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PAIRED CALIBRATIONS APPLIED TO SOAP FILMS,
IMMISCIBLE FLUIDS, AND SURFACES OR
NETWORKS MINIMIZING OTHER NORMS

GARY LAWLOR AND FRANK MORGAN

In this paper we introduce a new method for proving
area-minimization which we call "paired calibrations."
We begin with the simplest application, the cone over
the tetrahedron, which appears in soap films. We then
discuss immiscible fluid interfaces, crystal surfaces, and
one-dimensional networks minimizing other norms.

1. Introduct ion In her classification of soap-film singularities
[Tl], Jean Taylor proved only by the process of elimination that
the cone over the edges of the regular tetrahedron minimizes area
among surfaces separating the four faces. We give a direct proof
which applies to regular simplices in all dimensions. See Figure
1.0.1.

Configurations of several immiscible fluids try to minimize an
energy proportional to interfacial surface area, but the constant of
proportionality varies for each pair of fluids. Chapter 2 proves that
certain cones minimize such weighted areas.

The surface energy of a crystal depends on direction, as given
by a norm Φ on unit normals. Chapter 3 proves certain cones Φ-
minimizing, such as a cone over a triangular prism. The hypothe-
ses involve basic geometric questions, such as the number of possi-
ble cardinalities of equilateral sets (i.e., sets of pairwise equidistant
points) for a norm on Rn.

We also consider 1-dimensional Φ-minimizing networks for differ-
entiable norms Φ. It is well-known that length-minimizing networks
meet in threes at 120° angles. Chapter 4 classifies the singularities
in Φ-minimizing networks in Rn and establishes n + 1 as the sharp
bound on the number of segments that can meet at a point.
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FIGURE 1.0.1. The cone over the tetrahedron provides the
least-area soap film which separates the four regions.
Photo by F. Goro.

1.1 The regular simplex cone is area-minimizing. As an illustration
of paired calibrations, we now sketch a proof that the truncated cone
C over the (n — 2)-skeleton of the regular simplex centered at the
origin in Rn is area-minimizing among hypersurfaces separating the
{n — l)-dimensional faces F{ of the simplex.

Let pi be the vertices of the dual regular simplex with unit length
edges. Each pi lies on the ray from the origin through the center
of the face F t , and all pi are at the same distance from the origin.
Note that pj — pi is the unit normal to a piece of the cone C.

Consider a competing surface M, dividing the simplex into re-
gions Ri containing F;. (If any region is a "bubble" containing no
F{, just call it part of i?χ.) Let My be the surface separating R{
from i?j, oriented with normal pointing into Rj. Since pi is a con-
stant vectorfield, its flux through the boundary of Ri is zero by the
divergence theorem. Thus,

x of pi through Fi) = — ]P(Flux of pi through My)

= ]P(Flux of pj — pi through My) < J ^ area Mij.
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FIGURE 1.1.1. It is an open question whether the
tetrahedron bounds a smaller soap film which does not
separate the four regions. This figure was done by Jean
Taylor of Rutgers University and The Geometry Center,
following an idea due to Bob Hardt.

The first term is independent of M, and we get equality if M = C,
so that

area C < area M.

We call the pi paired calibrations because on each piece of surface
we are considering the combined effect of two fluxes. (In place of
flux we could have used differential forms, as in the standard theory
of calibrations.)

For this simplex cone there is an interesting variation on the proof,
using projections onto the faces of the simplex. For each z, project
M Π d(Ri) orthogonally onto F, . Each regular point of M gets
projected onto two faces, say Ft and Fj. The sum of the two stretch
factors (signed Jacobians) is maximized when Mij is perpendicular
to pj — pi, which is true everywhere if M = C. Since C is stretched
the most, it must have the least area.

It is an open question whether the tetrahedral frame bounds a
smaller stable or unstable soap film which does not separate the
four regions. See Figure 1.1.1.
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A related open question asks whether the standard triple bubble
is the least-area way to enclose three given volumes. See Figure
1.1.2.

We remark that a hypersurface minimizes area among separa-
tors if and only if it is size-minimizing (for some orientation with
multiplicities; cf. [M8 2.8]).

Among separating hyper surf aces, area-minimizing of course im-
plies (M, 0, oo)-minimal (the "area-minimizing" conditions of [Tl,
I. (8)]). The converse holds in Rn for n > 4, as follows by the meth-
ods of B. White [Wl]; it fails for n = 3, although it does hold for
n = 2.

Ken Brakke discovered our fundamental idea independently and
has developed it further (see [Bl], [B2], [B3]). For a partial ex-
tension to curvey minimal surfaces and constant-mean-curvature
surfaces see [Mil] .

FIGURE 1.1.2. It is an open question whether the standard
triple bubble is the least-area way to enclose three given
volumes. (Jim Bredt) [M10].

