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ONE-PARAMETER FIXED POINT INDICES

DoNCo DIMOVSKI

Let F: X x I — X be a PL homotopy, where X is a compact
connected PL. n-dimensional manifold, in the euclidean space R",
n>4,andlet P: X x I — X be the projection. A fixed point of F
is a point (x, ?) € X x I such that F(x, t) = x . The set of all the
fixed points of F is denoted by Fix(F). For a family V' of isolated
circles of fixed points of F we define two indices: ind;(F, V)—
which is an element in the first homology group H;(E), where E is
the space of paths in X x I x X from the graph of F to the graph
of P; and ind;(F, V)—which is an element in the group Z, with
two elements. We prove that there is a compact neighborhood N of
V' and a hometopy from F to H rel X x I\N such that Fix(H) =
Fix(F)\V if and only if ind,(V, F) =0 and ind,(V, F) = 0. The
indices ind,(V, f) and indy(V, F) are defined via the degrees,
deg,(g) and deg,(g), for maps g: S' x S™ — S™. Moreover, we
show how to modify F to create circles of fixed points with prescribed
indices.

Introduction. In this paper we define two indices for fixed points of
homotopies between two selfmaps of a manifold, and then show that
these indices provide us with sufficient and necessary conditions for
removing some or all of the fixed point set, in a controlled manner. Let
F: X xI — X be a PL homotopy, where X is a compact connected
PL n-dimensional manifold, contained in the euclidean space R”,
let n >4,and let P: X x I — X be the projection. A fixed point
of F is a point (x,?¢) € X x I such that F(x,t) = x. The set
of all the fixed points of F is denoted by Fix(F). In this setting,
isolated circles of fixed points are the generic form of fixed points, as
isolated individual fixed points are in the classical setting. The two
indices, ind;(F, V) and ind,(F, V'), are defined for a family V' of
finitely many isolated circles of fixed points of F. The first index,
ind,(F, V), is an element in the first homology group H;(E), where
E is the space of paths in X xI x X from the graph of F to the graph
of P, and is a slight generalization of the first obstruction discussed
in [DG]. It is mentioned in [DG] that a solution to the one parameter
fixed point problem in the transverse case can be found in [HQ], via
an obstruction lying in the 1-dimensional framed bordism group of
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the function space E . This obstruction for a family of finitely many
isolated transverse circles of fixed points ¥ is zero if and only if
ind(F, V) =0 andind,(F, V) = 0. The second index, ind,(F, V),
is an element of the group with two elements Z,, and corresponds to
the second obstruction given in [DG], but the second obstruction in
[DG] can be defined only if we know that the first obstruction is zero,
while ind,(F, V) is defined independently of ind;(F, V). The main
improvement of the results from [DG] is the following Theorem 4.3.

THEOREM 4.3. There is a compact neighborhood N of V and a
homotopy from F to H rel X x I\N such that Fix(H) = Fix(F)\V if
and only if ind(V, F) =0 and indy(V, F) =0.

Other results in this paper are: joining circles of fixed points; homo-
toping F to H, such that each fixed point class of H is a transverse
circle of fixed points; and creating circles of fixed points, with pre-
scribed indices.

The indices ind; (¥, F) and ind,(V, F) are defined via the de-
grees deg,(g) and deg,(g) for maps g: S! x S — S™.

The paper is organized as follows.

In part I the notions of degrees, deg;(g) and deg,(g) for maps
g: S1xS™xS™  are introduced, where deg,(g) is an element from the
group of integers Z, and deg,(g) is an element from Z,. One of the
results about these degrees is the fact that two maps g, g’: S1 xS™ —
S™ are homotopic if and only if deg;(g) = deg;(g’) and deg,(g) =
degy(g') -

In part II three standard models, i.e. standard regular neighborhoods
of a disk, an annulus and a disk with two holes in R™*! are defined,
and several facts about the extensions of maps from subsets of these
standard models into $™ to the entire model are proven.

In part III the notions of i;(F, C) and i,(F, C) are introduced,
where C is an isolated circle of fixed points, as deg; and deg, of the
restriction of P— F to the boundary of the neighborhood of the circle
C, where P: X x I — X is the projection, and P — F is considered
as a map into R”. Later, it is shown how to remove and create circles
of fixed points, using the standard models from part II.

Part IV contains the main results. First, Theorem 4.3 is proven,
and then it is shown how to homotope the map to a new map, each
fixed point class of which consists of a single circle.

We are concerned in this paper only with the fixed points of ho-
motopies between selfmaps of X, where X is an n-manifold in R”.
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The general case of coincidences between two maps F,G: M — N,
where M is an (m + 1)-dimensional and N is an m-dimensional
manifold, using the same techniques as in this paper will be discussed
in a subsequent paper. For this we need a geometric description of
spin manifolds, which is going to appear in a joint paper with Ross
Geoghegan. The general case has also been considered in a paper by
Jerzy Jezierski [J].

At the end of this introduction, I would like to make known my
gratitude to Helga Schirmer and to thank her not only for the valu-
able discussions that we had, but also for her hospitality and financial
support during my visit to University of Carleton, where the work in
this paper began and most of it was done. Also, I would like to thank
Ross Geoghegan for the numerous helpful conversations on this sub-
ject.

I. Degrees 1 and 2. For a positive integer m we denote by x
the element (x;,Xx2,...,Xn) of R™ and by |x| the length
\/xlz+x§+---+x,2,, of x. If x=(x1,%3,...,%m) €ER™ and y =
15 -.-5>yn) € R", then (x,y) will denote the element (x;, ..., X»,
Vis-ers¥Yn) € R If x = (X1, X2, ...,Xm) € R” and r € R,
then rx = (rxy,...,rx,). Let D™ = {x|x € R™, |x| < 1} and
S™ = {x|x € R™*! |x| = 1}. We choose once and for all an orienta-
tion of R™, for all m, called the standard orientation, such that the
standard orientation on R”*! = R” xR is the product of the standard
orientations on R” and R. We assume that D™, and I = [0, 1] are
oriented by the induced orientations from R™ and R. Let S have
the induced orientation from R™*! and let S! x $” and S! x D™
have the product orientations.

DEFINITION 1.1. Let f: S! xS™ — S™ be a given map. We define
deg,(f) = deg(p), where ¢: S™ — S™ is defined by ¢(x) = f(P, Xx)
for a point P € S!, and deg is the usual degree of a map from S™ to
sm.

Fact 1.1. deg;(f) is well defined.

Proof. Let ¢(x) = f(P,x) and y(x) = f(Q, x) for two points
P,Q e S'. Let g:[0,1] — [P, Q] be a homeomorphism from
the interval I = [0, 1] to one of the arcs from P to Q in S!.
Then H(x, t) = f(g(?), x) defines a homotopy from ¢ to y. Hence

deg(p) = deg(y) . 0
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E(Sn—1)=E(B)

—_

FiGURE 1.1

For a given m, we define a map E: D" — S™ by:

(1.1) E(x) = (ax, gy/1 - (a|x|)2)

where: =2, ¢ = -1 for Oglxlsé,and a=2-1~"xll’ﬂ, e=1 for
4 < |x| < 1. The map is well defined because |ox|?+ (1 —(alx|)?) =1.
A schematic picture of the map FE is given in Figure 1.1, for m = 2.

Let .#(m) be the point (0,0,...,0,1) € §™, i.e. the “north
pole”. It is easy to check that E(0D™) = .#"(m) and the restriction
E| is a homeomorphism from int D™ to S™\{/# (m)}.

Let X be the factor space obtained from S! x §™ U D? by the
identification of (x, /" (m)) € S x S™ with x € S! = 9D?. For each
t € (0, 1] we will define a map K;: S™+! — x as follows. Consider
S™+1 as a subset of D2 x D™ and for (z,y) € S™*!, with z € D?
and y € D™, we define

2zeD? ifo<lz <%,
(4 B2 ) esixsm itg<pst

These maps are well defined because for ¢ € (0, 1] and |z| = 5, we

have 2z = £ € 9D? and |y| = 1 - (§)%, ie. 2z = (32,4 (m)) =
2 .

(T%[ , E(ﬁ -y)). We denote K; by K. A schematic picture for the

(1.2) Ki(z,y) ={

space X and the map K, when m = 1, is given in Figure 1.2.

DEFINITION 1.2. Let f: S! x §™ — S™ be a given map. We de-
fine deg,(f) to be the element [f o K] from 7,,,,(S™) = Z, where
f: X — 8™ is defined by f on S! x S™ and by an extension on D?
of f restricted to 6D2.

Fact 1.2. For m > 3, deg,(f) is well defined.
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c

= x

c’
FIGURE 1.2

C)=K(C’)

Proof. The only choice in the definition of deg,(f) is the choice of
the extension on D? of the restriction of f to dD?. Let f;: X — S™
be defined by f on S! x §”*! and by o; on D?, for two such
different extensions on D?,a; and a;. The maps a; and a, define
amap g:S% — S™. For m > 3, since m,(S™) = 0, this map has
an extension A: D3 — S™ . This extension % gives a homotopy from
fioK to oK. So, deg,(f) is well defined. O

PROPOSITION 1.3. Let f, g: S! x S™ — S™ be homotopic maps.
Then, for m > 3, deg;(f) = deg,;(g), and deg,(f) = deg,(g)-

Proof. Suppose that H: S! x $™ x I — S™ is the given homotopy.
Then, the restriction of H to {P} x S™ x I gives a homotopy for the
restrictions of f and g to {P} x ™, which shows that deg,(f) =
deg,(g) . _

Next, let /' (m), X, K, f, and g be as defined above. Now,
we can extend the homotopy H to a homotopy H: X x I — S™, by
an extension of the restriction of H to (S! x {/#/'(m)} x I) U (D? x
{0})U(D? x {1}). Such an extension exists, because (S! x {#(m)} x
I) U (D? x {0}) U (D? x {1}) is in fact an S?, and we have a map
from S2 to S™, and for m > 3, all such maps have an extension. In
this way we have obtained a homotopy H from f to g. Then the
composition Ho (K xid): S™t! x I — X x I — S™ gives a homotopy
for the compositions fo K and Zo K. Now, since [fo K] =0 is
equivalent to the fact that fo K has an extension over D™+2 which
is equivalent by the above homotopy H o (K x I) to the fact that
T o K has an extension over D™t2 which is equivalent to the fact
that [goK] =0, we have that [foK] = [g0K] in 7,,.1(S™). Hence,
deg,(f) = deg,(8). o

REMARK 1.4. For f:S! xS™ — S™ and m > 3, since the re-

striction of f to S! x {#(m)} is homotopic to a constant map, it
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follows that f is homotopic to a map g:S! x $™ x S™, such that
g(S' x {#'(m)}) = Q, for some Q € S™. Then in the definition
of deg,(g) we can choose the constant homotopy on D?, i.e. we
can define g(D?) = Q. This says that go K(z,y) = Q for every
(z,y) € S™*! with ze D2, ye D™, and |2/ < 1.

