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THE SPHERICAL MEAN VALUE OPERATOR FOR
COMPACT SYMMETRIC SPACES

V. PATI, M. SHAHSHAHANI AND A. SITARAM

When M is a compact symmetric space, the spheri-
cal mean value operator Lr (for a fixed r > 0) acting on
L2(M) is considered. The eigenvalues λ for Lrf = λ/ are
explicitly determined in terms of the elementary spher-
ical functions associated with the symmetric space. Al-
ternative proofs are also provided for some results of T.
Sunada regarding the special eigenvalues -hi and — 1 using
a purely harmonic analytic point of view.

1. Introduction. In a series of papers ([Sul, Su2, Su3]) T.
Sunada has considered (among other things) the "spherical mean
operator" of a fixed radius r on a compact Riemannian manifold
Y and has examined its connections with the so-called 'Geodesic
Random Walk' problem. If r > 0, the spherical mean operator Lr

is defined on L2(Y) by:

(Lrf)(x)= ί f(ExpxrX)dσ(X).
•/{*€Tβ(y):||X|| = l}

(Here TX(Y) is the tangent space at x € Y equipped with the inner
product arising from the Riemannian structure, Expx the exponen-
tial map from TX(Y) into Y and dσ the normalized measure on the
surface of the unit sphere in TX{Y).) Roughly speaking (Lrf)(x)
is the mean value of / at a geodesic distance r from x. This note
grew out of an attempt to understand the results of Sunada from a
group theoretic/harmonic analytic point of view. In fact we show
that for symmetric spaces of the compact type the ergodicity and
eigenvalue problems considered in [Sul] are consequences of simple
and elementary arguments (Propositions 2.4 and 2.5). This point
of view also sheds some light on the difference between spheres,
symmetric spaces of rank 1 and higher rank spaces.
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The outline of the paper is as follows: Lr is given by a convolution
operator with a if-biinvariant measure and consequently the eigen-
values are ψπ(r) (see Section 2). Sunada's results about ergodicity
of Lr follow from a simple group theoretic fact (Proposition 2.4) and
Proposition 2.5. Furthermore, these arguments also imply that in
most cases —1 is not an eigenvalue.

2. The main results. Let Y be a symmetric space of the com-
pact type and G = h{Y) the connected component of the group of
isometries of Y. Let q0 G Y and K = {k € G : k q0 = #o} Then
G is semi-simple and compact, (G, K) is a symmetric pair (of the
compact type) and Y can be identified with G/K - see [HI] for the
definition and details. Let 0 be the Lie algebra of G and t the Lie
algebra of K and let g = t φ p be the associated "Cartan decom-
position" (see [HI] for details). Then the geodesies through q0 are
precisely jχ(t) = (exptX)q0, X G p (where exp is the exponential
map on the Lie algebra g) and p can be naturally identified with the
tangent space Tqo(Y) of Y at #o (p can be equipped with the inner
product arising from the Killing form restricted to p and this in turn
gives the Riemannian structure onY = G/K) Let q = g-qo, g € G
and Expg the 'Exponential map' at q of the Riemannian manifold
Y. If r > 0, it follows from the identification made above that for
any / e C(Y)

ί f(gexprX-qo)dσ(X).
J{Xep:\\X\\p=l}

In the first integral dσ(X) denotes the normalized surface measure
on the unit sphere in Tq(Y) and in the second integral it is the
normalized surface measure on the unit sphere in p. Lr is thus
a linear map of C(Y) into C(Y) and will be called the spherical
mean value operator corresponding to r. Actually, Lr extends to a
linear bounded self adjoint operator from L2(Y) to L2(Y). This will
be clear from the discussion to follow later. (Actually, generically
speaking, Lr will even be a compact operator - see [Sul] - but we
will not need this fact in this note.)

We will now describe some facts from elementary harmonic anal-
ysis on compact symmetric spaces. A good source for this is [H2].
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Equip Y with the canonical Riemannian measure which in this case
is just the canonical G-invariant measure on G/K. By ^{Y) we
mean the set of ZΛfunctions with respect to this measure. A func-
tion / (or a measure μ) on Y = G/K will sometimes be viewed
as a function (or measure) on G which is right invariant under K.
Thus we will sometimes view C(Y), LP(Y) etc as subspaces of C(G),
D>{G) etc.

Fix r > 0. We will now associate with r a certain specific proba-
bility measure v on Y as follows:

Thus v can be viewed as a right if-invariant probability measure
on G. Due to the properties of the Cartan decomposition, one can
show that the above probability measure is also left if-invariant.
Further one can also show that, considered as a measure on G, v is
invariant under the map g H* g~ι of G onto G. Using all this one
can easily show that if / 6 G(F), then:

Lrf = f*v.