1.2 Immiscible fluids (Chapter 2). A configuration of immiscible
fluids F i , . . . , Fm , such as air, benzene, mercury, and water, tends
(in the absence of gravity) to minimize an interface energy. This
energy is proportional to area, with a different constant of propor-
tionality dij for each pair of fluids.

Theorem 2.5 gives a sufficient condition for energy minimization
for a hypersurface H consisting of planar pieces Hij with unit nor-
mals rtij separating F{ from Fj. H is energy minimizing if whenever
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k hyperplane pieces i/2lZ2, //, 2 j 3 , . . . , Hikix meet along a codimension-
2 plane, we have the balancing condition

(1) a>iΎi2

niii2 "f 1" α*VinUM - °>

and for any distinct integers 1 < j i , . . . ,jfc < m,

The proof parallels the flux proof sketched in 1.1, with the points
Pi chosen so that pj — pi = a^Πij. Thus the essential step involves
finding an "equilateral set" of points pi at prescribed distances from
each other (cf. 2.1, 2.3).

Examples include the cone over the 1-skeleton of the cube in i?3,
which minimizes surface energy if an interface between opposite
regions would be y/2 times as costly as between adjacent regions
(cf. 2.2, 2.6).

1.3 General norms {Chapter 3). The energy Φ(S) of a crystal
surface S is given by an integral JsΦ(n) in which the weighting of
area depends on the unit normal n at each point. (The same symbol
Φ is used both for the norm Φ(n) and for the associated total surface
energy Φ(5).) Chapter 3 generalizes our earlier results to general
norms Φ.

Theorem 3.9 gives a sufficient condition for a hypersurface H con-
sisting of planar pieces H{j separating regions ί?2, Rj to minimize
ΣΦij(Hij). Let Φ*j denote the norm dual to Φ^ (see 3.1 for defini-
tions). Let riij denote the unit normal to ί/2 j , and let n*i3 denote
a Φ^-unit dual to rct r Then H minimizes Σ Φ2 J(i/^) if whenever k
hyperplane pieces

iii1i2, . . . , iiikn

meet along a codimension-2 plane,

(1) nU + + n ^ O ,

and for any distinct integers 1 < i i , . . . , ύ < m,

(2) Φ71. > 7 . . a + + < - . . - J < i

Again the proof parallels the flux proof sketched in 1.1, with the
points pi chosen so that pj — Pi — n*ij. Thus the essential step
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involves for example finding points pi at unit distance from each
other in the Φ* norm (cf. 3.2).

C M . Petty [P, Theorem 4] proved that for any norm Φ*, there
are 4 equidistant points ("an equilateral tetrahedron") in R3. Con-
sequently the cone over the 1-skeleton of a certain dual tetrahedron
is minimizing. It is an open question whether there are always n + 1
equilateral points in Rn (cf. 3.3).

For some smooth, strictly convex norms Φ* on R3 there are 5
equidistant points (3.4). Consequently certain cones over the 1-
skeleton of triangular prisms are Φ-minimizing (3.5). In these new
singular cones, nine surfaces and six curves meet at a point.

1.4 Existence and regularity. The existence of minimizers for
area or any single norm, as boundaries of top-dimensional currents,
is an easy application of geometric measure theory. When the var-
ious interfaces are assigned different weightings (of a single norm),
as with immiscible fluids, existence theory requires the methods
of F. Almgren [A], with certain stringent additional hypotheses to
avoid "frothing." (See [A, VI. 1 (7)]. We remark that for existence,
these additional hypotheses may be relaxed to a triangle inequality
o'ik < cr{j + σjk.)

For all of these problems, almost everywhere regularity follows by
the methods of Almgren [A], with improvements in certain cases by
J. Taylor [Tl, T2] and B. White [W2].

No one has worked out extensions of the existence and regularity
theory to the case of different norms for different interfaces.

1.5 Minimizing networks (Chapter 4)- Generalizations of the
classical Steiner or Fermat problem (cf. [CR, pp. 356-361]) ask for
the shortest network connecting a finite set of "boundary" points
in Rn. It is well known that the solution consists of finitely many
straight line segments, generally meeting at auxiliary nodes in threes
at 120° angles.

Replace length by a differentiate norm Φ and minimize / Φ(Γ),
where T is the unit tangent vector. Again there is a Φ-minimizing
network consisting of finitely many straight line segments, generally
meeting at auxiliary nodes.

The main structural question asks how segments can meet at
a node. In partial analogy with our results on hypersurfaces, we
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give necessary and sufficient conditions for a collection C of rays a3

emanating from the origin to be Φ-minimizing. Let α* denote the
Φ*-unit duals to the a3. Then C is Φ-minimizing if and only if

and any subcollection of the α* satisfies

(2)

To show these conditions necessary, one considers variations (1)
displacing the origin of all the vectors, or (2) displacing the origin
of some vectors and connecting the new origin to the old.

To show the conditions sufficient, in analogy to the hypersurface
case, one uses the p3 = α* as calibrations.