Next, let f: S! x §™ — S™, be such that f(S! x {#(m)}) = Q,
for some point Q € S™. We define a map F(f): S"*! — S§™  as
follows. For (z,y) € S™*! with ze D?, ye D™ let:

L,E f 0’
(1.3) F(f)(z,y)={£(|z| (¥) fzzzio‘

This map is well defined, because f(S!x {#(m)}) = Q, and E(6D™)
=/ (m). The map F(f)may be described as a union of two maps:
Fy: S™1\({0} x D™) —» S™ and F,: {0} x D™ — S™ , where S™*! is
considered as a subset of D? x D™ and 0 is in D?. The map F; is
the composition fo(1x E)oh, where h: S™+1\ ({0} x D) — S x D™
is defined by: A(z,y) = (é, y),and F,({0} x D™)=Q:

PROPOSITION 1.5. Let f:S! x S™ — 8™, and F(f): S™t1 — §™
be as above. Then, for m >3, deg,(f) =[F(f)] € Tyys1(S™).

Proof. By the above Remark 1.4, in the definition of deg,(f) we
can choose the map f such that f(D?) = Q. It can be checked that

lim,_,o f o Ky(z,y) = F(f)(z,y). So,
f <
H(z,y,t):{fOKt(z’Y) for0<t<1,
F(f)(z,y) fort=0
is well defined homotopy from F(f) to fo K. Hence, deg, f =
[F()]. O
Let p: S' x S™ — S™ be the projection, p(z,y) =y.

PROPOSITION 1.6. Let ¢: S™ — S™ be a given map, and let g: S x
S™ — S™ be defined byg = 9 op. Then, deg,(g) =0.

Proof. The map EF(g): D™t2 — S™ defined by EF(g)(z,y) =
@(E(y)) for z € D?, y € D™ is well defined and is an extension
of the map F(g), which shows that [F(g)] = 0 in =, (S™), i.e.
deg,(g) =0. ' O

PROPOSITION 1.7. Let f: S'xS™—S™ be such that f(S'x{/V (m)}
= Q for some Q € S™, and let m > 3. Let g: S' x S™ — S§™
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be the map defined by g(z,y) = f(P,y) for ze€ S', y € S™, where
P is a point of S'. Then, deg,(f) =0 ifand only if f is homotopic
to the map g.

Proof. Let f be homotopic to g. Then deg,(f) = deg,(g) by
Proposition 1.3, and deg,(f) = 0 by Proposition 1.6.

Conversely, let deg,(f) = 0. Then the map F(f) has an extension
E(f): D™2? — §™_ We define a map g:S! x " — S™ as fol-
lows. For (z, y) € S! xS™, we define g(z, y) = E(f)(0, E~(y)), for
y # #(m) and g(z, /' (m)) = Q, where E: D™ — S™ is the map
defined by (1.1). This map is well defined, because E is a homeomor-
phism from intD™ to S™\{/#'(m)}, maps D™ onto .#(m), and
f(S! x {#'(m)}) = Q. Moreover, g(z,y) = f(P,y) for ze S! and
y € 8™, where P is a point of S!. Proposition 1.6 implies that
deg,(g) =0.

Next, we will show that f is homotopic to g. First we define a
map G: S! x D™ x I — D™+2 asfollows. For ze S!, ye D™, rel,

(1.4) Gz,y,r)=(4z,y)

where

r2—144/(r2 =12 -42y|? + 4r2

2r ’
for r #0,and A =0 for r = 0. This map is well defined because the
limit of A when r goes to 0 is 0. The map G is shown schematically
in Figure 1.3 (next page). For y € -1 = 9D™, i.e. when |y| =1,

we have
1= r2—1+4+/(r2—1)2 —0
- 2r -

and so, G(z,y,r)=(0,y) for |y|=1.
Now we define a map H: S! x S™ x I — S™ by:

(1.5) H(z,y,r) = E(f)(G(z, E"\(y), n).

This map is well defined, because E(f)(G(z,u,r)) = E(f)(0,u) =
F(f)(0, u), for each u € E~!(#(m)), i.e. for each u € D™ with
|[ul = 1. The map H is continuous because E is homeomorphism
on intD™, and when y € S™ is close to .#(m) then: E~l(y) is
close to D™, i.e. |[E~!(y)| is close to 1; A is close to 0; |Az| is close
to 0; G(z, E-\(y),r) = (Jz, E"!(y)) is close to dD™+? = §m+l;
E(f)(4z, E”\(y)) is close to F(f)(4z,E~'(y)); and F(f)(Az, E~\(y))
is close to Q.

A=
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I
/3) G(A)
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! T T T=(z,u,0) r
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V : _____ | \‘ Y
|; _*_"g
0—-—81 r ,«/_‘_‘ =
FIGURE 1.3
Next,

H(z,y,0) = E(f)(G(z, E"\(y), 0)) = E(/)(0, E"\(y)) = g(z, V),

and
H(,y, 1) = E(f)(G@, E-\(), 1))
=50 (V= 1B 0P -2, B )
~F(n (VU - B R -2 E)
= f (2, BET'()) = /(2 ).

Hence, f is homotopic to g. O

PROPOSITION 1.8. Let m > 3 and, for f, g: S! x §™ — S™, let
deg,(f) = deg,(g) and deg,(f) = deg,(g) =0. Then f is homotopic
to g.

Proof. By Proposition 1.7, f and g are homotopic to maps f’
and g’, such that f'(z, x) = f'(P, x) = f"(x), g'(z,x)=g'(P,x) =
g"(x), deg(f') = deg,(f) = deg(f"), and deg,(g’) = deg;(g) =
deg(g”) for every z € S! and x € 8™, where f”, g": S™ — S™.
Now, by Hopf’s theorem, f” is homotopicto g”. If H: S"xI — S™
is a homotopy between f” and g”, then H': S! x S" x I — S™
defined by H'(z, x,t) = H(x,t),for ze S, xe S™, tel,isa
homotopy between f’ and g’. So, f is homotopic to g. O
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For the next propositions we need the following maps. Let ¢, , ¢,
p: S x 8™ — S x §™ be defined as follows. For u = (x, y) € S,
v=(z,r)€S™, where x,y,r € D! and z€ D™, we define:

W 1),v) ify>0,
(1.6) ‘Pl(x’y’v):{(E(x),v) if y <0,
(w, /" (m)) ifr>0
(w, E@) ifr<0.

Let ¢ = 9,00, . Itis easy to check that ¢ = p,0¢;, and that ¢,, ¢;,
and ¢ are homotopic to the identity map id: S! x §™ — S1 x §™.
Next, let 4 = o~ {(# (1), #(m)). Then 4 = B x C, where B =
{(x,y)eSlly>0}CcS!,and C = {(z, r) € S™|r > 0} .We see that
B is homeomorphic to D! and C is homeomorphic to D™. So A
is homeomorphic to D™+*1;let §: A — D™*! be a homeomorphism.
Let p: (D™+!, 9D™+1) — (S™, #'(m)) represent a nonzero element
of 7,,+1(S™). Foragiven f: S!xS§™ — 8™, let ¥(f): S'xS™ — §™
be defined by:

(18)  ¥()x) = {

(1.7) q)z(u,z,r):{

fop(x) forxe(S!xS™A)uaod,
pof(x) forx e A.

PrOPOSITION 1.9. Let ¢, A, f, Y(f) be as above, and let m > 3.
Then, f is homotopic to fo ¢, deg;(f) = deg,(fo¢)=deg,(¥(f)),
and deg,(f) = deg,(f o ¢) = deg,(W(f)) + 1, where the addition is in
m+1(S™) =Z;.

Proof. Since ¢ is homotopic to the identity, and W(f) coincides
with f o ¢ on half of S! x S™, it follows that: f is homotopic to
fog; they have the same deg; and deg, ; and deg,(f) = deg;(‘¥(f)).
Now, by Proposition 1.5, we have that deg,(f o @) =[F(fog)]. The
inverse image F(f o ¢)~1(#"(m)) contains the set

D={(x,y,z,r)eS™x,y,reD!, ze D™, y>0, r>0}
CSm+l,

and F(fo¢)(0D) = F(WY(f))(0D) = #(m). The facts that: D is
homeomorphic to D™+!1; F(f o ¢)(D) = .#(m); the restriction of
Y(f) on A gives a nontrivial element of 7,,,(S™); and ¥(f) is
equal to fog on S! x §™\4; imply that the restriction of F(¥(f))
to D gives a nontrivial element of 7,,,1(S™), and that [F(fo¢)] =
[F(¥(/)]+ 1. Hence degy(f) = deg,(¥(f)) +1. o
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ProPOSITION 1.10. Let f, g: S! x ™ — S™ be two homotopic
maps, m > 3, and Y(f), Y(g) be defined by (1.8). Then ¥Y(f) is
homotopic to ¥(g).

Proof. W.l.o.g. we can assume that
S/ ), V(m)) =g 1), N (m))=H(m).