(On the right hand side the convolution is on the group G and since
/ is a continuous right if-invariant function and v is if-biinvariant,
f*v is right if-invariant and hence can be viewed as a continuous
function on Y. Recall that if h is a function on G and μ is a measure,
(h*μ)(g) = Jh(gx~ι)dμ{x).)

We record the above discussion in the form of a lemma:

LEMMA 2.1. With the identifications described above, Lrf = f*v,
for f e C{G/K) = C(Y). Thus Lr extends to a bounded self-adjoint
operator on L2(Y).

(The boundedness is clear because Lr is realized as convolution
against a probability measure. That it is self-adjoint follows from
the fact v is real and invariant under g \-ϊ g~ι.)

Notice that if / is a constant function, then / is an eigenfunction
for Lr with eigenvalue +1. Adopting the terminology in [Sul] we
have:

DEFINITION 2.2. Lr is said to be ergodic iff Lr = /, / e L2(Y)
implies /^constant (a.e). In this case we say +1 is a simple eigen-
value of Lr.
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In order to state the main consequence of Lemma 2.1, we need
to introduce some terminology from harmonic analysis. Let TΓ be
an irreducible unitary representation of G on a (finite dimensional)
Hubert space H. Then TΓ is said to be class-1 if 30 φ v0 G H
such that π(k)v0 = i>0, VA; G K. It is known that if TΓ is a class-1
representation, then dimifo — 1> where
Ho = {v : π(k)υ = v,\/k G K}. G\ will denote the collection of
pairwise inequivalent irreducible unitary (finite dimensional) class-
1 representations of G. Let TΓ G G\ and H be a Hubert space on
which TΓ acts. Let i>o G i/o> ||^o|| = 1 and let 0π be defined by:
φπ(g) = (VOJ^CPJ^O)- Then we will call 0π the elementary spherical
function associated with TΓ. (Notice if ό̂ e ^o> Ibόll — 1? then
(π(<7)^o5̂ o) = (̂ "(fl1)̂ 05 vΌ)i s i n c e dimifo = 1.) Further φπ is a jfiΓ-
biinvariant continuous (in fact real analytic) function and φπ(e) = 1.
If π G Gi and μ is a K-biinvariant measure on G, define Gμ j π by

= / Φπ{x)dμ(x).
JGIG

The function TΓ —> Cμ^ defined on G\ is called the "spherical Fourier
transform" of the measure μ.

We now record a fact from the harmonic analysis on G/K: Let
Tμ be the bounded linear operator on L2(G/K) defined by T^(/) =
/*μ. Then by Frobenius reciprocity it follows that each TΓ G G\ "oc-
curs" exactly once in the decomposition of L2(G/K) under the left
regular action of G. If we denote the subspace of L2(G/K) corre-
sponding to τrc by L2(G/K)π, then Tμ acts as the scalar Cμ<κ on this
space. From this it follows that the eigenvalues of Tμ are precisely
Cμ,π|πGg (Here τrc is the irreducible representation contragredient
to TΓ.)

Now let v be the specific lf-biinvariant measure associated with
Lr described earlier. Then:

α , π = / φπ(exprX q0)dσ(X)
J{X£p:\\X\\=l}

(Note that here we are viewing φπ as a function on Y = G/K.)
For t > 0, let ψπ be the function defined by

= / φπ(exptX qo)dσ(X).
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Thus ψπ(t) is the average value of φπ on {exptX q0}. Note that if Y
is a rank-1 symmetric space then ψπ(t) = φπ(exptXo) for any Xo G
p with | |X0 | | = l This is because in this case, K acts transitively
on the unit sphere of p. (Also in this case a complete list of rank-1
compact symmetric spaces is available and for these spaces one can
get explicit expressions for φπ and φπ in terms of well-known special
functions.)

We now return to the main question discussed in the introduction:
Fix r > 0 and consider the eigenvalue problem Lrf = λ/, / G
L2(G/K). Let

Eig(Lr) = {λ : 30 φ f G L2(G/K) such that Lrf = λ/}.

Lemma 2.1 and the preceding discussion immediately yield:

PROPOSITION 2.3. Eig(Lr) = {ψπ(r) : π G G\}.

REMARK. TO the harmonic analysts among the readers this
Proposition should not come as a surprise at all.

Next we would like to take up the question of the special eigen-
values +1 and —1. Before that we need some preliminary results.
The first proposition is a simple group theoretic lemma and is well-
known in the 'folklore'. We therefore omit the proof.

