίo)2 - \\Q\\ (here | |Q|| is the operator norm with respect
to any Hilbert structure) and the imaginary parts of the eigenvalues
are bounded in magnitude by | |Q| | . (It is quite possible that there are
complex eigenvalues.) Third, the dimension of an eigenspace may be
srtictly less than the order of the zero of dettu?(ίi) as a function of
A.

There is a spectral theorem for this situation.

THEOREM 6.1. Let J be the operator -d2/dt2 + Q on D = {w e
H\ w is C2 and w(to) = w{t\) = 0}. Then the eigenvalues of J
are isolated, have their imaginary parts bounded and their real parts
bounded below. There is an associated resolution of the identity

1= Y Eλ
eigenvalues
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where each Eλ is projection onto a finite-dimensional subspace Hλ of
H (or its complexification if λ is complex). Ifλφμ then Hλ and
Hμ are orthogonal.

Let Hj = {w G H\w lies in a direct sum of finitely many Hλ

 fs}. If
w eHj we have

Jυ = — * r dλ v
[2πι J λ- J J

for a contour enclosing sufficiently many eigenvalues, each once in the
positive sense. In particular, on Hj the operator J is equal to Σλ Jλ

where
Jλ = lim -U / τ ^ — dξ.

β i o 2 π ι J \ ζ - λ \ = ε ξ - J

Proof. That / possesses a resolution of the identity is standard
[5]. To see that each projector has finite-dimensional range, imagine
writing down the resolvent kernel from solutions of the homogeneous
problem by variation of parameters in the usual way. The only ob-
struction to doing so (which signals the presence of an eigenvalue) is
the need to solve some algebraic "matching equations." The terms in
these equations depend analytically on λ, and so the resolvent can
have at most a pole of finite order at any value of λ.

Now suppose w e Hλ and υ G Hμ. Then there are positive integers
n, m so that (/ - λ)nw = 0 and (/ - μ)mυ = 0. For any N > n we
have

0 = ( ( / - λ)Nv 9w) = (υ9(J- λ)Nw)

= {v, (J - μ + μ- λ)Nw)

k=0

It is now an exercise to show that this implies (v , (/ — μ)kw) = 0 for
k = 0, 1, . . . , n - 1.

The remaining claims follow from standard analysis [5]. D

The operator / extends naturally to the Sobolev space of F-valued
functions vanishing at to and t\ and whose second derivatives are
Aαfc-square-integrable on [ί0, h\\ for w in this space the sum Σλ Jλw
is unconditionally convergent. In particular, we may study the space of
w 's which are C° and piecewise C 2 , which is common in the classical
treatment of the Morse Index Theorem. (If one is willing to extend
the range of / beyond L2, one can extend / to the Sobolev space
of F-valued functions vanishing at to and t\ whose first derivatives
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are /z^-square-integrable.) We remark that it is quite possible that /
has a quasi-nilpotent part, so that some of the Jχ — λ9s are nilpotent.
The structure of Jχ is determined by applying the proposition above.

We are now in a position to define the spectral index for the Jacobi
problem.

DEFINITION 6.1. Let λ be an eigenvalue of the Jacobi equation, and
Hλ the corresponding subspace in H. We call the positive, null and
negative type numbers of ( , •) restricted to Hλ the timelike, null and
spacelike multiplicities of λ.

The spectral index /Spectrai of the Jacobi problem is the number of
timelike negative eigenvalues, counted with multiplicity, minus the
number of spacelike negative eigenvalues, counted with multiplicity.

PROPOSITION 6.2. For each real λ, let L(t, λ) be the curve in Λ
corresponding to the differential equation (5). Assume that there is
no conjugate point at t = t\ (for λ = 0). Then Spectral is equal to
the Maslov index of the curve L(t\, •) as λ varies from a sufficiently
negative λ- to zero.

Proof. The argument is similar to that of the previous section. We
must compute the intersection number of the curve L(t\, λ) with
A(LQ) . In the following calculation the index / is not summed over.