Since m > 2, by the homotopy extension theorem, we can homotope
a given homotopy from f to g to a homotopy H: S! x S™ x I —
S™, rel(# (1), #'(m)), i.e. such that H(A (1), V' (m), t) = N (m)
for every ¢t € I. By the definition of ¢, it follows that Ho ¢ is a
homotopy from fog to go ¢ rel4, and moreover reldA. Now,
H':S'x 8™ x I — S™ defined by: H'(x,t) = Hog(x,t) forx €
(STxS™\A)UBA; and H'(x, t) = poB(x) for x € A; is a homotopy
from ¥(f) to ¥(g). o

PROPOSITION 1.11. Let f: S'xS™ — S™ be given, and m > 3. Let
Y(f) and Y(¥Y(f)) be defined by (1.8). Then Y(¥(f)) is homotopic

to f.
Proof. In the definition of ¥(f) we have used
A= '(W (1), H(m)).

Let 4’ be any subset of 4 with a homeomorphism 6’: 4 — D™+l
such that A\int 4’ is homeomorphic to S$™ x I. Then it is easy to
check that the map ¥/(f) defined by (1.8) using A4’ instead of A4, is
homotopic to W(f) rel. S xS™\int 4. Now, let 4; be such a subset of
A with a homeomorphism 6;: 4; — D™*! and let 4, be a subset of
¢~1(A4) with a homeomorphism 6,: 4, — D™+! such that 4,NA4 =
@ . For such A,, the restriction of ¢ to A, is a homeomorphism
from A4, to ¢(A4,), and moreover, 6, 0 p~!: p(A4;) — D™*! is a
homeomorphism. We define ¥(¥(f)) using 4; and 6;, and define
Y(f) using ¢(A;) and 6,0 ¢~!. Then, it can be checked that:

(a) ¥(F(N))(x) = fopop(x) for x € (S'xS™\A;\4,)UdAUd 4, ;

(b) Y(¥(f))(x)=pobi(x), for x € A;, and

(c) W(¥(f))(x) = pobr(x) for x € A,.
Since A; U Ay C 9~ (4) = o~ Yo~ Y (7 (1), # (m))), it follows that
9~ 1(A) is homeomorphic to an (m + 1)-ball, and po 6; and po 8,
represent nontrivial elements of 7,,,,(S™) = Z,, it follows that the
restriction of W(¥(f)) to ¢~1(A4) represents the trivial element of
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Tm+1(S™). Hence, the restriction of W(¥(f)) to ¢~!(4) is homo-
topic to the constant map rel ¢ ~!(4), which implies that W(¥(f)) is
homotopic to fopop rel S xS™\int p~1(A4). Since fopop(p~1(4)) =
fop(4) = f(# (1), ¥/ (m)), it follows that W(¥(f)) is homotopic to
the map fopog. On the other hand, fopog is homotopicto fog
and fo g is homotopic to f,ie. Y(¥(f)) is homotopicto f. O

THEOREM 1.12. Let f, g: S! x S™ — S™ be given maps, and m >
3. The map f is homotopic to the map g, if and only if deg,(f) =

deg,(g) and deg,(f) = deg,(g).

Proof. If f and g are homotopic, then the conclusion follows from
Proposition 1.3.

Conversely, let deg;(f) = deg;(g) anddeg,(f) = degy(g). If
deg,(f) = 0, then the conclusion follows from Proposition 1.8. If
degy(f) # 0, then deg,(¥(f)) = deg,(¥(g)) and deg,(¥(f)) =
deg,(¥(g)) = 0, by Proposition 1.9. Now, Proposition 1.8 implies
that W(f) is homotopic to ¥(g), Proposition 1.10 implies that
Y(¥(f)) is homotopic to ¥(¥(g)), and Proposition 1.11 implies that
f is homotopic to g. O

COROLLARY 1.13. There is a bijection from the set of homotopy
classes of maps from S! x S™ to S™, to the set 7 x Z,. In other
words, there is a bijection from the cohomotopy group n™(S! x S™) to
ZXZy. O

Corollary 1.13 can be proved by homotopy theory methods. Ross
Geoghegan has provided a proof of this corollary, in the spirit of a
paper by V. L. Hansen [Ha], using Whitehead products, and Peter
Hilton has made the remark that degrees 1 and 2 are closely related
to the Hopf construction. These homotopy theory methods were not
sufficient for the ideas developed in the later parts of this paper, so I
have proved all of the properties of degrees 1 and 2 which were needed
later.

_ ProrosiTION 1.14. 4 map f: Sl x S™ — S™ has an extension
f: St x D™ — ™ if and only if deg,(f) = 0 = deg,(f).

Proof. If f hasan extension f, then the restriction of f to .#'(1)x
S™ , has an extension on .#'(1) x D™+!  which implies that deg,(f) =
0. W.Lo.g. we may assume that f(S! x {#'(m)}) = .#'(m), and then
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deg,(f) is equal to [F(f)]. Now, the extension f gives an extension
of the map F: Sy (0, 0) x D™ — S™ defined by F(f) on S™+1,
and by F((0, 0) x D™) = #(m), where S™t1u(0, 0) x D™ C D™+2
which shows that F(f) has an extension F(f): D™*2 — S§™ _ Hence
[F(/)1=0,ie. degy(f)=0.

Conversely, let deg;(f) = 0 = deg,(f). Then, by Proposition 1.7,
f is homotopic to a map g, such that g(z, x) = h(x) for every
ze S, xe S™, where h: S™ — S™, has degree 0, i.e. deg(h) =0.
This implies that # has an extension 4: D™*! — S™ and so g has
an extension g defined by Z(z,y) = h(y), for every z € S' and
y € D™*! Now, the homotopy from f to g and the extension g of
g give the required extension of f. O

At the end of this part we will describe specific maps A(m): S! x
S§m — S™_ m > 3, with deg,(h(m)) # 0, obtained by suspensions,
via the Hopf map from S> to S2.

If X is a space the suspension £X of X is the factor space X x
D!/a, where a is the equivalence whose classes are:

o_ [{x,0} fort#1andt#—1;
(x’t) —{{(y,t)lyeX} fort=1ort=—-1.

For a given f: S!xS™ — S™ we define a map S(f): S! xS"*! —
Sm+1 by suspension of f on the second factor, where S™ is iden-
tified with S™*! as a subset of D™*! x D! ie.

SN, (v, )%) = (f(x,y), )%

THEOREM 1.15. Let f: S! x S™ — S™ be a given map, m > 3.
Then for S(f): S! x §™*1 — S™*1 defined as above, deg,(f) =
deg;(S(f)) in Z, and degy(f) = degy(S(f)) in Z,.

Proof. (a) For a point Q € S!, if A is the restriction of f to {Q} x
S™ | then the restriction H of S(f) to {Q} x ZS™ = {Q} x S™*! is
the suspension of %, i.e. H =Xh. Since X: Hy,(S™) — Hy 1 (S™))
is an isomorphism (see [W]), it follows that deg(k) = deg(Zh). Hence
deg, (f) = deg,(S(f)).

(b) If deg,(f) = 0, then Proposition 1.7 implies that f is ho-
motopic to g: S! x $™ — §™ where g(z, x) = g(Q, x) for a point
Q € S'. Then from the definition of S(g) it follows that S(g)(z, y) =
S(f)(Q,y). The homotopy from f to g can be extended to a ho-
motopy from S(f) to S(g). Since deg,(S(g)) = 0, it follows that
deg,(S(f)) = 0. Hence, deg,(f) =0 implies deg,(S(f))=0.
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(c) From the definition of S(f) it follows that S(W(f)) = WY(S(f)),
where W(f) is defined by (1.8). If deg,(f) = 1 in Z,, then by
Proposition 1.9, deg,(¥(f)) = 0, which implies that deg,(S(¥(f))) =
deg,(¥(S(f))) = 0. Then, again by Proposition 1.9, it follows that
deg,(S(f)) =1 in Z,. Hence, deg,(f) =1 in Z,, implies deg,(S(f))
=1 1in Zz .

At the end, the conclusions of (b) and (c) imply that deg,(f) =

deg,(S(/)) . 0
Next, for m > 2, let h(m): S! x §™ — S™ be defined by:
(1.9) h(m)(z,w, x) = (zw, X)

where z€ S1 CC, (w,x) e S"CD*xD" ! weD>?CC, x¢c
D™l C is the set of complex numbers, and zw is the product of
z and w as complex numbers. If we consider S$™ as a subset of
D? x D™~!  and if we identify =S with S™*! as a subset of D? x
D=1 x D!, from the definitions of 4(m) and S(f), it follows that
Sh(m))=h(m+1).

THEOREM 1.16. For m > 3, deg;(h(m)) =1 in Z, and deg,(h(m))
=1in Zz.

Proof. From the definition of 4(3), it follows that the restriction
of h(3) to {z} x S3 for a point z € S! is a rotation on the first
two coordinates of S3, with the angle of rotation obtained from z.
Hence, the degree of the restriction of 4(3) to {z} x S3 is 1. Then,
by induction, Theorem 1.15, implies that deg,(h(m)) =1 for m > 3.

The map 4(2) has the property that A(2)(z, .7 (2)) = #(2) for
each ze S!. We define /(2): X — S2 by: h(2) restricted to S! x S2
is h(2), and A(2)(D?) = #'(2), where X = S! x S2U D? with the
identification of S x {#'(2)} with dD?. Then, it can be checked
that h(2) o K: S3 — S? is the Hopf map, and that A(3)o K: S* — 3
is homotopic to the suspension X(2(2) o K). Since [A(2) o K] is a
generator of m3(S2) and the suspension X: m3(S2) — m4(S3) is an
epimorphism (see [W]), it follows that deg,(#(3)) = 1 in Z,. Then,
by induction, Theorem 1.15, implies that deg,(h(m)) =1 for m >
3. ]

I1. Standard models. In this section we will define several standard
models and prove several facts about extensions of maps.
Let SE: S! x D™ — R™*! be the embedding defined by:

(2.1) SE(z,r,y)=((2-r)z,y), forzeS!, (r,y)eD™, reD'.
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FiGURE 2.1

We say that SE is the standard embedding. It follows from the defi-
nition of SE that SE is orientation preserving, where S!' x D™ has
the product orientation of the standard orientations, and the restric-
tion of SE from /(1) x D™ to {0} x R™ is orientation reversing.
We will use the same notation SE for the image of the map SE. In
other words,

(2.2)

SE={(z,x)|zeR?, xeR™ ', 1<)z <3, x?<1—(|z]-2)%).