Using these results, Theorem 4.5 gives a complete characteriza-
tion of nodes in Φ-minimizing networks in i?n, including the fact
that at most n + 1 segments meet at a point. For example, the net-
work connecting the vertices of a regular tetrahedron to the center
of mass is Φ-minimizing for certain Φ.

1.6 References. Expositions of our results appear as [M6], [M9],
[LM], and [M5]. For an introduction to rectifiable sets and geomet-
ric measure theory see [M4]. For a survey on calibrations, see [Ml]
or [M2].

2. Immiscible fluids. This chapter provides examples of cones
which minimize total interface energy, as for immiscible fluids. These
cones serve as models for general singular structure. Examples in-
clude cones over simplices and cubes.

Immiscible fluids F i , . . . , F m tend to occupy (disjoint) regions
i?i, . . . , Rm in such a way as to minimize the total interface energy.
This energy is proportional to area, but the constant of proportion-
ality or interface energy α%3 depends on which two fluids jFt , F3 are
separated by the interface.

The first theorem starts with any configuration of m points in Rn

and produces an associated energy-minimizing partition of the unit
ball into m regions.
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2.1 Immiscible Fluids Theorem I.
Given real numbers ( "interface energies") a^ = aji > 0 for 1 < i\ φ
j < m, suppose there are points p\,... , p m G Rn such that

\Pj ~Pi\ = air

Let C C 5(0,1) be a hypersurface which divides i?(0,1) into re-
gions i?i, . . . , Rm separated by pieces of hyperplanes Hij normal to

Pj~ Pi-
Then for any other hypersurface T — UTij (a closed set which is a

C1 manifold almost everywhere) which also separates the i?z Π5(0,1)
from each other in i?(0,1) (with Ri facing Rj across Tij),

aijArea H^ < y ^ a j j i j

Proof Let 5< = Ri Π 5(0,1). Then

dijArea(Hij) = ]P(Flux of pj — pi through Hij)
i<3

= ^ ( F l u x of pi through Si)

Flux of pj — pi through Tij)

Area (Tij).

π

REMARK. We can allow more general competitors Γ; select
the regions Ri in such a way that their topological boundaries have
finite area, and let T be the union of reduced boundaries. Almost
everywhere, T will separate exactly two regions and will have a
well-defined approximate tangent plane.

2.2 Examples for immiscible fluids. In Theorem 2.1, if P is the
polytope with vertices p t , C could be the cone over the (n — 2)-
skeleton of the dual polytope. For example, if P is a unit regular
octahedron in i?3, the distance α2j between adjacent points is 1,
while the distance a,ij between opposite points is \f2. Consequently,
for these interface energies, the dual cone C over the 1-skeleton of
the cube is minimizing. See Figure 2.2.1.
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FIGURE 2.2.1. The cone over the cube is
energy-minimizing if interfaces between opposite regions are
y/2 times as costly as between adjacent regions. The proof
uses the dual polyhedron, the unit regular octahedron,
where opposite points are a distance y/2 apart.

The same result holds for the hypercone over the (n — 2)-skeleton
of the cube in Rn. Ken Brakke [Bl] proves stronger results by
generalizing our constant vectorfields pi to variable divergence-free
vectorfields. He proves that for n > 4, the cones are actually area-
minimizing. More specifically, let a(n) denote the least value of the
interface energy between opposite regions for which the hypercone
over the cube in Rn is minimizing. Then α(3) = \/2, 0.545 <
α(4) < 0.94, and α(7) = 0. Thus the cone over the cube in R7 is
area-minimizing even if we do not require opposite regions of space
to be separated.

Given a set of interface energies α, j between four immiscible fluids
in i?3, Theorem 2.1 applies if there are points pi with \p3 — pι\ = α j ,
i.e., if there is a tetrahedron with edge lengths α^ . The following
generalization of the triangle inequality, due to Schoenberg [S], tells
whether or not there is an n-simplex with prescribed edge lengths.
Schoenberg's theorem also gives a criterion for embedding more than
n + 1 points in Rn with prescribed distances between them. An in-
teresting discussion of these results appears in Blumenthal [B], Sec-
tion 4.3. Blumenthal includes another criterion in R3 in terms of the
three angles at one of the vertices of the hypothesized tetrahedron.

2.3 Proposition ([S], Theorem 1). Given positive numbers a{j =

dji, 0 < i,j < n, with an = 0; there are points po? -,Pn in Rn
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such that dist(pi,pj) = a^ if and only if the matrix Q with entries

9ij = ^oi + aoj ~ alj)

is positive semidefinite.
If Q has rank s, then the points can be located in Rs but not in

i? 5 " 1 . In particular, the points will be in general position in Rn if
and only if Q is positive definite.

Proof Suppose we have the n + 1 points in Rn. Let W{ = pi — p0

for 1 < i < n. Form an n by n matrix W whose columns are W{.
Then WTW — Q, which is therefore positive semidefinite. More
generally, if the n + 1 points are in general position in i? s, then W
will be an s by n matrix of rank s, so that Q will have rank s.

