THE ASYMPTOTIC EXPANSION OF A RATIO
OF GAMMA FUNCTIONS

F.G.TricoM: AND A.ERDELYI

1. Introduction. Many problems in mathematical analysis require a knowledge

of the asymptotic behavior of the quotient ["(z + ¢)/T"(z + 53) for large values

of | z|. Examples of such problems are the study of integrals of the Mellin-Barnes
type, and the investigation of the asymptotic behavior of confluent hypergeometric
functions when the variable and one of the parameters become very large simul-
taneously.

Stirling’s series can be used to find a first approximation for our quotient for
very large |z |, it being understood that « and 3 are bounded. Without too much

algebra one finds
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as z — @, under conditions which will be stated later; but the determination of
the coefficients of z72, z73, « « +, in the asymptotic expansion of which (1) gives
the first two terms, is a very laborious process, and the determination of the
general term from Stirling’s series is a well-nigh hopeless task.

The present paper originated when the first-named author (F.G. Tricomi)
noticed that the asymptotic expansion of I'(z + &)/T" (z + ) can be obtained by
methods similar to those which he used in a recent investigation of the asymptotic
behavior of Laguerre polynomials [3]. The first proof given in this paper, and
the detailed investigation of the coefficients 4, and C,, are entirely due to him.
Afterwards, the second named author (A.krdélyi) pointed out that a shorter proof
can be given by using Vatson’s lemma. His contributions to the present paper are
the second proof, the generating function (18) of the coefficients, and their ex-
pression in terms of generalized Bernoulli polynomials.

We may mention that the same quotient was recently investigated by J.S.Frame

[1]; but there is no overlapping with the results presented here.
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2. The case S=0. Let us begin with the particular case 5 =0 (after which

the general case will easily be treated), starting from the well-known formula

© LM lu) T(v — u)
= ) < <
(2) A (1 + x)v x r(v) (0 Ru R‘U) y
where each power has its principal value.
Putting
Iz +a) .
u=z+du, v=z§'_z'_=F(OL,z);x=i, [ =e'2T82
() .

from the previous equality, under the hypothesis

0 < R(a + z) < Rz

we obtain
Lo
l—‘('_' C() F(O(., 2 ) = za / e"7'l°g(1+t/l) t—O(,-l dt .
0

But as long as [z| < |z| we have
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Hence, if we put generally*

1 1 1 2 4 = (m) _k
(3) —+—wt—wr+ee] = Z A (m=0,1,2, *+*) ,
2 3 4 o=t
and in particular
@) mw-Lt  m-__ c(m);ﬂi‘f_”is_)_ e
0 2”1’ 1 2m~1 -3 ’ 2 2m 1, 32

* The repeated use of the coefficients of the (formal) mth power of a power series is
one of the features of the methods of the paper quoted [3].
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with the help of the substitution & + m = n, we obtain
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This shows that our quotient F(c¢,z) = I'(z + O()/I_'(z) admits at least

formally the negative-powers expansion

@) S w
n=0

where, for the sake of brevity, we put
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Better still, because

1 o Mn +m— G
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since R{ > 0, we can also write
L « \(n +m)!
(5) 4(0) = ( )"__'f._ (m)
~ \n +m m! o
In particular, we have
o Ja—1
5') A =1, A =( ) A0 = = (“) ,
2 4 3

A =(;‘)(Z) e

3. Relations connecting the coefficients A (c). The infinite series (4) is gener-
ally divergent because otherwise the function F would be the product of z* by a

function regular at infinity, in contradiction with the fact that, as long as o is not
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an integer, the function F has an infinite number of poles at z =0, —1, =2, « + -,
with the condensation point z = ©. In spite of its divergence, the series (4) repre-

sents the function F asymptotically (in the sense of Poincare); that is, we have

Mz + -
P on
(6) Floy2) = —=— nZ:;An(a) 25
at least as long as
(7) 0 < _RO(, < HZ ’

because for any positive integer N we obviously have

No(—1)" & (=)
o2 105(1+t/z):Z Z c(m) yntnm +0(lz[_N—l) ]

n | n-m
n=0 z m=0 m.