Let SD be the subset of R”*! defined by:
(2.3) SD=SEU{(z,x)|zeR?, xe D™ !, |z <2}.

Let SH = cl(SD\SE). Then SD = SE USH. We say that SD
is the standard model for D? in R™+*!  because SD is a 1-regular
neighborhood of the disk {(z, 0) € R"*l|z € R?, |z| < 2} in R™*!,
The standard model SD is homeomorphic to D™+!. A schematic
picture for SD, SH and SE in the case m = 2, is shown in Figure
2.1. We use the notation dSD for the homeomorphism 9SD: S™ —
dSD defined as follows. For (z,x) € S™, ze D2, xe D" !:

(2.4)

. X 1
psvian =12 B s

> x|
(Qlzl+ 1) &, VI= Q- 12- %), }<lal.

The set SH is also homeomorphic to D! and we denote by
0SH the homeomorphism OSH: S™ — OSH defined as follows.
For (z,x)eS™, ze D?>, xe D™ !

(2.5)

.z, X 1
dSH(z, x) = { (42, 5, 2l < 2

(B=2lz))- g, VI-Qlzl - 1)2- &), ;<.

Let ¢p: SHUOSE — S™~! be a given map. Let y = ¢|dSD and
f = ¢|0SE be the restrictions of ¢ to SD and SE. Let 4SE
be the restriction of the map SE to 9(S! x D™) = S! x §"-! | je.
OSE: S! x S™1 5 3SE.
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sle (m—1)— ap2

/B/S;
@ (aD2)={(z,0,1)| 1zl=2 3
(a3 .

xS"l

FIGURE 2.2

PROPOSITION 2.1. Let ¢, f, v be as above. Then, for m > 4, y
has an extension &: SD — S™ ! if and only if deg,(f o 0SE) = 0.

Proof. Because 7;(S™"1) = 0 = n(S™~1), for m > 4, using the
homotopy extension theorem (HET), the map ¢ is homotopic to a
map ¢: 0SEUSH — S™ ! such that ¢'(z,0, 1) =4/ (m - 1), for
every z € R? with |z] < 2. Let f’ be the restriction of ¢’ to dSE,
and y’ be the restriction of ¢’ to 8SD. Then fodSE is homotopic
to f"odSE, and y is homotopic to y’. The set, ¥ = dSE U
{(z,0,1) € R? x R"~2 x R||z| < 2} is homeomorphic to the factor
space X obtained from S! x $”~! U D?, and one homeomorphism
a: X — Y is defined by: a(z) = (22,0, 1) for z € D?, and a|S! x
Sm-1 = §SE. Figure 2.2, illustrates the spaces X and Y and the
homeomorphism a. Next, a(X) is a deformation retract of dSE U
SH , with a homotopy G: (OSEUSH)xI — 8SEUSH , such that the
end of the homotpoy G satisfies: G;00SD = ao K, where K = K|
is defined by (1.2). Now let ¢” = ¢’ 0 Gy, let f” be the restriction of
¢"” to OSE and let y” be the restriction of ¢” to dSD. With the
above notation and homotopies, we have that: ¥ has an extension
on SD iff y” has an extension iff ¥” o8SD has an extension iff the
element [y"08SD] =0 in 7, (S 1) iff [p”00SD] =0 in 7,,(S™ 1)
iff [¢'0G108SD] =0 in 7, (S™ 1) iff [p'oaoK] =0 in 7y,(S™ )
iff deg,(¢’ 0c SE) = 0 iff deg,(p o OSE) = 0 iff deg,(f o OSE)
=0. O

Let AN be the annulus in RZ C R™*! defined by

(2.6) AN ={(z, 0) e R™"|zeR?, 2< |2/ < 5}.
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Let D, = {(z,0) e R™* |z € R?, |z| < 5}, Dy = {(z,0) e R"**l|z ¢
R?, |z| < 2}, and C; = 8D;, be the boundary circles of AN. Let
SAN be the 1-regular neighborhood of AN in R™*!, and let SC;
be the 1-regular neighborhood of C; in R™+1 for j =1,2. Note
that SC, = SE, and

(2.7)

SC,={(z,x)|zeR?, xeR™ !, 4<|z/<6, |x>?<1—(|z| -5)%}.

We orient the circles C; by the induced orientation from the disks D;
where D; are oriented by the induced orientation from R2. In the
same way as the definition of the standard embedding SE, i.e. SC,,
we can define a standard embedding SC;: S!x D™ — R™+1 such that
it is isotopic to the standard embedding SE, it is orientation preserv-
ing, preserves the orientations from S!x {0} to C; and the restriction
of SC; from /(1) x D™ to {0} x R™ is orientation reversing. Let
SC = SC,USC,, and let SAH = cl(SAN\SC). Then SAN =
SCUSAH . The model SAN is homeomorphic to S! x D™ . We use
the notation SAN for the homeomorphism SAN: S! x D™ — SAN
defined as follows. For (z,r,x) e S! xD™, ze S!, (r,x) € D™,
reD', xeDm !

((4=2r)-z,4-x), -1<r<-4,
(28) SANG@,r,x)={ (3-31-z,B-x),  -b<r<i,
((3—2r)'Z,C°X), %Srﬁl,
where: 4=0 for r=-1, C=0 for r=1, and
1—-(2r+1)2 1 1-(2r-1)2
A= , B= , and C= ,
Vi-r2 Vi1 Vi-r
for r # £1.

We denote the restriction of SC; and SAN to the boundaries by
dSC; and 0SAN,ie. 0SC;: S' xS 1 - 9SC; and §SAN: S! x
Sm-1 - SAN.

The set SAH is also homeomorphic to S! x D™,

PROPOSITION 2.2. Let ¢: SAH U8SC — S™ ! be given and let
Ji=0l|0SCj, j=1,2,and y = 9|0SAN be the restriction of ¢ to
0SC; and 0SAN, respectively. Then

deg;(y 0 0SAN) = deg;(f1 c0SCy) +deg;(f,098SC,), fori=1,2.

Proof. Because 7((S™ ') = 0 = np(S™ ') and SAH is homeo-
morphic to S! x D™, the HET implies that ¢ is homotopic to a
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FIGURE 2.3

map ¢’, such that ¢'(SAH) = 4/ (m—1). Let v’ = ¢'|0SAN and
f} = ¢’|aSCJ .

Step 1. Let 4 be the arc {((0, r), 0)|3 < r < 4} in the annulus AN,
andlet P;, j =1, 2, beits end points, i.e. P, = {(0, 3,0)} and P, =
{(0,4,0)}. Let B; =9SC;n{0}xR™, and let (N(4); N(P;), N(P,))
be a regular neighborhood triple of (4; P;, P,) in (SAH N {0} x
R™; B, , B;), schematically shown in Figure 2.3. Then (N(4); N(P,),
N(P,)) is triplewise homeomorphic to (D™~ !xI; D" 1x{0}, D™~ 1x
{1}),and N(P;) isan (m —1)-ballin B;, j=1, 2.

We fix a product structure N(4) = B; x I on N(A) via the home-
omorphism SAN . We orient N(A) by the induced orientation from
{0} x R™, and N(P;) by the induced orientation from ON(4), and
define a map g: SC; N {0} x R™ — S™~1 such that g|B;\N(P,) =
Sf{IBI\N(Py), and deg(g) = 0. Such g exists because f'(N(P;)) =
A (m —1). Using the product structure of N(A), we extend the map
g|N(P;) toamap &: N(4) — S™ 1, by &(x,t) = g(x). Let B be
the subset of SAH defined by B = SAN(S! x SAN-1(N(4))). Us-
ing the product structure S! x N(4) of B via the homeomorphism
SAN , we can extend the map ¢ toamap &': B — S™! by &'(z, x) =
¢(x). Now, we define a map ¢”: SC U SAH — S™ 1 by
¢"|(0SC U SAH)\B = ¢'|(0SC USAH)\B and ¢"|B = &. Let
¢”"|0SC; = gj, and ¢”"|0SAN = y”. Then y” = y’, and with
the above conventions about the orientations we have that
deg,(g1 0 0SCy) = 0, and deg (g, 0 SCy) = deg(f; 0 0SCy) +
deg;(f, o 8SC,;). Moreover, since in the definition of ¢” we
have used the product structure on B, Proposition 1.7 implies that
degz(gj o BSC]) = degz(fj o 6SCJ) , _] =1,2.

Step 2. Let (K(A); K(P;), K(P;)) be a regular neighborhood triple
of (4; P, P) in (SAH; 8SC;, dSC,). Then K(P;) is an m-ball
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in 0SC;, and (K(A4); K(P;), K(P,)) is triplewise homeomorphic to
(D™ x I; D™ x {0}, D™ x {1}). We fix a product structure K(A4) =
K(P;) xI on N(A) via the homeomorphism SAN. We define a
map h: 8SC; — S™ !, such that A|0SC\K(P;) = g1|0SC\K(P,),
and & restricted to K(P;) gives the element deg,(f; o 8SC;) in
m(S™-1). Using the product structure of K(A), we extend the map
h|K(P;) to a map u: K(4) — S™ 1, by u(x,t) = h(x). Next,
let p":3SC USAH — S™ ! be defined by: ¢"|K(4) = u
and ¢"”|(0SC U SAH)\K(A4) = ¢"|(SC U SAH)\K(A). Let
9"0SC; = gj’- ,and ¢"”|0SAN = y"” . Then y"” = y” = y', and with
the above notation, we have that degl(gj’- 09S8C;) = deg,(gj 0 9SCj),
deg,(g; c 9SCy) = 0, and deg,(g; 0 0SCy) = degy(g1 0 9SCy) +
deg;(£2,005C,).

The facts that deg;(g{) =0, i =1, 2, and Proposition 1.14 imply
that g; has an extension g): SC; — S™~!, which gives an extension
of y” toa y,: SAHUSC, U8SC, — S™ 1. This extension gives a
homotopy between "’ 0 9SAN and gj o SC,, which shows that

deg;(y 0 0SAN) = deg;(y" 0 9SN) = deg;(g; 0 8SC,)
= deg;(f1 0 0SCy) +deg;(f209SCy). O

The following corollary follows directly from Propositions 2.2 and
1.14.