Conversely, if Q is positive semidefinite of rank s, we can find an
s by n matrix W such that WTW = Q; then let pi be the ith column
of W, with po = 0. D

2.4 Remark. In Theorem 2.1, of course if Hij = 0, C remains
minimizing for αj > α^ , so that the hypothesis may be weakened
to \pj —pi\ < aij for any such pair i , j . It follows for example that for
a nearly flat tetrahedron or other pyramid the minimizer is the set of
faces not including the base. The theorem also admits the possibility
that some R{ = 0, i.e., that we are allowing in competition fluids
which need not occur in the minimizer.

The following reformulation of Theorem 2.1 gives easily checked
sufficient conditions for a configuration of immiscible fluids to min-
imize interface energy. The conditions are not necessary in general
(see Example 2.2).

2.5 Immiscible Fluids Theorem II. Given real numbers ( "interface
energies") α^ = α^ > 0 for 1 < i φ j < m, let C C 5(0,1) C
Rn be a hypersurface which divides 5(0,1) into nonempty regions
i?i, . . . , i?m separated by pieces of hyperplanes Hij, oriented with
unit normals rtij = —Πji pointing from R{ into Rj.

Suppose that whenever k hyperplane pieces ii 2 l Z 2, //t2t3ϊ ? # ύ ή
meet along a co-dimension-2 plane,

(1) 0,^x2^1112 + 1" aikii
nikii = °
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Further suppose that for any distinct integers 1 < zΊ, . . . , is < m,

(2) alll2nlll2 + ••• + al3_llsnl£_ιls
< α t l f β

whenever the n ί j 2 j + 1 are all defined because ̂ j ί ; + 1 occurs.
Then for any other hypersurface M = UM^ (a closed set which

is a C1 manifold almost everywhere) which also separates the Ri Π
5(0,1) from each other in 5(0,1) (with Ri facing R3 across Mi3),

ij < y^ajjArea MjΊ.

Proof. We will apply Theorem 2.1 with Remark 2.4. Put pi = 0.
To define pj for 1 < j < m, consider a generic path 70 from i?i
to Rj passing through distinct regions i?2l = i?x, i?; 2 , . . . , Ris = Rj.
Let

( 3 ) Pj = dhi2

niii2 + H <lis-iisnis-iis'

From (1), the definition of pj is independent of the choice of path
7o- Moreover, if 7 is a generic path from Ri to i?j passing through
distinct regions R^,... , #*,, then

Pj ~ Pi = ak1k2

nk1k2 + 1" aks_lfςsnks_lk3.

By (2), |pj — Pt| < α, j . If Hij occurs, then there is a direct path
from Ri to Rj and

Pj -p% =ai3nl3.

The result follows by 2.1 with 2.4. D

3. General norms. This chapter provides examples of cones
which minimize hypersurface energies given by general norms Φ t J

on the space of normal vectors, as in the surface energy of crystals.
Such cones serve as models for general singular structure. The case
when all of the norms Φij are equal is of primary interest. Examples
include a cone over a triangular prism (Proposition 3.5).

3.1 Definitions. A norm Φ in Rn is a homogeneous convex
function on i?n, positive except at 0. That is,

Φ(ax) — |α|

Φ(x + y) <

Φ(x) > 0 if x φ 0.
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The associated energy Φ(S) of a hypersurface S is given by the
integral Js Φ(n) of the norm of the unit normal n.

The dual norm to Φ, denoted Φ*, is given by

φ*(w) = sup{tί; v : Φ(v) = 1}.

Then
\v w\ < Φ(υ)Φ*(w).

If equality holds, we say that w is dual to v.
Geometrically, a vector w is dual to a given vector v (say Φ(v) —

1) if w is an outward-pointing normal (of any length) to the unit
Φ-ball at v. See Figure 3.1.1. If the unit Φ-ball is not differentiate
at t>, then the direction of w is not uniquely determined; w only
needs to be normal to any supporting hyperplane.

The following facts are true about dual norms (cf. [M3, Prop.
3.3]).

(1) φ** = φ

(2) Φ* is differentiate if and only if Φ is strictly convex
(3) Φ* is C 1 ' 1 if and only if Φ is uniformly convex
(4) Φ* is smooth (C°°) and uniformly convex if and only if Φ is

smooth and uniformly convex.
One often imposes conditions (2) or (3); see Remarks 3.7, 3.8.
Note that the relation "w is dual to υ" is symmetric only if un-

derstood properly: If w is dual to v with respect to the norm Φ,
then v is dual to w with respect to the norm Φ*.

The following theorem starts with m Φ*j-equidistant points in Rn

and produces an associated energy-minimizing partition of the unit
ball into m regions.