= ί \wfdλwai - wf(Qabdλwf - λdλwai - wai)] dt

= f\dλwai{wf - Qa

bwf + λwf) + waiwf]dt

= Ml2.
By polarization, then, the quadratic form dλL(t\, λ) is simply

7. The Index Theorem. We can now prove the extension of the
Morse Index Theorem.

THEOREM 7.1. The conjugate and spectral indices for the Jacobi
problem are equal Also there exists an orthogonal direct sum decom-
position H = T®S into timelike and spacelike subspaces for which the
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restriction of the second variation to T has finite negative type num-
ber, and the restriction to S has finite positive type number, and the
difference in these two type numbers is again equal to the index.

Proof. For each real λ, let L(t, λ) be the curve in Λ defined by
the Jacobi equation. For λ negative enough we are guaranteed no
conjugate points in (ίo, t{\. Suppose λ- a real number such that there
are no conjugate points in (ί 0 , t\] for λ < λ-. Also choose ε > 0
small enough so that there is no conjugate point for t e (ί 0 , to + ε]
for any λ e [λ- , 0]. Then we have a simplex

given by

(t,

Two of the boundary curves,

and L(t{, .): [λ- , 0] - Λ,

have intersection numbers with A(L0) we want to compare. The
remaining two boundary curves,

have zero intersection number with A(LQ) , by construction. D

The final statement here is an attempt to link the indices given so
far with the variational problem. The development of this theory will
be given elsewhere.

One of the results of the classical Sturm-Liouville theory is that
zeros of the solutions alternate with zeros of their derivatives. Here
is an analog.

THEOREM 7.2. Let wj bean n-dimensional family of Jacobi fields
on [to ,t\]y and suppose that at neither end-point is the associated La-
grange plane conjugate to either Lo = 0 Θ V or L\ = V θ 0. Let L(t)
be the curve ofLagrange places associated to the Jacobi fields. Then

\L μLo-L-μLι\ < n.

Proof. First note that as M e Λ varies continuously, so does the
cycle A(M). Since Λ is connected, then, any two Arnol'd-Maslov
cycles are homologous.
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Let γ be a path in Λ from L{t\) to L(ίo). (We shall specify γ
more precisely soon.) Then L + γ is a 1-cycle. By our observation of
the previous paragraph, (L + γ) (μ ,̂ - μ^) = 0. Thus

We show that we can choose γ so that the right-hand side has absolute
value no larger than n.

By hypothesis, the end-points of γ lie in (A-A(L0))n(A-A(Li)) =
Λ°(Lo)nΛ°(L1). In a canonical chart the image of Λ°(L0) is the space
of symmetric n x n matrices and the image of Λ°(L0) nA°(Lι) is
the space of non-singular n x n symmetric matrices. Any two such
non-singular matrices can be joined by a path over which half the net
change in signature is no more than ±n .

8. Effects of certain perturbations. We consider here the motion of
the conjugate points when the Jacobi equation is perturbed in certain
ways. It is possible to strengthen these results somewhat, but because
of the possible degeneracies the formulations grow a bit involved, and
we give only the simplest, cleanest, results.

Some elementary observations first: If there is no conjugate point at
t = t\, then under small enough perturbations of Qat, the conjugate
index is stable. Also, for small enough perturbations, at an isolated
conjugate point, the order of contact of L(t) with A(L0) cannot in-
crease if it is finite. (This from general transversality theory.)

Here is a comparison result.

THEOREM 8.1. Let Qab be perturbed by the addition of a function
which is positive-definite for all t. Then the isolated timelίke conjugate
points move left and the isolated spacelike conjugate points move right

Proof, We consider the Jacobi equation

wa = (Qa

b + sha

b)wb

where hab(t) is positive-definite with the same initial conditions as
before. Then dswj satisfies

dswf = Qa

bdsw) + ha

bw),

dsw«\t=ίQ = o,

dsw«\t=to = o.
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Let L(t9 s) be the corresponding curve in Λ. Then

dsLij = η(dsWi, wj) - η(dsWi, wj)