CorOLLARY 2.3. Let ¢, f;, ¥ be as in Proposition 2.2 and let
m > 4. Then, w has an extension &: SAN — S™ if and only if
deg;(f1 09SCy) +degi(f,005C,) =0, i=1,2. O

Let 4 = (0, 4) € R?, and let KG C R? C R™*! be the disk with
two holes defined by:

(2.9) KG={(z,0) cR™' |z R?, |2/ <9, |z—4| > 2, |z+4| > 2}.

Let Dy = {(z, 0)||z| < 9}, D, = {(z,0)[|z— 4| < 2}, D3 = {(z, 0)]
|z+ 4| < 2} and let K; = 8D,, K, = 8D,, K3 = 0D; be the
boundary circles of KG. Let SKG be the 1-regular neighborhood
of KG in R™*! and let SK; be the I-regular neighborhood of K;
in R™+1 for j =1, 2, 3. We orient the circles K ; by the induced
orientation from the standard disks D; they bound, where D; are
oriented by the induced orientation from R?. In the same way as the
definition of the standard embedding SE, for each 1 < j < 3 we
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FIGURE 2.4

can define a standard embedding SK;: S! x D™ — R™*! such that
they are isotopic to the standard embedding SE, they are orientation
preserving, and preserve the orientation from S! x {0} to K;. Let
SK = SK; USK,USKj3, and let SKH = cl(SKG\SK).

We denote the restriction of SK; to the boundaries by dSKj, 1.e.
OSK;: St x Sm-1 — 9SK;.

PROPOSITION 2.4. Let ¢: 0SK USKH — S™ ! be given, and let
v = ¢|0SKG and f; = ¢|0SK; be its restrictions to 0SKG and
O0SK;, andlet m > 4. Then, y has an extension : SKG — Sm=1if
and only if

(1) deg,(f1 0 9SK,) = —deg(fjo0SK;) for j=2,3; and

(2) deg,(f1 0 0SK) +deg,(f, 00SK;) + deg,(f3005K3)=0.

Proof. (A) Because 7;(S™!) = 0 = ny(S™ 1), for m > 4, and
SKH is homeomorphic to KG x D™~! by the HET , the map ¢ is
homotopic to a map ¢’: 0SKUSKH — S™~ ! such that ¢/(SKH) =
A (m —1). Let y' be the restriction of ¢’ on dSKG, and let f;
be the restrictions of ¢’ on dSK;. Then f;odSK; is homotopic to
f}foc’)SKj foreach j=1,2, 3, and y is homotopic to y’'.

(B) If deg(f; o dSK,) + deg,(fj o SK;) = 0 for j = 2,3, then
by applying a variation of the method in Step 1 from the proof of
Proposition 2.3 we can accomplish the following: deg, ( f]’ 00SK;)=0
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FIGURE 2.5

and deg,(fj o 0SK;) = deg,(fj o 0SK;) for j=1,2,3. We cannot
apply the method of Step 2 of that proof directly because there are
three boundary circles instead of two and the circles are not concentric.
But we can apply the method in Step 2 as above, separately in the
following two parts of SKH :

SKH, ={(r,s,x)e SKH|-9<r<9, 0<s<9} and
SKH, ={(r,s,x) e SKH|-9<r<9, -9<s<0},

choosing the same subset of the intersection SKH; N SKH, in the
definition of the extension using the product structure. See Figure
2.5. Both of the SKH; are homeomorphic to SAH .

(C)Let B3={(0,r,x) e SKG|-10<r< -5}, Bi={0,r,x) e
SKG|-3<r<3} and B, ={(0,r,x) € SKG|5 <r <10}. Then
each B; is homeomorphic to D™, and from the above conventions
about the orientations, the restriction of y’ to B; has an extension
on Bj, for j=2,3,if and only if deg,(f;00SK;)+deg,(fjoSK;)=
0. See Figure 2.5.

(D) By applying twice the method in Step 2 from the proof of
Proposition 2.2, once for K;, K5, and the second time for K, K3
we can accomplish the following: deg,(fj 0 9SK;) =0 for j =2, 3.
degy(f]08SK)) = degy(fi 08SK)) +degy(f200SKy) +degy(f3005Ks3),
and deg,(f] o 9SK;) = deg,(fj 0 8SK;) for j=1,2,3.

(E) Let v have an extension. This implies that y’ has an ex-
tension. Then, (C) implies that deg,(f; o SK;) + deg,(fj o SKj)
= 0, for j = 2,3, ie. (1) is satisfied. Moreover, (B) implies
that degl(f; 09dSK;) = 0 for j = 1,2,3, and (D) implies that
deg,( fj' 0dSK;) = 0 for j = 2,3. This, together with Proposi-
tion 1.14, implies that the restrictions of ¢’ to 4SK;, j = 2,3,
have extensions. By HET , these extensions can be chosen to map
0SK;j,j=2,3,t0 #(m—1). So, we can replace SKG by SD (see
(2.3)), i.e. we can extend the map ¢’ on the 1-regular neighborhoods
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of D, and D3, by mapping them to .#'(m — 1). Then Proposition
2.1 implies that deg,(f{ o 9SK;) = 0. Hence, deg,(f] o 9SK;) =
deg,(fi o SK;) + deg,(f2 0 SK>) + degy(f3 0 SK3) = 0, i.e. the
condition (2) is satisfied.

(F) Conversely, let the conditions (1) and (2) be satisfied. Then,
by (A), (B) and (D), we have deg,-(fjf 0 dSK;) = 0 for the map ¢’,
i=1,2, j=1,2,3. So, Proposition 1.14 implies that each of
the maps f] has an extension f;: SK; — S™~!, which together with
the restriction of ¢’ to SKH give an extension &¢': SKG — S™1
for y'. Since ¥ and ¥’ are homotopic, it follows that y has an
extension ¢: SKG — S™-1. m]

III. Indices 1 and 2. Let F: X x I — X be given, where X C
R™ is an m-dimensional, compact, connected PL oriented manifold,
such that X x I C R” x R = R™*! and let m > 4. We assume
that X is oriented by the induced orientation from R™, and X x I
has the product orientation. Let SE: S! x D™ — R x R™, be the
standard embedding defined by (2.1). For each embedded oriented
circle C C X x I and a regular neighborhood W of C in X x I we
choose the isotopy class {¢} of orientation preserving embeddings of
pairs, ¢: (S! x D™, S! x {0}) — (W, C), by isotoping the standard
embedding SE. Such a choice exists, because every two oriented
embedded circles in R”+1 are isotopic, for m > 3.

Let P: X x I — X be the projection, defined by P(x, t) = x, for
every x € X and ¢ € I. A fixed point of the map F isapoint (x, t) €
X x I, such that F(x,t) = x = P(x, t). The set of fixed points of
F is denoted by Fix(F), i.e. Fix(F)={(x,t) € X xI|F(x, t) = x}.
Let C C X x I be an isolated circle of fixed points, i.e. a circle of
fixed points, which has a small enough neighborhood W, such that
the only fixed points of F in W are the points of C. Since X C R™,
the map P—- F: (W, C) — (D", 0) is defined, and we denote it by
p(F), where D" = {x € R™||x| < ¢}. Since C is an isolated circle
of fixed points, we have p(F)~1(0) = C. There are two orientations
on C; we denote them by O; and O,. Let ¢ be an embedding
from the chosen isotopy class for such an oriented circle C and its
neighborhood W . So we have a map (o p(F)o¢: S! x D™ — D™,
where {: D" — D™ is the homeomorphism defined by multiplication
by 1/e. Let u(F): S! x §™1 — §m-1 be the map u(F) =¢&olo
p(F)o @' where &: D™\{0} — S™~! is defined by &(x) = I_:IFI -x, and
@' is the restriction of ¢ to S! x S™1,
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PrROPOSITION 3.1. Let u(F) and u'(F) be defined as above, for
the two orientations on C. Then, deg,(u(F)) = —deg,(¢/'(F)), and

degy (u(F)) = deg, (W' (F)).

Proof. Let ¢, and ¢, be two embeddings from the chosen isotopy
classes for the oriented circles (C, O;) and (C, Oy).

Let y: S! = 8! and 6: D™ — D™ be orientation reversing homeo-
morphisms, and let ¥ = (y, d). Then ¢, and ¢, oy are in the same
isotopy class, and moreover they are homotopic.

In the definition of deg, we need only the orientation of S$”~!,
not of S'. So, since u(F) and u'(F) differ only in ¢; and ¢,,
we need only to examine the restrictions «; of ¢; and a; of ¢,
to (1) x D™ . Because ¢, and ¢, o y are isotopic, it follows that
deg; (u(F)) = deg(az) = deg(a; o d) = deg(a;) - deg(d) = deg(ey) -
(~1) = — deg(ay) = — deg, (&'(F)).

Since u(F) and u/(F) differ only in ¢; and ¢,, and the dif-
ference is a homeomorphism of S! x $”~! which is a product of
two homeomorphisms, it follows that deg,(u(F)) = 0 if and only if
degy(/(F)) = 0. Hence, deg,(u(F)) = deg,(/(F)). o

DEerFINITION 3.1. For a chosen orientation O on C, deg,(u(F))
will be denoted by i;(F, C, O). We say that an orientation on C
is the natural orientation on C, if deg,(u(F)) > 0, and we say that
deg;(u(F)) for this orientation is index 1 of F at C, denoted by
iWF, C).

REMARK 3.2. By the definition, #;(F,C) > 0. In the case
deg, (u(F)) = 0, both of the two orientations on C are natural, or
using different words, C does not have a natural orientation.

The following notion is well defined by Proposition 3.1.

DEFINITION 3.2. We define index 2 of F at C, denoted by i, (F, C),
to be deg,(u(F)).

ProposITION 3.3. Let X,F,C and W be as above. Then, i,(F,C)
=0=i(F, C), ifand only if F is homotopic toamap G: X x I —
X rel X x I\W, with G(x,t)# x foreach (x,t)e W.