3.2 General Norms Theorem I. Let Φtj = Φjt be norms on Rn for

FIGURE 3.1.1. The vector w is dual to v.
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J < rn. Suppose there are points p i , . . . , p m G Rn such that

Let C = UHij C 5(0,1) be a hypersurface which divides 5(0,1) into
regions i?i,. . . , Rm separated by pieces of hyperplanes Hij with unit
normals riij dual to pj — pi [i.e., n^ (pj — Pi) = Φij(riij)).

Then for any other hypersurface M = UMij (see remark following
Theorem 2.1) which also separates the R{ Π 5(0,1) from each other
in 5(0,1) (with i?' facing Rf across Mij),

Further, if it happens that two regions R{ and Rj do not face each
other across a surface Hij of positive area, i.e., Hij = 0, then we
can allow Φ*j(pj — p%) < 1 for any such i and j .

Proof. Let St = R{ Π 5(0,1). Then

- Σ / (Pi ~ ft') * n = Σ ( F l u x o f Pi - Pi throughMij)
i<3 JMt> i<3

= Σ ( F ^ U X °f ft through S{)
i

with equality if M^ = Hij. D

3.3 Remarks. Of course for Φ = Φ* the standard Euclidean norm
on i?n, there is an "equilateral" set of n + 1 points (at the vertices
of a regular simplex) satisfying the hypothesis of Theorem 3.2. It is
an open question whether there are n + 1 such equidistant points for
any norm Φ on i?n, even for Φ smooth and uniformly convex and
n = 4. It is true in R3. Indeed, CM. Petty [P, Theorem 4] proves
that for any norm Φ on Rn (n > 3), any maximal equilateral set 5
satisfies

4 < cαrdS <2n.

By maximal we mean a set to which we cannot add another equidis-
tant point; the same norm may have larger equilateral sets.
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Both bounds are sharp. The second equality holds for the non-
smooth, non-uniformly-convex £°° norm with cubical unit ball and
the 2n equidistant points at the vertices of the cube (the only ex-
ample, up to linear equivalence).

Section 3.4 will give a smooth, uniformly convex norm Φ on R3

with 5 equidistant points. Petty [P, p. 373] observes that it follows
from work of Grϋnbaum [G] that 5 is the upper bound for norms
on R3 not satisfying a certain "Property P," in particular, for uni-
formly convex norms. We conjecture that 5 is the upper bound for
differentiate norms in R3 too.

Thus the possible cardinality and combinatorial structure of Φ-
equilateral sets for norms Φ on Rn remains open, even for differen-
t i a t e norms on i?3, the case of greatest physical interest. Also see
Kusner [K],

3.4 Examples. Here we describe some norms Φ on i?3, including
one with five points all a unit Φ-distance from each other.

Let T be the standard regular tetrahedron in R3 with three ver-
tices pi, p2? P3 in the xy-plane and the fourth p4 on the positive
z-axis, and let p$ = — p4; see Figure 3.4.1.

FIGURE 3.4.1. The regular tetrahedron T and its
reflection.

Let Φo be the norm such that the top half of the unit Φ0-sphere
is the truncated cone over the unit circle in the plane with vertex
(0,0, z), with z > 0 chosen so that p 4 — pi, p 4 — p 2, and p 4 — p% are
on the cone, and therefore the vertices of T are Φ0-equidistant. See
Figure 3.4.2.
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P4-P3

P3-P2 P1-P3

FIGURE 3.4.2. The unit Φo-ball. All six sides of the
regular tetrahedron have Φo length 1 as well.

Simple trigonometry shows that

The norm Φo can be smoothed to uniformly convex norms Φ
Φ 2 with

i and

-,

maintaining symmetry under rotations about the z-axis and keeping
the two circles of Figure 3.4.2 in the unit sphere. See Figure 3.4.3.
Then the five points p\,... p5 all satisfy

*2(Pi ~Pj) = 1 ioτiφj.
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P4-P5

P4-P3

P3-P2 P1-P3

FIGURE 3.4.3. The unit Φ2-ball. All five vertices of the
regular tetrahedron and its reflection are unit Φ2-distance
apart.

The following proposition gives a new minimizing cone in R3. See
Figure 3.5.1.

3.5 Proposition, The cone over the 1-skeleton of any triangular
prism is Φ-minimizing for some smooth, uniformly convex norm Φ.
At the origin, nine surfaces and six curves meet at a point.

Proof. Let Φ be the dual of the norm Φ2 of Example 3.4. Let
Pi be the vertices of the regular tetrahedron and its reflection as in
Figure 3.4.1, so that Φ*(pj — Pi) — 1. Let n t j be the unit vectors
dual to the pj —p{. These vectors n^ include the unit normals to the
cone C over the edges of a certain vertical right triangular prism P,
which by 3.2 is Φ-minimizing. Any other triangular prism is afϊinely
equivalent to P, and hence its cone is minimizing for some norm.