PROPOSITION 2.4. Let L be a compact group and μ a probability
measure on L. Assume that the group generated by suppμ is dense
in L. (Here suppμ denotes the (closed) support of μ.) Then if
f G Lι(L) and /*μ = / or μ*/ = /, then f = const(α.e).

We now come to one of the main results of this section. Fix r > 0
and let μ be the specific probability measure on Y introduced ear-
lier associated with Lr. We again think of v as a right if-invariant
probability measure on G. Then we have the following crucial ob-
servation:

PROPOSITION 2.5. Let the rank of Y considered as a compact
symmetric space be greater than 1. Then for any r > 0, the group
generated by suppz/ is dense in G.

Proof As usual let g=Lie algebra of G, t=Lie algebra of K, p the
orthogonal complement of I with respect to the Killing form and Q =
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fcφp the 'Cartan decomposition' (see [HI]). Let π : G -> G/K = F
be the canonical map. Then dπ is an isometry from p to T90(Y) and
further τr(expX) = Expqo(dπ(X)) for X G p. Thus it follows that
if ' 5 r denotes the sphere of radius r in Tqo{Y), then Exp ĵSV]) =
τr{expX : \\X\\ = r}. Hence n'^Exp^Sr)) = exp[5j?]ϋf (where
S£ denotes the sphere of radius r in p). This is clearly suppi/ in
G. Thus it suffices to prove that the group generated by exp(Sf )K,
denoted by gp([exp Sf\K) is dense in G. Let α be a maximal abelian
subalgebra of p. Then dimα = rank Y > 1. Let A be the analytic
(abelian) subgroup of G corresponding to α. Let A\ = A. (Remark:
in the case of non-compact symmetric space A obtained as above
will be closed but in the compact situation, this may not be the case
- that is why we are forced to take the closure.) Clearly A = exp α
and A\ — expα. Clearly A\ is a torus in G, dim^li > dirndl > 2.
Let cii be the Lie algebra of A\. Then αi is abelian and αi D α.
Let [ be the orthogonal complement of α in αi. Then one can show
using the properties of the Cartan decomposition that (Π p = 0
and in fact t is orthogonal to p and hence ί C 6. Now since A\ is a
torus of dimension m > 2, by Kronecker's theorem, for any X C αi
whose coordinates (with respect to an o.n. basis) (#i,...,£m) are
such that l,xi,...,xm are rationally independent, expX generates
a dense subgroup of A\ (see [CFS]). Now consider the subset 5 =
{Xι + X2 : X\ e S?,X2 e (}, i.e. the cylinder on S? in αi. Then
by an elementary measure theoretic argument one can show that
there exists X e S whose coordinates (xι, ...,α;m) are such that
l,α;i,...,xm are rationally independent. (Note that dim5^ > 1.)
Hence Ax = gp[exp(5)] and kAλk~λ = g p ^ e x p ί ^ j P 1 ) , VA; € K.
Now one may write any X G 5 as X = Xλ + X2, X\ G 5^, X2 G ί
and since [Xi,X2] = 0 we have (expX)m = (expXi)m(expX2)

m

So gp(expX) C gp(expXi)if, MX G S. Thus

c gpίifclexpίXi)]*"1)^, MX G 5, k G K,

i.e. kgp(expS)k~ι C gp[k(exp S?)k~l]K.
But ^ ( e x p ^ ) ^ - 1 = exp(Adfc 5r

α) C exp S'J?) since 5r

α C S* and
Ad A: preserves Sf, Mk G K i.e.

kgp[expS)k~ιK C gp[exp(5j?)]ϋf, VA; G K.
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But since CK = CK, C C G (G is compact, as is K), one has

kgp[expS]k-λK C gp[exp S$]K.

However

fcgpfexpS]*;-1 = A;gp[exp(5)]A;"1 =

So

Γ 1* C gp[exp S?]K, Vfc € K.
Now G = U ί * ^ * " 1 ) * ' by Theorem 6.7 Ch.V in [HI] and
A C Aλ = • G = UkikAik'^K. So G = gp[expflj?]fl\ But
note that gp[expSJ?]# C gp[exp SJfϋf] and so G = gp[exp SfK],
which is what we wanted and the proof of the proposition is com-
plete. D

REMARK. It is instructive to see what the above proposition says
in the group situation i.e. let L be a compact, connected Lie group
such that the dimension of the maximal torus of L is strictly greater
than 1. Fix a biinvariant Riemannian structure on L and let I be the
Lie algebra of L. Fix r > 0 and let Sr = {exprX : X 6 I, pf| | =
1}. Then the group generated by Sr is dense in L. Of course this
follows from Proposition 2.5, thinking of L as the symmetric space
(L x L)/Δ where Δ is the diagonal {(#,#) : 9 € L}. However the
proof of this fact is much simpler and more direct though one uses
the same basic idea as in the proof of Proposition 2.5.