Let us now establish some relations connecting the coefficients 4,()together;
these arise fromn the unicity theorem for the asymptotic expansions, and from the

functional equations

®  #at1,2) = (a+2) Fla,z), Flaz+1) = (1 +3) Fla,z) |

z

which are obviously satisfied by the function F.

Precisely from the first equation (8) it follows immediately that

9 Ala+ 1) =4,() +a4,_ (a0, (h=1,2,3, ),

while from the second one it follows that

, @ o 1 OL—m
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k=0
This shows that

n —
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simplifying and changing n into n+ 1, we thus obtain the important recurrence

relation

1 &7 o«
(10) An(0) == Z( m 1) (), (R=1,2,+ ).

c=o \n—mt

From the manner of deduction, it may seem that the validity of (9) and (10) is
conditioned by Ko < 0; but since these equalities are equalities between certain
analytic functions of &(even polynomials!), there is no doubt that, as a matter of

fact, both equations are true for any value of a.

4. On the condition (7). By use of the functional equations (8) and the relations
(9) and (10) between the coefficients, it would be possible to weaken progressive-
ly the conditions (7) by passing successively from & to « —1, «—2,+ -+, and
fromztoz+1, z+ 2, <+ . But we do not need to enter into the details of this
reasoning because the method of Section 7 will give us directly the end results
free of unnecessary restrictions. Nevertheless, we state explicitly that the asympto-
tic expansion (6) is valid for any o (real or complex)on the whole complex z-plane
cut along any curve connecting z = 0 with z = ©*, provided that, in going to
®, z avoids the points z = 0, =1, =2,*** and z ==&, —& —1, =X =2, ¢ -.

For example, when « is real and positive the expansion (6) is surely valid if

—nmte< arg z <7M— €

)

where € is an arbitrarily small positive number.

5. The asymptotic expansion. Now in order to obtain the asymptotic expansion

of the quotient indicated at the beginning, it is sufficient to observe that

[z + @
Q)( = —_— = W — 4
z) EY) Fla=5, 2 +p)
Precisely, putting
o—p=u

*This with regard to the many-valuedness of the power 27,
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we find thus

> / hd ' il r~ 5\ &
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In other words, if we put
B (o= m ,
a1 ¢ (o ) =Z( )Am(o. ) grn (n=0,1,2,-++ ),
n—mn

m=0

on the whole z-plane cut along any curve connecting z = 0 with z = ©, we have
Mz + =

- Cola— B,B) 2%7A™

[z +p) ZO ne=fp) 2

provided that z avoids the points z =—0, —a—1, —a—2,* ** and z =—f3,—1,
—B=2, .

The coefficients C,, are given by (11), which shows in particular that

(12)

1
Co =1, C1=—;-ca'(ox’ +28—-1) =E(a—,8)(a+[5—1) ,

C, = L (C;> (o' —2)3a’ — 1) +128’ +B8—1)]

12
1 a—ﬂ)
=— Bla+B—1)2—a+B8—11, «--.
(")) Barp-1r—ars
6. The coefficients C,. The calculation of the coefficients C, by means of
(11) is quite easy, but in spite of this it may be useful to know that for such coef-
ficients there is also a recursion formula of the kind (10). Precisely, in a similar

manner as in Section 3,we notice first that the function ®(z) satisfies the function-

(2 +1)=Z +OL<I>(z) = (1 +—a—)(1 +—’8—)—1 (z) .

zZ pA

al equation

N
+
™

Consequently, since
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we obtain

[o0]

-1 [eo) s
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n
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and further
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on the other hand,

By comparing the two results we thus cbtain

m=0 m=0

that is,

n-1 1
(13) [(“ '") + (=) o ﬁ"'M'l]cm =0 .
0

= n—m

In other words, detaching the last term of the sum and changing n into n + 1, we
have the recurrence relation

] _1 - al - m _ n+m .t on—m '
(]-4‘) (Jn((x 1/8) - Z [(n —m + 1) ( 1) 0‘/3 ]CM(O(' ) ﬁ):

now=o

(n=1,23-+*).
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7. An alternate proof. If we put u =exp( —v) in Euler’s integral of the first

win : Pz + 0 TB~a)
241 _\B-o-1 _1z + o) -
,/o u (1 —u) du Tz + B ’

we have the integral representation

'z + ) _ 1 fm —(z+ o) _ ~v\B-a-1
Iy Syt A (1—e) dv

We shall now show that an alternative proof of the asymptotic expansion (12) can

(15)

be obtained by applying the standard technique (Watson’s lemma) to this integral
representation.