Note that since the closures of the two regions of space corre-
sponding to the points p± and p$ only intersect at the vertex of C,
we can allow Φ*(p4 — p$) < 1, so that C is also Φ-minimizing if Φ
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FIGURE 3.5.1. The cone over the triangular prism is
Φ-minimizing.

is the dual of the norm Φi of Example 3.4. D

The methods of this paper do not require the piecewise planar
surface to be a cone. For the integrand Φ2 and its dual Φ just
considered, there is a one-parameter family of surfaces which we
can prove are Φ-minimizing. The boundaries are the edges of taller
and shorter triangular prisms. They are described as follows. For
concreteness, scale the above Φ-minimizing cone C so that its height
is 1, and let its vertex be the origin.

FIGURE 3.5.2. Other Φ-minimizing surfaces.

To obtain a Φ-minimizing surface of height L > 1, cut off the
half of C where z > 0 and lift it up a distance L — 1. Connect
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the two pieces with the Cartesian product of a horizontal Y with a
vertical line segment of length L — 1. See Figure 3.5.2. This surface
is composed of three vertical trapezoids and six triangles.

To obtain a Φ-minimizing surface of height L < 1 (say L = 1 —
2c/), cut out the portion of C where — d < z < d, shift the upper
remaining piece down a distance 2c?, and add a horizontal triangle
to fill the hole in the middle. See Figure 3.5.2. This surface has six
trapezoids and four triangles.

3.6 Proposition.Each of the one-parameter family of surfaces de-
scribed above is Φ-minimizing for the smooth, uniformly convex
norm Φ = Φ*.

Proof. The normals n2 are the same as for the cone C, with one
additional normal Πio = ri\0 for the shorter surfaces, which have the
horizontal triangle. D

3.7Remarks. More singular examples are provided by norms Φ
which fail to be strictly convex (which means that the dual norm Φ*
fails to be differentiate). For example, let Φ* be the ί°° norm on
i?n, which has a cubical unit ball, whose 2n vertices are equidistant.
By Theorem 3.2, the union of all the axis hyperplanes (the cone
over the generalized octahedron) is Φ-minimizing.

As a second example, let Φ* be the ί1 norm, whose unit ball is
the regular octahedron or "cross-polytope." The 2n vertices of the
octahedron are equidistant in this norm. Again by Theorem 3.2,
the cone over the cube is Φ-minimizing. (In i?3, the cone over the
cube is also Φ-minimizing if the unit Φ*-ball is a hexagonal prism,
whose height is adjusted so that six of its twelve vertices are the
corners of a regular octahedron.)

If the unit Φ-ball in R3 has a large flat face on top, so that the unit
Φ* ball comes to a sharp point on top, then the graph of any function
on the disc with Lipschitz constant at most 1 is Φ-minimizing. Thus
there are infinitely many Φ-minimizing ways to split the cylinder.

Remark. As in Remark 2.4, for any pair i,j for which Hij = 0,
the hypothesis of Theorem 3.2 may be weakened to Φ*j(pj—pi) < 1.
The theorem also admits the possibility that some Rt = 0.

The following reformulation of Theorem 3.2 gives easily checked
sufficient conditions for a configuration to minimize the energies
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given by norms. Again the case where all the norms Φ^ are equal
is of primary interest.

3.9 General Norms Theorem II. Let Φ^ = Φji be norms on Rn

for 1 < i φ j < m. Let C C 5(0,1) C Rn be a piecewise planar hy-
persurface which divides 5(0,1) into nonempty regions i? i , . . . , i?m

separated by pieces of hyperplanes H{j oriented with unit normal
Πij = — Πji pointing from Ri into Rj. Let n*ij = —n*ji be a Φ*j-unit
dual to riijj i.e.,

n*ij 'V <ΦtJ(v),

with equality for v — Πij.
Suppose that whenever k hyperplane pieces Hixi2, Hi2i3,... , i/2fcίl

meet along a codimension-2 plane}

(1) n \ l l 2 + + n \ V l = 0 .

Further suppose that for any distinct integers 1 < zΊ, . . . , ik < τn}

(2) n
whenever the n2 t + 1 are all defined because H{ i ^ occurs.

Then for any other hypersurface M = UM^ (see remark following
Theorem 2.1) which also separates the R{ Π 5(0,1) from each other
in 5(0,1) (with R{ facing Rj across M{j),

Proof. Replace a^riij by n*ij in the proof of Theorem 2.5 to obtain
Pi such that pj — pi = n*ij (when Hij occurs) and more generally
ΦΐjiPj — Pi) ^ 1 f° r aU * a n ( i i The result follows by Theorem 3.2
and Remark 3.8. D

Remarks. If the Φij are differentiate at n^, then condition (1) is
necessary for the first variation to vanish (cf. Lemma 4.1). If Φ^ is
not differentiate at n2j, then n*ij is not uniquely determined (Φ*
is not strictly convex; cf 3.1(2)).