= " f'habWfwϊdt

so dsL is a negative-definite quadratic form. Now consider the change
in L at an isolated conjugate point as s is increased from zero. Say
we choose L\ complementary to LQ and the image of the conjugate
point in Λ as usual, and identify as usual A(L) as the space of de-
generate elements in LQ@LQ. Indeed, choose a specific basis for L o ,
and compute the eigenvalues of the matrix L/7. As, for s = 0, the
parameter t passes through the conjugate value, some of these eigen-
values will change sign. However, for positive values of s, the sign
changes from negative to positive will occur sooner, and those from
positive to negative will occur later. D

Similarly, if Qab is perturbed by the addition of a negative-definite
form, then isolated timelike conjugated points move right and isolated
spacelike conjugate points move right.

It is also of interest to know how the conjugate points vary with the
initial point.

THEOREM 8.2. Suppose there is a simple conjugate point at t = τ .
Then as to moves to the right, this point moves to the right or the left
according to whether wa(to)wa(to) and wa(τ)wa{τ) have the same
or opposite signs, where wa is the nontrivial Jacobi field vanishing at
t = τ . (If wa(to)wa(to) = 0, the conjugate point is stationary to first
order.)

Proof. Suppose for the moment that Q is of class C 1 . It is tech-
nically easier to move Q to the left: let Qab(t, s) = Qab{t + s) for s
positive. Let L(t,s) be the corresponding curve in Λ. If the conju-
gate point occurs at / = τ(s), then we wish to find whether s + τ(s)
moves to the right or the left as s increases, that is, to find the sign
of 1 + dsτ. Since we have L(τ{s), s) e A1(LQ) , we find

dtL -dsL = (\+ dsτ)dtL + terms tangent to Aι(L0).

Thus we may find the sign of

W'idtLij-dsLij)

relative to λijdtLij, where λij are the components of the covector
normal to A1(LQ).
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We have already computed

as a bilinear form on LQ , and λ at the conjugate point is evaluation
of this form on

Γ° 1
[ wa(τ)wb(τ)\

where w is as specified in the hypothesis. Thus

WdtLij = ηabw
a(τ)wb(τ).

From the calculation of the previous theorem, we find

dsLij = - f Qabwfwbj dt.

Thus

dtLij - dsLij = -QabWfwj + Wfwaj + ί Qabwfw>? dt

= Wfwaj - I Qatiwfw1? + wfwbj) dt

= Wfibaj - I (WjWaj + wfίi)aj) dt

ft d

= Wfwaj - I -j-t{wfwaj) = Wf(tθ)ϋ)aj(tθ).

Thus λ"(dtLij - dsLij) = wa(to)wa(to).
Finally, if Q is only assumed to be C°, this computation is still

valid if Qab is interpreted distributionally. D

If to moves to the left, of course, the behavior of the conjugate
points is the opposite.

9. Focal points to hypersurfaces. Our techniques can be used to treat
the Jacobi equation with other initial conditions. We discuss here the
case of most geometric interest, focal points to a hypersurface along
an orthogonal geodesic. (These are also sometimes called conjugate
points to the hypersurface.) The Jacobi equation is
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with Ia as before. Thus the curve L(t) has as its origin

however, we are still interested in Lagrange planes conjugate to LQ =
0®V; these occur when there are focal points of hypersurface along
the geodesic. In this case the focal index (defined in the same way
as the conjugate index) is equal to the spectral index for the mixed
boundary problem

-wa + Qa

bw
b = λwa,

wa(tx) = 0.

We find again that the addition of a positive-definite perturbation
to Qab causes timelike conjugate points to move left and spacelike
conjugate points to move right. The calculation is the same as previ-
ously; it is only necessary to check that no new boundary terms are
introduced. On the other hand, the behavior of conjugate points as to
is moved is different.

THEOREM 9.1. Suppose there is a simple focal point at t = τ . Then
as to moves to the right, this point moves to the right or the left ac-
cording to whether -Qab(to)wCl(to)wb (to) and wa(τ)wa(τ) have the
same or opposite signs. (Here w is the non-trivial Jacobi field with
focal point at t = τ.)