To begin with, (15) holds only if R(8 — &) > 0 and R(z + «) > 0; but its
validity can be extended by the introduction of a loop integral. We assume that

z + & is not negative real. Then there is a & such that

1 1 .
—577<8<577, Ri(z + ) et¥} >0,

With such a §, we have

Dz + ) 1 /‘0” ¢
16 — = — z d
(16) Iz + PB) 2711 S e #e) dt,

where

" )= Tt amf) e (e = 1P,

and for small |¢],

d—m< arg(et—l)_<_ S+ 7

on the loop of integration. Now (16) is valid for all « and [, with the trivial ex-
ception of \— 8=—1,—2, * *+ +, and for all z in the complex plane slit along the
line from —« to —a—®© .

Watson’s lemma can be applied directly to (16). It is usual to state this lemma
for an integral between 0 and ® , but it is clear that the customary proof [4)
goes through for a loop integral like (16) provided that the restriction on the growth
of f(¢) is imposed along the whole loop, and that the expansion

@©

(18) f(t) :Z a, th-otn-1

n=0
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is valid in a neighborhood of ¢ = 0 on the loop. Both assumptions hold good in our

case, and hence a term-by-term integration of (18) leads at once to the asymptotic
expansion

o~p~n

"z + an z
'z + /) Z Ma—B—n+1)

as z > o

valid for all «, 5, a—2 #—1, =2, + + +, and the complex z-plane slit from — & to
—(—®

Comparing with (12), we see that
Na=B=n+1) Cla—B,8) =a,

has the generating function (17). The proverties of C, established in the earlier
sections can also be derived from this generating function. It also follows from the
generating function that the coefficients can be expressed in terms of generalized

Bernoulli polynomials. In Norlund’s [2] notation* , we have
1

(19) an = =T +a—p) B (0 .
n!

8. Particular cases. Finally, we notice that in the particular case o = n, for

n=1,2,+++, the expansion (6) becomes

r(z + n)

n-1
(20) —T(Z—)*=z(z +1) <+ (2 +n—l)=m2::0A,,,(n)z""'";

hence, we have
(21) An(n) = (m1)" si™,

where SS{") denotes the sum of the products of the negative numbers —1, =2, * * *,
—(n —1) taken m at a time in all the possible manners (Stirling’s numbers of the
first kind) .

Another interesting particular case of (6) is the case & = 1/2,z =n +1,in
which we have

(22)

1+3--(2n—1) 1 (l_l 1 )

~ — +
2+ 4+--(2n) (7rn 2 8n 12812

*In the first instance, n in B,Sn)(x) is an integer, but Norlund remarks (p.146) that it
may be replaced by an arbitrary complex parameter.
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Among the other things we can read from (22) is the following approximation formu-

la for :

1 2" n! 1 1 2
@23)m= — 1—— + + — -3y .
n[l ©3 - (2n- 1)( on T Tzgn2 T =007

for instance, taking n = 20 and neglecting the remainder €, from (23) we obtain

the good approximation 77= 3.141557, with an error of only 36 millionths.
Another interesting application concerns the asymptotic evaluation of the bi-
nomial coefficient (ﬁ) as n —> ©and x (which is not a positive integer) remains

bounded. Since

(x)_ Iz +1) (=17 I'n — x)
n [(x —n + 1)n! nl'(—=x) T(n) ’
we obtain from (6), with z = n and & = —x«, the relation
(x) o (=p (e D) Z Ap(—x)
n I'(—x) pyor n™

= _(__122 n‘(x+1)[1 +(x +l)l+(x +2) 1 +3x + ] .
' —x) 2 n 3 An?

This formula gives very good numerical results even for relatively small values

of n, for instance for n = 10, provided only that x/n is small.
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