In the statements and proofs of Theorems 3.2 and 3.5, the as-
sumption implicit in the definition of a norm that Φ(—v) = Φ(v) is
unnecessary; the hypothesis Φij — Φji must merely be replaced by
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4. Minimizing networks. This chapter charecterizes singular-
ities in energy-minimizing networks. In particular, Theorem 4.5
shows that in Rn at most n + 1 segments meet at a point. A good
reference is [M7, Chapter 10].

For any norm Φ on i?n, for any piecewise differentiable curve C
with unit tangent vector Γ, define the energy

Φ(C) = / Φ(Γ).
Jc

Any finite set of "boundary" points can be connected by a Φ-
minimizing network, consisting of finitely many straight line seg-
ments, possibly meeting at auxiliary nodes (cf. [A2]).

The following lemma gives a useful formula for the first variation
of Φ-energy.

4-1 Lemma. Let Φ be a differentiable norm on Rn, and let a G Rn.
The first variation in Φ(a) satisfies

δ(Φ(a)) = — — δa.V V ; ; Φ*(α*)

Here α* is a vector dual to α, so that equality holds in the general
inequality v w < Φ(v)Φ*(w) when v = a and w = a*.

Proof Differentiating

Φ(a) = ———- αv } Φ*(α*)

a* . . / <r

yields

δ(Φ(a)) = rr^—r δa + δ I -=-^—r ) α,v v n Φ*(α*) \Φ*(α*)/

and the second term vanishes because

^ / τ x a < Φ(α),
Φ*(6*) ~~

with equality when 6 = α. D
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The following theorem gives a characterization of Φ-minimizing
network cones.

4.2 Theorem. Let Φ be a differentiable norm on Rn, and let
Φ* denote the dual norm. Let α l 9 . . . , α/- £ Rn, normalized so that
Φ(aj) — 1, and let a\^..a\ denote the duals such that Φ*(α*) = 1
and a,j α* = 1. Then the network C consisting of rays from the
origin to α i , . . . , αjt is Φ-minimizing if and only if

(1) al + --- + at = 0

and any subcollection of the α* has a sum ofΦ*-norm at most 1:

(2)
ieJ

Remarks. Condition (1) is the equilibrium condition for k seg-
ments meeting at the origin. By convexity, such an equilibrium is a
minimum (for fixed topological type). Cf. [CG, (10) and Theorem
3]. Condition (2) deals with other topological types.

If Φ is not differentiable, the dual vectors α* are not uniquely
determined. If (1) and (2) hold for some choice of the α*, then C is
Φ-minimizing.

The converse fails for nondiίferentiable Φ. Alfaroet. al. [Al, A2]
show that the cone consisting of four vectors along the axes in R2

is minimizing for a certain piecewise C°°, uniformly convex norm
Φ, but conditions (1) and (2) hold for no choice of the a*. Conger
[Con] proves an analogous result for six vectors along the axes in
R3.

For the nondifferentiable, non-uniformly-convex ί°° norm on i?n,
with cubical unit ball, the 2n vectors from the center to the vertices
of the unit cube form a minimizing network. Cf. [H].

Proof of Theorem J^.2. First suppose C is Φ-minimizing. For vari-
ations in C displacing the center an amount <5α, since Φ is differen-
tiable, Lemma 4.1 gives a first variation of

so that (1) holds. Similarly for variations displacing the origin of
the segments {Oaj : j £ J} an amount 8a and adding a line segment
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joining the old origin to the new, the first variation is

k r k r
ΣI / αj = Σ / αj by Stokes's theorem

/,Σ«;

so that (2) holds.
Second, suppose (1) and (2) hold. Let N be any network con-

necting the points a,j. For j > 2, let Pj be paths in N from αi to
αj, such that no Pj overlaps itself. For each segment Si of JV, let
{Pj : j G J%] be paths containing 5 t . Then

Ar

Σ

<Σ
< y Φ(Si) by (2)

1

= Φ(iV).

Therefore, C is Φ-minimizing. D

The following two lemmas pave the way for the main theorem 4.5
of this section.

4.3 Lemma. Suppose we have a set of vectors in Rn labelled as
α i , . . . , <2fc, a\,... , a*k, with k > 3 ; and suppose that a,j a* = 1 /or
eac/i j , and Σ a j = 0 Then there is a differentiable norm Φ on Rn

with dual norm Φ* such that

and

(2) Φ * ( X X | < 1 for all Jc{ l , . . . , fc }

z/ a7zc? on/j/ 2/
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(3) - 1 <ai a* < 0

for all i φ j . Φ may be chosen to be C°° and uniformly convex.
Proof. Suppose there is such a norm. Since Φ is differentiate,

the unit Φ* ball £* is strictly convex (3.1 (2)). If ξ G B\ then

(4) - l < α < £ < l ,

with equality only if ξ = ±α* (since unit duals are unique for a
differentiate norm). Now suppose that i φ j , and let £ = α* + α*.
By (2), ξ e B*. Using this ξ in (4) gives

1 + α α* < 1,

so that
αt α* < 0.

