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CONVERGENCE OF INFINITE EXPONENTIALS

GENNADY BACHMAN

In this paper we give two tests of convergence for an
α 3(1

infinite exponential ax

2 . We also show that these tests
are essentially the best possible.

1. Introduction and Statement of Results. Given a se-
quence of positive real numbers α n , n = 1, 2 , 3 , . . . , we associate with
it a sequence of partial exponentials En, n = l , 2 , 3 , . . . , defined by

On

(1.1) En = a? .

We will call {an} a sequence of exponents and the sequence {En}
an infinite exponential. As in the study of sums and products one
would like to develop tests of convergence of an infinite exponential.
Euler [E] was the first to give such a test. He showed that in the
special case a\ = α2 = a^ = = α, En is convergent if and
only if e~e < a < e1/6. This result has been rediscovered by many
authors. An extensive bibliography of papers containing this and
related results may be found in the survey paper by Knoebel [K].

In the general case of non-constant exponents the best known
results are due to Barrow [B]. He showed (although some of his
arguments are rather sketchy) that {En} is convergent for e~e <
0"n < e ly/e, n > ΠQ. He also considered the cases an > e1//e and
a™ < e~e. In the first case, writing an — e1//e + en, with en > 0, he
showed that {En} is convergent if

el/e

(1.2) nlim )€nn2< ,

and is divergent if

(1.3) l i m e n n 2 > ^ .
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In the second case, writing an = e~e — en, with en > 0, he obtained
the conditions limn_»oo en = 0 and Hindoo nqen = 0 for some q > 1,
as necessary and sufficient for the convergence of {En} respectively.

Ramanujan made the following entry (without a proof) on page
30 of his third notebook (see [R], page 390, also posed as an unsolved
problem at the 1991 West Coast Number Theory Conference, see
Problem 91:06 in [G]): En is convergent when

(1.4)

, , , l Γ l i l 1
1 + log log an < - < — + — rr + — - r^ + > ,

2 [n2 (nlogn) 2 (n log n log log n) 2 J
and is divergent when the left hand side is greater than the right
hand side with any 1 replaced by 1+6. This statement requires some
clarification. What Ramanujan probably had in mind was a test of
convergence of an infinite exponential of a sequence of exponents
an > 1. A sufficient condition for the convergence was furnished
by the inequality 1 + log log an < f{n), n > TΪQ for an appropriate,
possibly any, function f(n) with an asymptotic expansion given by
the right hand side of (1.4) as n -> oo. An easy calculation shows
that Barrow's satements (1.2), even in the much stronger form with
< replaced by <, and (1.3) are contained in Ramanujan's assertion
with the right hand side of (1.4) truncated after the first term.

The main purpose of this paper is to give a proof of Ramanujan's
test of convergence of an infinite exponential and to generalize it to
the case of complex exponents an. In order that the exponentiation
be unambiguous we assume that the sequence of complex numbers
6n, n = 1,2,3,... is given and set

(1.5) an = eb".

With this definition of the sequence {an} (1.1) is well defined. The
case of complex exponents has also been considered before. The
best known results here are due to Shell [S], in the case of equal
exponenents, and Thron [T], in the general case. We state here,
only the results of Thron, who showed that {En} is convergent if
\bn\ <: Ve> n > n 0 . We first give the following test of convergence
of an infinite exponential with complex exponents:

THEOREM 1. Let {an} and {En} be defined by (1.5) and (1.1)
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respectively. Now set

(1.6) αn = e | 6 n | [ n > l ] ,

and define En, n = 1,2,3,..., by (1.1) in terms of the sequence
{άn}. Then if En converges, then so must En.

The above test of convergence is of independent interest. In par-
ticular, Thron's result follows immediately from Barrow's results for
real exponents αn, 1 < an < e1//e, and Theorem 1.

To state our results concerning Ramanujan's test of convergence
we introduce the following notation for the iterated logarithm. Set-
ting x\ = e and

L\(x) = L(x) — log(x), for x > e,

we define recursively Xk and Lfc(x), for k > 2, by Xk = eXk~ι, and

Lk(x) = Lk-ι{L(x))> for x > xk.