An immediate consequence of Proposition 2.4 and Proposition 2.5
is a theorem of Sunada:

THEOREM 2.6 [Sul]. Let Y be a compact symmetric space of
rank greater than 1. Then for any r > 0, Lr is ergodic (i.e. +1 is a
simple eigenvalue).

Proof. For / e L2(Y), Lrf = /*i/ by lemma 2.1. Now use propo-
sitions 2.4 and 2.5. D

From this we immediately have another result of Sunada:

THEOREM 2.7 [Sul]. Let r and Y be as above. Then - 1 is not
an eigenvalue of Lr i.e. f e L2(Y) and Lrf = —/ implies / = 0
(a.e.).

Proof. Lrf = - / = • f*u = - / . Thus f*{y*u) = -f*u =
—(—/) = / . Now since v is a probability measure, it is easy to
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show supp(z/*^) = (suppz/) (suppz/). G is a compact, connected
Lie group and it follows easily that since the closure of the group
generated by suppz/ in G (Prop. 2.5), the closure of the group
generated by (supp v) (supp v) is also G. Hence by Proposition 2.4,
/ = const(α.e.). But now Lrf — —f implies / = 0 (a.e.). D

We now take up the case of compact symmetric space of rank-one.
We first need to make a few observations. Let t be a Lie algebra

of K. Then since τ&nk(G/K) = 1, it follows that t is a maximal
Lie sub-algebra of g. (This is true for any irreducible symmetric
pair (g, t) and so in particular for rank-1 pairs.) We use this to see
that if S is any closed submanifold of G/K such that dim S > 1
and 7r : G -> G/K is the canonical map, then the group generated
by π~ι(S) is dense in G. For if L is the closure of this group then
dim!/ > dim if, because L will contain a subset homeomorphic to
something of the form U\ x U2^ U\ a neighborhood in K and ί72 a
neighborhood in S C G/K. Now L clearly contains K and so if I is
the Lie algebra of L, we would have

dim I > dim t. Therefore I = g by the maximality of 6.
Next, in the case of rank-1 compact symmetric spaces all geodesies

are closed and have the same length = 2L, say. Now consider Sr =
{exprX -q^ : X 6 p, | |X|| = 1}. If r < L, then one knows from [HI]
that Sr is a diffeomorphic copy of {rX G p : \\X\\ = 1}. If r = L,
SL is the so-called antipodal manifold to qo and we have to consider
two cases: (a) Y =Sphere - In this case SL is a single point; (b) Y is
not a sphere. In this case SL is a proper submanifold of Y = G/K.
(These facts follow from Theorem 10.3, Ch.VII in [HI].) Putting all
the above discussion together we have: (i) if Y is a sphere the group
generated by π - 1 ( 5 r ) is dense in G if r ^ {L, 2L, 3L,...}. Thus,
since clearly suppz/ = π~ 1(5 r), in this case the group generated by
suppu is dense in G (ii) If Y is not a sphere, the group generated
by π~~ιSr is dense in G if r ^ {2L, 4L, 6L,...}. Again in this case
the group generated by supp v is dense in G.

We have thus established.

THEOREM 2.8 [Sul]. Let Y = G/K be a compact symmetric
space of rank - 1. (a) IfY is the k-sphere (in M fc+1

; k = 2,3,...),
then for r £ {L, 2L, 3L,...} ; +1 is a simple eigenvalue of Lr and
—1 is not an eigenvalue of Lr. (b) IfY is not a sphere, then for
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r ^ {2L,4L,...}, +1 is a simple eigenvalue of Lr and —1 is not an
eigenvalue of Lr.

Our approach to the proofs of Theorems 2.6 and 2.8 "explains"
why there is a difference between spheres and other rank-1 spaces
and also why there is a difference between rank-1 spaces and spaces
of rank greater than 1.

Finally, in conclusion, we would like to point out that the question
of whether 0 is an eigenvalue is also of independent interest and is
related to the so-called Pompeiu problem (see for instance [BeZ]). In
fact, Badertscher ([Ba]) also views Lr as a convolution operator in
order to analyze the Pompeiu problem on locally symmetric spaces.
The spherical mean value operator has also been considered for the
Heisenberg group (see for instance [T]).
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