Proof. Let i;(F,C) =0 = i(F, C). Then deg;(u(F)) =0 =
deg,(u(F)), and so u(F) is homotopic to a map k: S! x §”~1 —
S™-1 defined by k(z, x) = f(x), where f: 5”1 — S§™! is a map
of degree 0. The map f has an extension to a map f: D™ — Sm-1,
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which gives an extension of ¥ to a map k: S! x D™ — S™~1 This
gives a homotopy H: W x I — D" rel oW, from p(F) to a map
p: W — DI"\{0}. So, for G = P—p, we have that F is homotopic to
G rel X x I\W , with G(x, t) # x for each (x, t) € W. Conversely,
let F be homotopic to a map G rel X x I\W, such that G(x, ) # x
foreach (x,t) e W. Let p(G) = P-G,and let u(G) =&olop(G)op.
Then u(F) = u(G), and since p(G) has an extension from W
to D", it follows that u(F): S! x S™~! — $™~! has an extension
from S! x D™ to S™!. This implies that deg,(u(F)) = 0 =

degy (u(F)). o

DEFINITION 3.3. Let A4 be an isolated fixed point of F: X x I —
X. Let V be a small (m + 1)-ball neighborhood of 4 in X x I,
such that F(x) # P(x) for every x € V\{4}. Let ¢: D™ —
¥V be a homeomorphism, and let u(F): S” — S™ ! be the map
Eolo(P— f)og', where ¢ is the restriction of ¢ to S = §D"*!,
Define index 2 of F at A4, denoted by i,(F, 4A) to be the element
[L(F)] € mm(S™1).

Let C be an isolated circle of fixed points of F: X xI — X, B
be an embedded disk in int(X x I), with 9B = C,and H: (X x I x
{0})U(B xI) — X be a partial homotopy such that H(x, 0) = F(x),
forall xe X xI, H(x,1)=x forall xe B, and H(x,t) =x for
all xeC andall te!.

PRrROPOSITION 3.4. Let F, C, B and H be as above. Then there is
a neighborhood N of B, and a map G': X x I — X, homotopic to
F rel X xI\N, such that Fix(G') = (Fix(F)\C)U{A4}, and i»(F, C) =
i»(G', A), where A is an isolated fixed point of G'. Moreover, if
i»(F, C)=0, there is a neighborhood N of B, andamap G: X xI —
X, homotopic to F rel X x I\N, such that Fix(G) = Fix(F)\C.

Proof. Let N be a regular neighborhood of B in X x I, such
that Fix(F)N N = C. Let ¢ > 0 be such that the 2¢-neighborhood
N,.(B) is contained in int N, and the 2e-neighborhood N.(X) of
X in R™ retracts to X. Then, by the same methods as in [DG],
F is homotopic to a map F’ rel X x I\N, and there exists a regular
neighborhood N’ of B, such that N’ C N,(B), and F’ and P are
e-close on N’, i.e. for each x € N, d(F'(x), P(x)) < €. So we
have a map (P — F')|: N'\C — N,(0)\{0} C R™\{0}. Since N’ is
homeomorphic to D™*! | we can choose a point 4 € int N, such that
the map (P—F'), restricted to d N’ has an extension K': N’ — N,(0),
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with (K’)~1(0) = A. Now, let G’: X xI — R” be defined by: G' = F’
outside N, and G' = P - K' on N'. Then F is homotopic to
G’ rel X x I\N, with Fix(G') = (FixF\C) U {4}. Because F is
homotopic to F’ by a special homotopy [DG], it follows that F’ has
C as an isolated circle of fixed points, and i(F', C) = i,(F, C).
Next: because both the standard model SD and N’ are (m+1)-balls,
the isotopy of the standard embedding SE for W can be extended to
an isotopy which sends SD to N’, which together with Proposition
2.1 implies that i(F', C) = 0 if and only if (P — F’), restricted
to ON’, has an extension K: N’ — N,(0)\{0}, i.e. if and only if
i»(G', A) =0. Hence, i,(F, C)=1i(G, A4).

If i,(F,C) = 0, then i3(G’, A) = 0, and so, the restriction of
(P —G') to ON’ has an extension K: N’ — N;(0)\{0}. Let G be
defined using K, in the same way as G’ was defined using K’. Then
F is homotopic to G rel X x I\N and Fix(G) = Fix(F)\C. O

Next, let C C X x I be an embedded circle on which F and P
are e-close, as mentioned above, i.e. N, (X) retracts to X in R™,
and d(F(x), P(x)) <é& for each x € W where W is a small regular
neighborhood of C in X xI. Assume that foreach x € W, F(x) #
P(x). Choose any orientation O for C, and let ¢ be an embedding
from the chosen isotopy class of embeddings for (W, C). Let f =
P — F, let g denote the restriction of fog to S! x S”!, and let
deg,(g) =k, keZ.

THEOREM 3.5. Let X, F,C, W, o, f, g, k beas above, let m >
4, and for r > 1, let t;, j=1,...,r, be arbitrary numbers with
Y ti = deg,(g). Then F is homotopic to a map G: X xI — X,
rel X x I\W such that:

(1) G has r isolated circles of fixed points Cy, Cy, ..., C, in W,
all of them “parallel” to C;

(2) G does not have other fixed points in W,

(3) Y ix(G, Cj) = deg,(g), where the sum is in 7, (S™1);

(4) If we orient C; with an orientation O; compatible with the
orientation O on C (meaning that (C, O) and (C;, O;) determine
the same element in the first homology group H(W)) then, for each
j=1,2,...,r, i1(G, Cj, 0]) =1j; and

(5) If for each j, t; = 1, then it is possible to make the circles
C; transverse, which means that the graph of G and the graph of
the projection P: X x I — X, intersect transversely in X x I x X at
each C;.
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Proof. Let V = ¢((0, 1) x D™) C W, and let W' = ¢(S! x B™),
where B™ = D{'}z. Then, by the creating procedure of fixed points
[BJ], there is a map &: B™ — B™, with r fixed points, L, ..., L,,
whose indices are ¢, ..., respectively, with their sum equal to
k. Moreover, if for each j, ¢; = 1, then the fixed points L; are
transverse. Let # =1id —&: B™ — D", and let A| be its restriction to
d(B™). Then deg(h|) = k with B™ and D}" oriented by the induced
orientation from D™ . Let By, ..., B, be disjoint ball neighborhoods
of Ly,..., L, in B™. Let C; =¢(S'xL;),andlet V; = ¢(S'xB;).
Using the map #, we define amap y: S!x B™ — D", by y(z, x) =
h(x). By the definition of y, we have that deg,(y|) = k = deg,;(g),
and deg,(w|) = 0, where /| is the restriction of ¥ to S'x9B™. We
will consider two cases: when deg,(g) = 0, and when deg,(g) #0.

Case 1. If deg,(g) = 0, then y| is homotopic to g, which shows
that there is a map w’': S! x D™ — DI, extending ¥ and g, and
such that (y/)~1(0) =S! x (L, U---UL,). Then the map G defined
by G=F on X xI\W andby G=P—y’op~! on W, satisfies the
conclusions.

Case 2. Let deg,(g) # 0. We use a method similar to the one
in Step 2 of the proof of Proposition 2.2. First we choose two
points 4 € S! x 9B™, and A’ € S! x 8B;, and an arc o from
A to A in S! x B™, missing intB; and all the other B;’s. Let
(N(a), N(A), N(B)) be a regular neighborhood triple of (a, 4, A’)
in (S'xB™,S!'x9B™, S xdB,). We can homotope the map ¥ to
a map 4, such that A(N(a)) is a point in D”\{0}. Next we can re-
place A by another map A’, defined by X’ = A outside N(a)US!xBy;
the restrictions of A’ to N(A4) and N(A’) give nontrivial elements of
m(S™1); A on N(a) is an extension of the map defined on I N(a),
and A on S! x B; is defined by coning the map from S! x B, to
S! x O, where O is the center of B;. In the case ¢; = 1 for each
j, we redefine A’ on S' x By as follows. Let p be the restriction
of  to S!' x 0B;. Then deg;(p) = 1 in Z and degy(p) = 1 in
Z, , which implies that p is homotopic to the map A(m — 1) defined
by (1.9). Let B} C B, be a smaller concentric ball in B, with the
same center O. We define A’ on the closure of S! x (B;\B]) via the
homotopy from p to A(m —1), and on S! x B by coning A(m — 1)
to S! x O. For A’ defined in this manner, deg,(A'|) # 0, where A'|
is the restriction of A’ to S! x 9B™, which shows that 4’| is homo-
topic to g. Hence, there is a map y': S! x D™ — D™, extending A’
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and g, such that (y’)"1(0) =S! x (LyU---UL,). Then the map G
defined by G=F on X xI\W andby G=P—-y'op~! on W,
satisfies the conclusions (1), (2), (3) and (4), because i»(G, C;) =0
for all j # 1, and i3(G, C;) = deg,(g). The map G satisfies con-
clusion (5) for each circle C;, j # 1, because the map y is defined
by w(z,x) = h(x). The circle C; is transverse, because for each
arc [4, B] C S!, the restriction of the map A(m — 1) to [4, B] x B,
is homotopic to the map y, defined by y(z, x) = h(m — 1)(4, x),
and because A’ was defined on S! x Bj by coning A(m — 1) to
S x 0. O

ProposITION 3.6. Let X, F,C, W, ¢, f, g, and k be as above.
Then:

(1) F is homotopic toamap G;: X x I — X, rel X x I\W such
that. C is an isolated circle of fixed points for Gi; and G, does not
have other fixed points in W, i;(Gy, C) = |k|; and iy(G,, C) =
deg,(g).

(2) If kK # 0, then F is homotopic to a map G,: X x I — X,
rel X x I\W such that. G, has |k| isolated circles of fixed points
Ci, ..., Cy in W, all of them “parallel” to C; G, does not have
other fixed points in W; i,(G,, Cj) =1 foreach je{l,...,|k|};
and 3 i5(G,, Cj) = degy(g), where the sum is in m,(S™'). More-
over, it is possible to make the circles C; transverse.

(3) If k = 0 and deg,(g) = 0, then F is homotopic to a map
G3: X xI— X, rel X x I\W such that G3 has no fixed points in W .

(4) If kK = 0, and deg,(g) # 0, then F is homotopic to a map
Gy: X xI — X, rel X x I\W such that G, has only one isolated fixed
point A in W, and iy(G4, A) = deg,(g).