With this notation we have:

THEOREM 2. Let {En} be defined by (1.5) and (1.1) respectively.
Then the infinite exponential converges if there exist positive integers
ko and ΠQ such that for all n > no we have

(1.7)

To complement this result we prove:

THEOREM 3. Let En be defined by (1.1) in terms of a sequence
of real numbers an satisfying an > 1 and

(1.8)
1 + loglogα,,

1 1 + e

(nL1(n)L2(n)---Lko^(n)y {nU^^n) • • • Lko{n)f j

for n > no, for some positive integers k0 and n 0 ; and e > 0. Then
the infinite exponential diverges.
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2. Preliminaries. In this section we prove three lemmas. The
first of these reduces the principal case of our problem to an equiv-
alent problem which is easier to handle. We will find it convenient
to use the notation

[zi, x2, , xn] = X\2 and [xux2, £3, • ]

to denote partial exponents and an infinite exponential respectively.
We also set

(2.1) k{x) = i and lh{χ) = [ — - [* > 1].
x xLι(x)L2{x) - - Lk(x)

LEMMA 1. Let a sequence of real numbers xn, n = 1,2,3,...,
satisfying xn > 1 be given. Define a sequence Xn, π = 1, 2, 3 , . . . by

(2.2) xn = exp

Then [xι, x2, £ 3 , . . . ] converges if and only if there exists a sequence
Yn, n = 1, 2,3,..., satisfying Yn > —1 and such that the inequality

(2.3) 1 + Yn>{l + Xn)eγ^

holds.

Proof. Since xn > 1 the sequence [XI,X2J^3, •] is monotonically
increasing. Hence to show that it is convergent it suffices to show
that it is bounded. But this follows immediately from (2.2) and
(2.3) since

In the opposite direction suppose that the infinite exponential
[xi,x2,xs, . •] is convergent. Since xn > 1 then so must be an
infinite exponential [xn^Xn+i^n+2j •] f° r a nY ^ > 1- Denoting a
limit of [xn, x n + i , x n + 2 ) ] by e 1 + r n , we observe that Yn > — 1 and
that the sequence {Y }̂ satisfies

This gives (2.3) with equality and completes the proof of the lemma.

D
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The next two lemmas are the main ingredients in the proofs of
Theorems 2 and 3.

LEMMA 2. Let Tk, Ck

n and Xk be defined by

(2.4)

(2.5)

3=0

" j=o

and

(2.6) 1 + Xk

n =

where lj(n) is given by (2.1), for any integers k > 0 and n > 2 for
which the right hand sides of (2Λ) and (2.5) are defined. Then there
exists a sequence of integers {rik} such that for all n > n^ we have

\λ'Ί) ϋ n < Λ n < ϋ n

Proof. Let an integer k > 0 be fixed. We write Tn and Xn to
denote Tk and Xk respectively. By (2.4) and (2.1) we have Tn =
Ok(l/n) < 1, for n > nk sufficiently large in terms of k. For such
integers n we can expand the right hand side of (2.6) in a Taylor
series to obtain

(2.8)

1 + Xn = (1 + T n )e- T n + 1

= (1 + Tn) 11 - Γn +i + - ( T n + i ) 2 - - ( T n + i ) 3 + Ok ( —7
\ Δ D \n

1 ι HΓ* ΠΓ^ i ί'T* \^ HΓ* ^~T~* i 'T* (T* \~

2 2

6 n \n 4 /

Now, by (2.4) and (2.1), expanding Tn about n + 1 we get

(2.9) Γn = Γ n + 1 - T'n
n + ι
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for some ξ with n < ξ < n + 1, where

(2.10) T'n+ι =

^'+1 = Σ '?(») = - ( ( ' o ( ) '
(2.11) i=o V

= — + θ J — • ) ,
nΛ \nΛ\ognj

and

3=0

Substituting (2.9)-(2.12) into (2.8) and simplifying the resulting
expression we obtain

Hence by (2.10), (2.4) and (2.5) we have

(2-13)

3n3 yn3 log nj

This, for n > TIA; sufficiently large in terms of k, implies (2.7) and
completes the proof of the lemma. D

LEMMA 3. LetT* andX* be defined by (2.4) and (2.6) of Lemma
2. Moreover, let x^ be defined by

(2.14)



CONVERGENCE OF INFINITE EXPONENTIALS 225

Then we have

(2.15)

Proof. We begin by observing that it suffices to show that there
exists a sequence of integers {n'k} such that (2.15) holds for all
ft > nk- Indeed, assuming this we have, for any / > n'fc,

xk

xn>

ι+τk

— ° J

by (2.14) and (2.6). To exhibit the existence of such a sequence
{nr

k} we first observe that by (2.14), Lemma 1 and Lemma 2, any
infinite exponential \x^ Xn+nxn+2i j •> with n > n^, where {n&} is
a sequence defined in the statement of Lemma 2, is convergent. Let
us denote the limit of such an infinite exponential by eι+Sn. Then

(2.15) will follow if we can show that

(2.16) Sk

n = Tk,

for all n > n'k > nk sufficiently large in terms of A:.

To this end let us define, for integers k > 0 and n > nk, tk

n by

(2.17) tk

n = Tk - Sk.