Proof. This is the same as before, but with the present boundary
conditions we find

dtLij - dsLυ = -Qab(tθ)wf(to)w^(to).

10. The Morse-Sturm problem. In this section we indicate the
changes necessary to treat the Morse-Sturm equation

on the interval [to, t\], where rab is a smooth non-degenerate sym-
metric form.

The phase space is here Γ = V Θ F * , with the data for the Morse-
Sturm equation at time t defining a point (wa(t), rab{t)wb(t)) in Γ.
The preserved symplectic form is

ω((va, rabw
b), (wa, rabw

b)) = varabw
b - warabw

b.
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The signature of a conjugate point at parameter value t = τ must
now be defined as the signature of the form 0 Θ rab(τ) restricted to
L{τ) Π LQ .

The norm on the Hilbertable space must now be defined as

iawb dt

with the inner product determined by polarization. The spectral the-
ory is the same except for the obvious change in the domain of the
operator and the equality of the conjugate and spectral indices is es-
tablished as before. So too for the motion of conjugate points under
perturbations. Additionally, we have the following.

THEOREM 10.1. Let rab be perturbed by the addition of a positive-
definite function {but remain non-degenerate). Then isolated timelike
conjugate points move left and isolated spacelike conjugate points move
right.

Proof. The argument is analogous to that for the perturbation of
Qab . If we replace rab by rab + spab, then we find

11. Examples. The examples we give are all in the case n = 2 with
ηab Lorentzian. We shall begin with the case where Qab is constant.

A null basis is one in which the metric takes the form

1
1

From the general classification of symmetric forms, we conclude that
one of the following holds:

(a) There is a null basis in which Qab has the form

0 λ'
λ K

(b) There is an orthonormal basis in which Qab has the form

μ v
v μ

(c) There is an orthonormal basis in which the matrix is diagonal.
In alternative (a), the eigenvalue λ occurs with multiplicity two; in
(b), there are complex eigenvalues μ ± iv .
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Now let us consider the system

wa = Qa

bw
b

for Qa

b a constant matrix. Then the solutions satisfying the initial
conditions w(Ό) = 0, w(0) = / (where / is the identity) are: for
case (a)

Γ 4= Sin y/λt £τtCOS y/λt
I VΛ Z Λ

0

for case (c),

w = —• sin y/λt

w =
-4=sin

0

0

and for case (b), a formula like that for case (c) in a complex orthonor-
mal basis, with λ\ and λι given by λ and λ.

There will be points conjugate to t = 0 if and only if at least one
eigenvalue is real and positive. This is not a stable condition. By an
arbitrarily small perturbation of case (a) (or of case (c) with λ\ = λι),
we can arrive at case (b), that of complex eigenvalues. Notice however
that under such a perturbation the conjugate points annihilate in pairs.

We now show that conjugate points may accumulate. Indeed, we
give an example in which every t > 1 is conjugate to t = 0.

In order to construct this, it will be helpful to work backwards from
the equation

w = Qw.

We shall give w, and then verify that Q defined by Q = ww~ι

where w is nonsingular and by a limit of this elsewhere is smooth
and symmetric. Let us put

w = a p
γ δ

in a null basis. Then the form

Qab = wf{w~'ί)i

rη
rb

Γά βUδ -βUO Π
[γ δ \ [ - γ a \ [ l θ\

must be symmetric. This implies

aδ - βγ = -βγ + aδ,

that is,

-1
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At t = 0, both quantities in parentheses are zero, so

άδ - aδ — βγ - βγ

which we regard as a differential equation for δ in terms of given
functions a, β, γ. (These are not quite arbitrarily specifiable, since
Q is required to be smooth.) With our initial conditions, the solution
to this equation is

δ =

Now choose a, β and γ as follows:
(a) On [0, 1/4], let a = t\ on [1/2, oo), let a = 1, and on

(1/4, 1/2) interpolate smoothly and monotonically.
(b) On [0, 1/2], let β = 0; on [3/4, oo), let β = * - 1, and on