Proof. (1) and (2) follow directly from Theroem 3.5.
(3) follows from Theorem 3.5 and Proposition 3.3.
(4) follows from Theorem 3.5 and Proposition 3.4. O

There is a converse to Proposition 3.4.

ProOPOSITION 3.7. Let A be an isolated fixed point of F. Then
there is a regular neighborhood N of A, and amap G: X xI — X,
homotopic to F rel X x I\N, such that Fix(G) = (Fix F\{4}) U C,
and i,(G, C) = ip(F, A), where C is an isolated circle of fixed points
of G which bounds a disk B in N, on which G and P are &-close.
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Moreover, i;(G, C) can be chosen to be any number > 0, and if
i1(G, C) =1, then the circle C can be made transverse.

Proof. Let N be a small regular neighborhood of A, such that F
does not have other fixed points in N, and F and P are &-close on
N. Let C beacirclein N missing A, and let W be a regular neigh-
borhood of C in N. Then Theorem 3.5 implies that F is homotopic
to a map H rel X x I\W , such that: H has two more circles of fixed
points C and C'; i(H,C' =i(H,C)=i(F,A); ij(H,C) isa
previously chosen number > 0; and C’ bounds a disk B missing 4
and C, on which H and P are ¢-close; andinthecase i1 (H,C) =1,
the circle C is transverse. Then, Proposition 3.4 implies that H
is homotopic to a map H’ rel X x I\N’ where N’ is a small reg-
ular neighborhood of B, such that Fix(H’) = (Fix(H)\C’) U {4’}
where A’ is an isolated fixed point of H' in N with i(H', A') =
ip(H', A). Then H’ is homotopic to a map G rel X x I\N”, where
N" is a small regular neighborhood of an arc from 4 to 4’ in N,
missing C, such that Fix(G) = Fix(H')\{4, 4’}, ie. Fix(G) =
(Fix(F)\{4})uC. O

ProrosITION 3.8. Let f: KG — X x I be an embedding, and let
id: KG — X x I be the identity embedding of KG in R™*!, m >4,
where KG is defined by (2.9). Then, f(KG) is isotopic to KG.

Proof. Since KG has a one dimensional core, and m > 4, it follows
that f and id are homotopic embeddings. This homotopy implies the
isotopy for m > 5. For m = 4, f(KG) can be isotoped to a new
position denoted again by f(KG), such that f(KG)NKG = 2. The
(exterior) circles K; and f(K;) are homotopic, and the homotopy can
be homotoped to an embedding A(S! xI). Since K,, K3, f(K>) and
f(K3) are nullhomotopic in R’ , they bound disjoint embedded disks,
whose interiors are disjoint from A(S!x ). These disks, together with
h(S! x I), form an embedded S? in R3, which is unknotted, ([RS]),
and bound a standard D3 in R®. Since the circles K;, K3, f(K>)
and f(K3) are standard in S2, we obtain a standard KG x I in R’,
such that KGx{0} = KG and KGx{1} isisotopicto f(KG). Hence
KG is isotopic to f(KG). 0

Let X, F be as above, let C,, C; be two circles of fixed points of
F. Let f(KG) be an embedded disk with two holes in X x I, such
that C; = f(K;), j=2,3, and f(KG) has a regular neighborhood
in X xI whose intersection with Fix(F) is C,UC3. Let C; = f(K;),
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and let H: (X xI x {0}) U(f(KG) x I) — X be a partial homotopy
such that H(x,0) = F(x), forall x e X xI, H(x, 1) = x for all
x € f(KG),and H(x,t)=x forall xeCj, j=2,3 andall te.

ProrosiTION 3.9. Let F,Cj, f(KG) and H be as above. Let
the natural orientation of C; agree with the induced orientation from
f(KG), and let i\(F, Cy) =i,(F, C3). Then there is a neighborhood
N of f(KG),andamap G: X xI — X, homotopic to F rel X xI\N,
such that. C; is an isolated circle of fixed points of G whose natu-
ral orientation agrees with the one induced from f(KG); Fix(G) =
(Fix(F)\(C;U G3)) U Cy; i1(G, C1) = il(F, Cy); and ir(G, Cy) =
i»(F, C) +iy(F, C3). Moreover, if C, and C; are transverse, then
C, can be made transverse.

Proof. Let N be a regular neighborhood of f(KG) in X x I,
such that Fix(F)N N = C,b U (3. Let ¢ > 0 be such that the
2e-neighborhood N, (f(KG)) is contained in int N, and the 2e-
neighborhood N,.(X) of X in R™ retracts to X . Then, by the same
methods as in [DG], F is homotopic to a map F’ relX x I\N,
and there exists a regular neighborhood N’ of f(KG), such that
N’ C N(f(KG)), and F’ and P are e-close on N’, i.e. for each
x € N', d(F'(x), P(x)) < e. Let K| = {(z,0) € KG||z|] = 8},
be a circle in KG parallel to K;, and let C] = f(K]). Let W
be a small regular neighborhood of C; containing Cj, contained in
N'’, and missing C,, C3. Then, by Theorem 3.5, F’ is homotopic
to a map G’ relX x I\W, such that: Fix(G') = Fix(F) U C; U Cy;
(G, C) =i (F, C}) =ii(F, C;); the natural orientations on Cj,
C] are opposite, i.e. they determine opposite elements in H;(W);
(G, C) =i(G, C)) = ir(F, C;) +i2(F, C3); the natural orien-
tation of C; agrees with the one induced from f(KG), i.e. f(K;);
and if C,, C; are transverse, then C; and C] can be made trans-
verse. Let f': KG — X x I be the embedding obtained from f by
pushing in the collar from K; to Kj. Let N” be a regular neighbor-
hood of f'(KG) contained in N’. Let A: SKG — N’ be a homeo-
morphism obtained from the isotopy between KG and f'(KG), and
let A’ be its restriction to dSK USKH (see II). So we have a map
(P—G)oA:dSKUSKH — D"\{0}, i.e.amap £olo(P—-GCG)o
A’ 0SKUSKG — S™ !, where {: D" — D™ is the homeomorphism
defined by multiplication by 1/¢, and &: D™\{0} — S™"! is defined
by &(x) = |1;| -x. From the choices in the creation of the new circles of
fixed points C;, Cj, it follows that for the map ¢ =&olo(P—G')oX
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the restrictions f; to dSK; and y to SKG, satisfy the conditions
(1) and (2) of Proposition 2.4. This implies that the restriction of the
map (P — G') to N” has an extension ¢’: N' — D"\{0}, and the
map G: X xI — X definedby: G=G on XxI\N" and G=P—¢'
on N”, satisfies the conclusion of the proposition. a

In the preceding proposition, we replaced two circles of fixed points
by one. A similar argument holds for replacing one circle of fixed
points by two.

Let X, F be as above, let C; be an isolated circle of fixed points
of F. Let f(KG) be an embedded disk with two holes in X x I, such
that C; = f(K;), and f(KG) has a regular neighborhood in X x [
whose intersection with Fix(F) is C;. Let C; = f(Kj), j =2, 3,
and let H: (X xI x {0})U(f(KG) xI)— X be a partial homotopy
such that H(x,0) = F(x), forall x € X xI, H(x, 1) = x for all
x € f(KG),and H(x,t)=x forall xe C; andall tel.

ProrosITION 3.10. Let F, C;, f(KG) and H be as above, let the
natural orientation of C, and the induced orientation from f(KG),
i.e. from f(K;) agree. Then there is a neighborhood N of f(KG),
and amap G: X x I — X, homotopic to F rel X x I\N, such that:
C,, C3 are circles of fixed points of G whose natural orientation agrees
with the one induced from f(KG); Fix(G) = (Fix(F)\C;) U C, U Cs3;
(G, G) = i(G, G3) = i)(F, C); and (G, C3) + (G, C3) =
ir(F, Cy). Moreover, if C; is transverse, then C,, C3 can be made
transverse.

Proof. The proof is the same as the proof of Proposition 3.9 except
that we have to use Theorem 3.5 twice, once to create two circles of
fixed points C,, Cj, and once more to create the other two circles of
fixed points C3, Cj. O

IV. One parameter Nielsen fixed point theory. Let F: X xI — X,
X C R" an m-dimensional, compact connected, oriented manifold,
m > 4 be as in III. Let 4, B be two fixed points of F. It is said
that 4 and B are in the same fixed point class if there is an arc
a:[0, 1]— X xI from A to B and a homotopy between F oa and
Poa rel{0, 1}. The relation of being in the same fixed point class
is an equivalence. It follows directly from the definition, that if 4, B
belong to a circle of fixed points then they are in the same fixed point
class. Two circles of fixed points are in the same fixed point class if
and only if their points are in the same fixed point class.
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Next we recall some definitions and facts, and improve Theorems
9.8 and 10.1 from [DG], where it was assumed tht F is transverse
to P, which implies that for each isolated circle of fixed points C,
iWF,C)=1.

Let E be the space of all (continuous, not necessarily PL) paths
w(t) in X x I x X from the graph I'(F) = {(x, ¢, F(x, t))|(x, ) €
X x I} of F to the graph I'(P) = {(x, ¢, x)|(x,t) € X x I} of P,
i.e. maps w: [0, 1]— X x I x X, such that w(0) € I'(F) and w(l) €
I'(P). Let C;, ..., C, be isolated circles in Fix(F) Nnint(X x I),
oriented by the natural orientations, and let V' = JC;. Then V
determines a family of circles V'’ in E via the constant paths in E,
i.e. each oriented isolated circle of fixed points C: S! — X x I of
F determines an oriented circle C': S' — E defined by C'(z) =
con(C(z)) where con(C(z)) is the constant path at C(z) = (x, ty),
i.e. con(C(z))(t) = (x, ty, x) for each ¢t € [0, 1]. The definitions of
a fixed point class and E imply that two fixed points A and B are
in a single fixed point class if and only if the correspondent points
A’ and B’ in E are in a single path component of E ([DG]). Since
any two points A, B from a circle of fixed points are in a single fixed
point class, it follows that a family V' of circles of fixed points is in
a single fixed point class if and only if there is a compact orientable
surface Sy and a map &: Sy — E, such that a part of 4.5, is mapped
homeomorphically to V’. As it is shown in [DG], such a surface
So and a map 9 exist if and only if there is an embedded compact
orientable surface S in X xI such that V' C S and there is a partial
homotopy H: X xI x {0} US x I — X satisfying: H(x, 0) = F(x)
forall xe X xI, H(x,1)=x forall xeS,and H(x,t)=x for
all xeV andall ¢.