We will deduce (2.16) from the following three inequalities:

(2.18) Sk > Sι

n > 0 [k>l; n> max(nk, n,)],

(2.19) tk

n > 0,

and

(2.20)

with n'k > rik sufficiently large in terms of h, where in the case
k = 0 LQ(X) = x. Indeed, assume (2.16) fails with k = 0 and some
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n > n'o. Then by (2.19) t°n > 0, and hence by (2.20) and (2.4) we
get

t > t°n {^f k{m 1) > k(m 1) = 2,
for some m > n sufficiently large in terms of ί°. But by (2.17) this
implies that S^ < 0, which contradicts (2.18). Thus (2.16), with
k = 0, must hold for all n > nf

Q. We now proceed by induction on
k. Assume that (2.16) fails for some k > 0 and n>nf

k. Arguing as
above we obtain the inequality

for some m> n sufficiently large in terms of ί*. This, together with
(2.17) and (2.4) yield

θk rpk Λ.k ^ rpk—1 θk — 1
Til 771 771 771 771 '

by the inductive hypothesis, provided m > njk_1, as we may assume.
But since (2.21) contradicts (2.18) we conclude that (2.16) and hence
(2.15) hold. Therefore it only remains to prove (2.18)-(2.20).

To this end, assuming as we may that the sequence {n^} is in-
creasing, we have, for k > I and n > n^ > n/,

xi > K > o,
and hence

(2.22) xh

n><> e1/e,

by (2.7), (2.5) and (2.14). It was already shown by Euler [E] that
the infinite exponential with constant exponents e1//e converges to
e. This fact together with (2.22) yields (2.18). To prove (2.19) we
observe that for m > n > nk, we have

by (2.14) and (2.6). Hence Sk < Tk and thus (2.19) holds by the
definition (2.16) ofί£.

We begin proving (2.20) by observing that by the definition of Sk

and (2.14) we have

'n+l
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Hence S* satisfies the identity (2.6) with T* replaced by S*. Let us
fix k and write Sn, Tn and tn for 5*, T£ and ί* respectively. From
our last observation it follows that

Substituting Sm = Tm — tm, m — n, n + 1, into the last identity
leads to

(2.23) _ ^ = i _ e

Now, by (2.19), (2.18), (2.4) and (2.1), we have

(2.24) 0 < tn < Tn < f c -.
n

Hence

2!

provided n > nĵ  sufficiently large in terms of k. Using this bound
for the right hand side of (2.23) we obtain

It now follows that for any integers m > n>n'k we have

(2-25) t m > t

We use (2.25) in two steps. Firstly, by (2.25) and (2.24), we have

m— 1 i Cm—I i "J

lθ§ TTψ\
i=n 1 + i« U=n

f m~1 Ί
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for m > n >> n'k sufficiently large in terms of k. Now, by (2.4) and

(2-1),

m—1 m—l k k prn—1

Σ Σ Σ Σ /
i=n j=0 j=0 n~2 j=0

Hence

m—l k k prn—1 &

= Σ Σh(i -1) < Σ / h(*)dx < Σ W ™ -1)
i=n j=0 j=0 n~2 j=0

(2.26) tm > tn exp j - Σ Lj+i(m - 1
I i=o

= tnl

= ίn/fc(m - 1),

for any integers m > n > n'k. We now reiterate the abpve argument
this time using (2.26) instead of (2.19) on the right hand side of
(2.25). To this end we observe that for m > n > n'k sufficiently
large in terms of k we have tnlk(i)/2 < Tϊ/2 <C^ 1/i and

rm—1

k{i) > I k(z)dx = Lk+ι(m - 1) - L f c + 1(n).

Thus

>tnT[ 1

 n

t

 fc^v/ ^ = ίnexp ^ V log
i=n ι'^~1i [i=n \ L "+" -̂ i

{ tn-1 γ

Σ (2 < n i

ί l fe

ί nexp < -tn (Lk+i(m - 1) - L fc+i(n)) Σ

This gives (2.20) and completes the proof of the lemma. D
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3. Proofs of Theorems. Proof of Theorem 1. We may assume
that for all π, an φ 1, for otherwise both [αi ,α 2 ,α 3 , . . . ] and
[άi,ά 2 ,ά 3 , . . . ] converge trivially. Now fix an integer n, and for
z € C, set

(3-1)

and

(3.2)

We have, for any m > n,

f(z) = — [ α i , α 2 , . . . ,α n ,z],

g(z) = —[άuά2,. . ,άn

(3.3)
[αi, α 2 , . . . , α m ] - [ α i , α 2 , . . . , α n ]