Similarly, (4) with ξ = a"- yields

- 1 < ai a*,

with equality only if α̂  = —α*. But if a*- = —α* then A; < 3 (since
as cij and αβ a\ cannot both be negative if a\ — — α^).

Conversely, suppose (3) holds. Consider the symmetric polytope

C* = {£ : k £l < 1 foralΠ}.

Since αt α* = 1 and (3) holds, each α* lies on the interior of a
distinct face of C*. Also since αt α^ < 0 for i ^ j and X]α* = 0,
each sum Σ?G j a] satisfies

-1 < -α* £ α * - αi
jeJc

with equality only if Σjej a* = ±α*. Hence each sum Σj^j a^ φ ±α*
lies in the interior of C*. Since there are only a finite number of these
sums, we can smooth C* and obtain a C°°, compact, symmetric,
uniformly convex body B* C C* having these same properties. Take
Φ* to be the norm with unit ball 5*, and Φ to be the dual norm.
Then Φ is C°° and uniformly convex, and (1) and (2) hold. D
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4-4 Lemma. Let α i , . . . , αjt, α^, . . . , a*k be vectors in Rn such that

(1) al + + al = 0

and

(2) ai - a* < 0 /or i φ j .

Then Card{a{} < n + 1. Indeed, either the α2 are linearly indepen-
dent or the a{ constitute the k vertices of a (k — l)-simplex with the
origin in its interior.

Remark. Z. Furedi, J. Lagarias, and F. Morgan [FLM, Thm.
3.2] show that if equality is allowed in (2), but still α; α* > 0, then
Card{ai} < 2n.

Proof of Lemma 4-4- If α i , . . . ,α* are linearly independent, we
are done. Otherwise we may assume

λ r - l
ak = Σ λt αz

with

λ i , . . . , Xp > 0 > λ p + i , . . . , Xk-i-

Suppose p > 1. For fixed j such that 1 < j < p,

A - l p

0 > α^ α* = ^ λ, αt α* > ^ A.-α̂  α*

because for i > p, λ2α2 α^ > 0. Summing over j yields
P P (k-l

0> EU α;>^αr

because for i < p < j , λt α, αj < 0. Thus

0>έλ, α, (-α:)>0,
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because for i < p, λ tα t a*k < 0. This contradiction implies that p =
0, i.e., each λ2 must be negative. Hence the k— 1 points <Zχ,... , α^_i
must be linearly independent and the k points α i , . . . , α* are at the
vertices of a (k — l)-simplex with 0 in its interior. D

4.5 Theorem. Let Φ be a differentiate norm on Rn. Then at most
n + 1 segments come together in a Φ-minimizing network. Indeed,
a 1-dimensional cone C consisting of at least three rays emanating
from the origin is Φ-minimizing for some Φ if and only the rays:
are linearly independent or pass through the k vertices of a (k — 1)-
simplex with the origin in its interior.

Φ may be chosen to be C°° and uniformly convex.

Remarks. If C is the cone over the regular tetrahedron centered
at 0 in R3 with vertices α2, the unit ball of Φ can be taken to be a
smoothing of the cube with vertices ±α t ; in i?n, a smoothing of the
poly tope with vertices ±α t .

The differentiability hypothesis is necessary. See the remarks after
4.2.

The planar case was treated in [Coc], and with more careful
attention to differentiability in [L] and [A2].

M. Alfaro, T. Campbell, J. Sher, and A. Soto (written up in [A3])
have considered the related problem for directed length-minimizing
planar networks. They proved that segments sometimes meet in
sixes, but never in sevens.

Proof of Theorem 4-5. First suppose that the rays pass through
the vertices α i , . . . ,α^ of a (k — l)-simplex with the origin in its
interior. Because the origin is in the interior, we can choose the
vertices on the rays in such a way that their sum is zero. Using
a nonsingular linear transformation we may also assume that the
simplex is regular, with \a.j\ = 1. Let α* = aj. Then aj - a* = 1,
Σ a* — 0, and — 1 < α2 α* < 0 for i φ j . It follows by Lemma 4.3
and Theorem 4.2 that the cone C over α i , . . . ,α^ is Φ-minimizing
for some Φ as asserted.

Second, let α i , . . . , α* be linearly independent. Using a nonsingu-
lar linear transformation, we may assume that the aj are orthonor-
mal. Let α* = α, - ^ ^ α i . Then aj α* = 1, ^ α * = 0, and
— 1 < α2 a*j = — £—- < 0 for i φ j (k > 3). Again by Lemma 4.3
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and Theorem 4.2, the cone C over α 1 ? . . . , α* is Φ-minimizing for
some Φ as asserted.

(An alternative argument for part two would have been to perturb
part one.)

Now let C be any Φ-minimizing cone. By Theorem 4.2 and
Lemma 4.3, C is the cone over points α i , . . . ,α& in J?n, with as-
sociated points a* such that Σ&* = 0 and α2 α* < 0 for all i φ j .
The conclusion now follows by Lemma 4.4. D
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