(1/2, 3/4) interpolate smoothly by a negative function.
(c) On [0, 3/4] and on [1, oo), let γ = 0; on (3/4, 1) let γ have

a positive smooth bump of area 1/2.
Then from the formula above we verify that δ has the following

properties:
(a) δ = a on [0, 3/4]. In particular, δ = t on [0, 1/4] and

*(3/4) = 1.
(b) We have

δ(l)= I (βγ-γβ)dt+l
</3/4

-1

'3/4

= βγ\\/4-2ί γβdt+l = -2(l/2)+l=0

and δ = 0 on [1, oo).
Once we have shown that there is Q satisfying w = Qw , we will

have produced w with

1 t- 1
0 0

for all t > 1, which will be the desired example.
Now note that the signs of a, β,γ9δ are such that aδ - βγ >

0 on (0, 1), so on the open interval Q will exist. Also, since the
second derivative of w vanishes on (0, 1/4], we know that Q is
identically zero on there, and so Q may be extended smoothly to zero
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on (-oo,0] . On [3/4, 1), we have

"aβ-βά άδ - βγ
aδ - β'γ γδ - γδ

0

b _Qab = (aδ - βy)-1

γδ - γδ
(aδ - βy)-1

0
(aδ - βγ)-1

(aδ-βγyι

-i _ ΓO

yδ-γft(βγ-γβ).
0

γS-γ(βγ-γβ)

0 1 , s o w l ΓO 0"
... o.. \(aδ - βγ) ι = π ..

which clearly extends smoothly [1, oo).

12. Final comments. The theory developed in this paper keeps track
of the net number of timelike minus spacelike conjugate points. It is
evident from the examples presented in the last section that only this
difference is stable, and so any attempt to identify the numbers of
timelike, spacelike and null conjugate points separately would require
a reckoning sensitive to fine analytic details of Qa

b. It is not im-
possible that such a theory exists. If we take Qa

b to be analytic,
then when conjugate points appear to annihilate they really move into
the complex. Is it possible to develop an index theorem that, say,
relates the number of timelike conjugate points to spectral data and
information about the complex conjugate points? If so, what is the
difference between taking Qa

b to be C°° versus analytic? (Related to
this latter, what is the inverse scattering theory for pseudo-self-adjoint
operators?)

In the positive-definite Morse index theory, a remarkable corollary
of the main theorem is that the number of points conjugate to to on
[to, t\] is the same as the number of points conjugate to t\ on the
same interval. (This can be easily pictured by a direct homotopy ar-
gument in the Lagrange Grassmannian, too.) In the present situation,
however, we know that the conjugate index from to to t\ is the same
as that from t\ to to, but we do not know whether the individual
counts of timelike, spacelike and null conjugate points are the same
from either endpoint. It seems unlikely, but so far a concrete example
has eluded us.

We have not in our treatment needed to derive an explicit differen-
tial equation for the curve L(t). This can be done in a straightforward
way; the result, if expressed in a canonical chart, is a matrix Riccati
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equation. As is well-known, scalar Riccati equations have only simple
poles as singularities [8], and this remains true for the matrix Riccati
equations derived when η is definite. However, when η is indefinite,
more exotic singularities can occur, and examples of these are readily
derived from the examples in the previous section. In the simplest
case the Riccati equation is

L* a r a r e I f\a

b = ~Ll cL & + (J b

where La

b = wcj(w~ιYb. The singularities of Lab are easily analyzed
from the explicit formulae for wa .

In the positive-definite case, we can see from the Riccati equation
and the fact that all its singularities are isolated that it is possible to
recover the function Qab from the curve L in Λ. This is no longer
true in the indefinite case. In fact, in the example constructed in the
last section, we may clearly add to Qab any function of the form
f(f)lalb 9 where la is the vector whose components are

0

and / is a smooth function which vanishes for t e [0, 1]. On the
other hand, in "generic" situations, the function Qab is determined
uniquely by the Riccati equation.
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