αn, i , . . . α m ] ] - [ α i , . . . , α n

Setting

(3.4) u = [ α n + i , . . . , α m ] ,

and

(3.5) w = [ α n + i , . . . , α m ] ,

we estimate the right hand side of (3.3) to obtain

(3.6) |[αi, α2, -.. ,om] - [αi,o 2 > . . . , α n ] |

= ly /(I + (« - \)t) d{\

1/(1 + («

Now, by (3.1), (1.5), (3.2) and (1.6), we have

f{z) = bi[aι,a2t... , an, z]—[a2, a3,.. . ,an,z]
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and
n

9(Z) = Π N [fi*> ά *+l, ' > an, Z]
Hence, by (1.5), (1.6), (3.4) and (3.5), we obtain the inequality

n

- t + trt)I = Π

( 3 ' 7 ) < ft 1**1 [^ αjb+i,... , On, (1 - t + \u\t)\
k=\

<g(l -t + wt),

valid for 0 < t < 1. Applying (3.7) to the right hand side of (3.6)
we get

(3.8)

- ΐ)t)dt

9(1 + (w - l)ί) d(l + (u; - l)ί) = J ^ y j Γ ^(Z) dz

\u"
= — — r (Iflij α 2 , . . . , αmj - [αi, α 2 , . . . , αn j j,

by (3.2) a n d (3.5). We observe t h a t w > 1 since anφ\ a n d h e n c e
α n > 1. Moreover,

(3.9)

\u — 1| = |e "

oo ]_

OO 1
1 (u r » λ\k

ΓT lon_|_i[αn-|.2,... , α m j j

The statement of the theorem now follows from (3.8) and (3.9) by
the Cauchy criterion for convergence. D

Proof of Theorem 2. By Theorem 1 it suffices to consider real
exponents an > 1. In this case the sequence [αi, α2, α^,... ] is mono-
tonically increasing and it suffices to show that it is bounded. Define
a sequence {cn} = ic^0+1\ by

f 1 + Cko+ι 1
cn = exp < - 2 — \ [n > njb0+i],
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where Cko+ι and riko+i are defined in the statement of Lemma 2.
Setting Cn = C* o + 1, we have, by (2.5), (2.1) and (1.7),

+ log log cn = log(l + Cn) = Cn + O ^ n J , f

> l + loglogαn,

for n > no sufficiently large in terms of ko as we may assume.
Therefore for n > no, an < cn and hence

[ α n o , α n o 4- i , . . . , αnj < [ c n o , cno_|_i,... , c n j .

Thus it suffices to show that the infinite exponential
[cn0 J cno+i? cn0+2> ] converges. By Lemma 1 this in term is equiv-
alent to the existence of a sequence Sn, n = no, ΠQ + 1, ΠQ + 2,...,
satisfying 5 n > — 1 and

(3.10) l + Sn>(l + Cn)eSn+1.

But by Lemma 2

1 + C n = 1

Hence (3.10) is satisfied with Sn = T*Q+ι, n > n 0 . This completes
the proof of the theorem. D

Proof of Theorem 3. We argue by contradiction. Suppose to the
contrary that the infinite exponential [aι,a2,as,. -.] is convergent.
Then, since an > 1, so is [an,an+ι,an+2, •] for any n > 1. Let
us denote the limit of such an infinite exponential by e 1 + 5 n . Let us
also define An by

(3.11)

Then

(3.12) e 1 + s " = [a
n,

In the remainder of this proof we will use n to denote an integer
satisfying n > UQ. For such n, it is immediate from (1.8) that
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An > 0, since an > eι'e. Moreover, by (3.11), (1.8), (2.1), (2.5) and
(2.7), we have

(3.13) An > log(l + An) = 1 + loglogαn > Ck

for n > no sufficiently large in terms of ko and e, as we may assume.
This gives

an > xkn,

where x%> is defined by (2.14). Therefore, by the definition of Sn

and Lemma 3, we get

(3.14) Sn>TΪ°.

We set
p _ c ηrko

and

Then by (3.14)

(3.15) Rn > 0

and by (3.13), (2.13), (2.5) and (2.1)

Bn > Ck

n° +
 e-l2

k0{n) - Xk

n° = €-ll0(n) + Oko ( 1

(3,6) - ί * -

for n > n0 sufficiently large in terms of k0 and e. Now, by (3.12),
(2.6), (3.15) and (3.16), we have

1 + Γn

fco + Rn

kn° + Bn) eτ^+R^ =
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This together with (3.15) and (2.4) yield

Rn> Rn+ ^

Hence we obtain the bound

6

5
Δ m=n-l

But the last assertion is absurd in view of the definition (2.1) of

Zfco(ra). This contradicts our assumption and thus completes the

proof of the theorem. D
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