Now we recall a variation of Theorem 9.8 from [DG].

THEOREM 9.8 [DG]. Let F: X x I — X be transverse to P with
no fixed points in 8(X x I) and transverse fixed point set. Let V =
UC; be a union of circles of fixed points such that V' lies in a path
component of E . If the geometric 1-cycle in E defined by V' with the
natural orientations on the C;’s is Z-homologous to zero, and if the
connected surface S spanning V can be chosen with trivial associated
Z, obstruction, then there is a neighborhood, N, of V in int(X x I)
containing no other fixed points of F, and a homotopy from F to
H rel X x I\N, such that Fix(H) = Fix(F)\V .

Theorem 10.1 in [DG] shows that the vanishing of the obstructions
is not only sufficient, but also necessary.
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THEOREM 10.1 [DG]. With the notation as in Theorem 9.8, let there
exist a compact neighborhood N of V in int(X x I) containing no
other fixed points of F and, a homotopy between F and G, rel X x
I\N, such that Fix(G) = Fix(F)\V . Then there is a connected surface
S, spanning V with a partial homotopy as above, whose associated
Zy-obstruction vanishes.

Now we improve both of these theorems by the following:

THEOREM 4.1. Let F: X x I — X be tranverse to P with no fixed
points in 8(X x I) and transverse fixed point set as in [DG]. Let V =
U C; be a union of isolated circles of fixed points, such that V' lies in
a path component of E. Then, there is a neighborhood, N, of V in
int(X x I) containing no other fixed points of F, and a homotopy from
F to H relX x I\N, such that Fix(H) = Fix(F)\V, if and only if:
the geometric 1-cycle in E defined by V' with the natural orientations
on the C; s is Z-homologous to zero; and Y ir(F, C;) =0.

Proof. The proof is similar to the proof in [DG]. Let the geo-
metric 1-cycle determined by V' be Z-homologous to zero and let
Y. i(F, Cj) = 0. The fact that the geometric 1-cycle determined
by V'’ is zero implies the existence of an embedded, oriented, com-
pact, connected surface S C int(X x ) spanning V and inducing the
natural orientation on the circles in V', together with a partial homo-
topy K: (X xI x{0})uU(S xI)— X, with K(x,0) = F(x) for all
xe€XxI, K(x,1)=x forall xeS,and K(x,?)=x forall xeV
and all ¢ ([DG]). Then by the cutting argument given in [DG], and
by Propositions 3.9 and 3.10, S can be reduced to a disk B. This
cutting argument gives a homotopy from F to a map G rel X x I\N’
for a neighborhood N’ of V', such that: Fix(G) = (Fix(F)\V)U9B;
i1(G,0B) = 1; and i,(G,0B) = Y i,(F, C;) = 0. Further, by
Proposiy tion 3.4, G is homotopic to a map H rel (X x I)\N” for a
neighborhood N” of B, such that Fix(H) = Fix(G)\0B = Fix(F)\V .

Conversely, suppose there exist a neighborhood N of ¥ and a ho-
motopy from F to H rel X x I\N, such that Fix(H) = Fix(F)\V .
Then as it is shown in [DG], the 1-cycle in E determined by V' is Z-
homologous to zero, and there exists a surface S as above, whose asso-
ciated Z,-obstruction is zero. But the associated Z,-obstruction for S
is obtained after the cutting argument, which by Propositions 3.9 and
3.10, implies that the Z,-obstruction for § is equal to Y ir(F, Cj),
and hence, ) ir(F, C;)=0. O
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In the above theorems we used repeatedly a family of isolated trans-
verse circles of fixed points V' and its corresponding family ¥’ in the
space of paths E . Next we generalize this notion slightly. Let V' be
a family of isolated circles of fixed points (not necessarily transverse)
and isolated fixed points (which cannot be transverse). For such a set
V,let V' be the subset of E defined as above using constant paths.
Then V' is a family of circles and points in E. A set V' is in a single
fixed point class if and only if V' is in a single path component of
E . For an isolated oriented circle of fixed points C, let {C’} be the
element from H;(E) determined by the geometric 1-cycle C’. For
such sets V' we define two indices.

DEFINITION 4.1. Let V' be a family of isolated circles of fixed points
Cy,..., Cr (not necessarily tranverse) and isolated fixed points
Ay, ..., A, in a single fixed point class. Let C; be oriented by
the natural orientation. We define the index 1 of V', denoted by
ind(F, V), to be the element } i (F, Cj) - {C}} in Hi(E). We
define the index 2 of V', denoted by ind,(F, V), to be the element
S ir(F, Cj) + > i(F, A;) in Z,.

The improvement in Theorem 4.1 is the fact that the Z, obstruction
does not depend on the surface. But there is another improvement.
In [DG] the cutting argument was not producing new circles of fixed
points, and here the cutting argument is producing new circles of fixed
points. The generalization of this is the following theorem.

THEOREM 4.2. Let V be a family of isolated circles of fixed points
and isolated fixed points of F in a single fixed point class. Then there
is a neighborhood N of V missing other fixed points and a homotopy
from F to G relX x I\N, such that: Fix(G) = (Fix(F)\V)uU C,
where C is an isolated circle of fixed points of G; ind,(G, C) =
0 if and only if ind|(F,V) = 0; and indy(G, C) = indy(F, V).
Moreover, the circle C can be chosen to be transverse, which implies
that i;(G,C)=1.

Proof. The proof consists of the following steps.

Step 1. Conclusion (4) of Proposition 3.6 implies that F is ho-
motopic to a map F; rel X x I\N; where N; is a small compact
neighborhood of the circles of fixed points C; with ij(F, C;) =0,
such that: these circles are replaced by fixed points; the new family
V1 is in a single fixed point class of Fi; ind(F;; V) =0 if and only
if ind(F, V)=0; and indy(F,, V) =indy(F, V).
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Step 2. Proposition 3.7 implies that F; is homotopic to a map
F, rel X x I\N,, where N, is a small compact neighborhood of the
fixed points 4; in ¥}, such that: the fixed points A4; are replaced
by circles of fixed points K;; the new family ¥ is in a single fixed
point class of F,; each geometric 1-cycle K ; in E determined by
K; is nullhomotopic, and moreover, Z-homologous to zero; K; are
transverse and ii(F>, K;) = 1; and i)(F,, K;) = i(Fi, Aj). This
implies that ind;(F,, V) = 0 if and only if ind,(F, V) = 0, and
indz(Fz ’ Vz) = indz(F , V) .

Step 3. Proposition 3.6 implies that F, is homotopic to F3 rel X x
I\N3, where Nj is a small compact neighborhood of V,, such that:
each circle C; from V, is replaced by i;(F,, C;) circles; the fam-
ily V3 is in a single fixed point class; for each circle C; in V3, C;
is transverse and i;(F3, C;) = 1; ind,(F3, V3) = O if and only if
ind|(F, V)=0; and indy(F3, V3) =indy(F, V).

Step 4. We reduce the number of circles of fixed points in V3 by
induction. Let C;, C, be two circles in V3. Since they are in a single
fixed point class there is an arc a from C; to C, and a homotopy
from F3oa to Poa, i.e. a partial homotopy H': X xIx{0}Ua(l)xI —
X from F; to P. The partial homotopy can be extended to a partial
homotopy H: X x I x {0} U¢(KG) xI — X where ¢: KG— X x 1
is an embedding such that: ¢(KG) is contained in a small regular
neighborhood N4 of CiUC,Ua(l); ¢(K3) =Cy; ¢(K3)=C,; and
the orientation on C; induced from the orientation on KG via ¢
agrees with the natural orientation. Then Proposition 3.9 implies that
F; is homotopic to a map Fy rel X x I\ N4 such that: the family V; =
(3\{C1, C,})U{e(K,)} is in a single fixed point class; for each circle
C; in V4, C; is transverse and {1(Fy, Cj) = 1; ind(Fy, V3) = 0 if
and only if ind(F, V) = 0; and indy(Fy, V4) = indy(F, V). The
same process can be applied to Fj, so that at the end we will obtain
a map G which satisfies all the conclusions of the Theorem.

We note that Step 4 can be applied directly to F and V', obtaining
all the conclusions of the theorem except the moreover part, if V
consists only of isolated circles of fixed points and if there is a number
s > 0 such that, for each circle C; in V, ijy(F, Cj) =s. O

Next we give another improvement of Theorem 4.1.

THEOREM 4.3. Let X C R™ be an m-dimensional compact con-
nected orientable manifold, m > 4, let F: X xI — X, and let
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V Cint(X xI) be a family of isolated circles of fixed points and isolated

fixed points of F in a single fixed point class. Then, there exists a com-
pact neighborhood N of V and a homotopy from F to G rel X x I\N
such that Fix(G) = Fix(F)\V if and only if indi(F,V) = 0 in
HI(E), and il‘ldz(F, V) =0in Z,.

Proof. The proof follows from Theorems 4.2 and 4.1. O

DEFINITION 4.2. Let F have only isolated circles of fixed points and
isolated fixed points. A fixed point class V' is said to be inessential
if ind,(F, V) =0 and indy(F, V) = 0, and essential otherwise. We
denote by N(F) the number of essential fixed point classes.

Finally, we state the following theorem about the number and types
of fixed point classes whose proof follows from the above results. Let
F, X be as above, and m > 4.

THEOREM 4.4. (1) F is homotopic to a map G, such that G, has
exactly N(F) fixed point classes.

(2) F is homotopic to a map G, such that G, has exactly N(F)
isolated circles of fixed points.

(3) F is homotopic to a map Gz such that G5 has exactly N(F)
isolated transverse circles of fixed points.

(4) If F is homotopic to a map H such that H has only isolated
circles of fixed points and isolated fixed points, then the number of fixed
point classes of H is bigger than or equal to N(F).
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