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MULTIPLIERS AND BOURGAIN ALGEBRAS OF H* +C ON
THE POLYDISK

KE11 IZzucHI AND YASOU MATSUGU

It is well-known that H*> + C on the unit circle is a closed
subalgebra of L*(T), and Rudin proved the (H*® + C)(T?) is
a closed subspace of L®(T?) but it is not an algebra. The
multiplier algebra M of (H*+C)(T?) is determined. Using this
charaterization, we study Bourgain algebras of type H>*+C on
the torus 77 and the polydisk U?. Both Bourgain algebras of
H*+(C and M on the torus coincide with M. We denote by M
the space pf Poisson integral of functions in M and Cr2(U?) the
space of continuous functions on U? which vanish on T2. It is
proved that all higher Bourgain algebras of H(U?)+ C(U?) and
H(U?) 4 Cr2(U?) are all distinct respectively, but every higher
Bourgain algebra of H(U?) + Cy(U?) coincides with H(U?) +
Co(U?). It is also proved that all higher Bourgain algebras
of M and M + Cy(U?) are all distinct respectively, but every
higher Bourgain algebra of M + Cp2(U?) coincides with the
first Bourgain algebra of M 4 C72(U?).

1. Introduction.

Let U? be the 2-dimensional unit polydisk and let 72 be the torus. We de-
note by H*(U?) the space of bounded holomorphic functions in U? and by
H*>(T?) the space of radial limits of functions in H*(U?). Then H*(T?)
is an essential supremum norm closed subalgebra of L*°(7T?), the usual
Lebesgue space with respect to dfdy/(27)? (see [12]). Let denote by C(X)
the space of continuous functions on a topological space X. The algebra
A(T?) = H®(T?*)NC(T?) or A(U?) = H*(U?)NC(U?) is called the polydisk
algebra, where U? is the closed polydisk. In [13, Theorem 2.2], Rudin proved
that (H* + C)(T?) = H=(T?) + C(T*) = {f + ¢; f € H=(T?),g € C(T?)}
is a closed subspace of L>(7?) but it is not an algebra. On the unit circle
T, it is well known that (H> + C)(T) is a closed subalgebra of L>(T') [14].
Let M be the space of multipliers of (H* + C)(T?), that is,

M = {f € L=(T*); f-(H®+C)(T*) C (H*+C)(T*)}

Then M is a closed subalgebra of L>(7?). Since constant functions are
contained in (H*+C)(T?), M C (H*+C)(T?). Let C*(U?) be the space of
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bounded continuous functions in U? and let Cy(U?) be the space of functions
in C(U?) which vanish on the topological boundary 8U? of U2. We note that
dU? # T?. We denote by Crz(U?) the space of functions in C(U?) which
vanish on the distinguished boundary T2. Then Co(U?) C Cr=(U?) C C(U?).
For a function f in L>(T?), the Poisson integral is denoted by f(z,w);

Faw) = [ [ 5 P Pu(e) dop o) for (o) € U,

where P« (e?) = (1 —r2)/(1 — 2r cos(t — 8) +r2). Then f € C®(U?).

In Theorem 2.1, we give a characterization of a function in M, and we
prove that M coincides with the space of functions f in H*(T?) such that
the Poisson integral f can be extended continously on U?\ T2. By this fact,
M becomes one of the interesting subalgebras between A(7?) and H*(T?).
The purpose of this paper is to investigate the multiplier algebra M. For
a closed subalgebra A with A(T?) C A C H*(T?), A+ C(T?) is a closed
subspace (see the proof of [13, Theorem 2.2]). In Theorem 2.2, we give a
necessary and sufficient condition on A for which A + C(T?) becomes an
algebra.

In [4], Cima and Timoney introduced the concept of Bourgain algebras.
Let X be a commutative Banach algebra with identity and let ) be a closed
subspace of X. A sequence {f,}, in J is called weakly null if F(f,) — 0
for every bounded linear functional F of Y. For f € X, put |[f+ Y| =
inf{||f + gll;9 € ¥}. Let

Vo = {feXx;|lffn+Y| = 0 for every weakly null sequence{f,}, in Y}.

Cima and Timoney proved that ), is a closed subalgebra of A, and they
called ), the Bourgain algebra of ) relative to X. If ) is an algebra, then
Y C Vy. We shall write Yy, for (V,),. We also write Vy(n) for (Von-1))s and
Vo) = Y. We call Vy(,) the n-th Bourgain algebra of Y.

In [1], Cima, Janson and Yale proved that H®(T), = (H* + C)(T)
relative to L°(T). In [7], Gorkin, the first author and Mortini studied the
Bourgain algebras of closed algebras B between H*(T') and L*(T'), and
they proved that (H*® + C)(T), = (H*® + C)(T') and By, = B, relative
to L*(T). On the torus, we have H®(T?), = H>(T?) relative to L>®(T?)
(see [9, Corollary 1]). Since (H*™ + C)(T?) is not an algebra, we can not
expect that (H*® + C)(T?) C (H* + C)(T?)y. Since M is the multiplier
algebra of (H* + C)(T?), by the definition of Bourgain algebras we have
M C (H® + C)(T?),. We shall prove in Theorem 3.1 that

(H®+C)(T?*), = M = M,.

We note that the Bourgain algebra (H*°+C')(0B,); has not been determined
yet, where B,, is the n-dimensional ball, n > 2 (see [9]). These are studies
of Bourgain algebras on the boundaries.

When f € H®(T?), we have f € H®(U?) and f coincides with the radial
limit of f a.e. on T2 [12]. For a subset A of L®(T?), put A = {f;f € A}.
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In [2], Cima, Stroethoff and Yale proved that H®(U), = H*(U) + C(U) =
(H®(T),) + Co(U) relative to C°(U), where H®(T), is the Bourgain al-
gebra relative to L>°(T). It is proved in [11] that H®(U), = H®(U)p. In
Section 4, we study Bourgain algebras relative to C*°(U?). We shall prove
that H*(U?), = (H*® + Co)(U?)y = (H*® + Co)(U?). Hence H*(U?), =
H>(U?)y,. We also prove that

M)y = (H®(U?) +C[T%)y = (H°(U?) + Cr=(U?)), = M+ Co(U?).

In Section 5, we study the n-th Bourgain algebras relative to C*°(U?).
Since H®(U?), = H®(U?)p = (H® + Co)(U?), H*(U?)pn) = (H™ +
Co)(U*)yny = H*®(U?),. But to our great surprise, the higher Bourgain
algebras of M are all distinct. Actually we prove

(M4 Co(U))omy # (M +Co(U*))p(np1y  for every n > 0.

Spaces M + Co(U?) and M + Cyp=(U?) are similar to each other in their
forms, but we can prove that

(M +Cr2(0))yny = (M+Cr2(U?)), for every n > 1.

In [9], the first author gave the conjecture that A, = A, for every closed
subalgebra A with A(T?) C A C H*(T?). This conjecture is still open, but
M gives a counterexample for the same kind of problem on the polydisk.
In Section 6, we study Bourgain algebras of the polydisk algebra A(U?)
relative to C*(U?). Some properties are similar to ones of ./\;t, but some
properties are different from M. The Bourgain algebra of the disk algebra
was studied in [3].
As a summary, we have the following about Bourgain algebras.
(a) (H™), = (H*™)y on the circle, disk, torus, and polydisk;
(b) (H® +C)p = (H® + C)p on the circle and the torus;
(©) (H>U)+C(0))pm = (H*(U)+C(0))s, but (H*(U?)+C(U?))s(r) #
(H=(U?) + C(U?))s(n+1)-
(d) (H*+ Cy)(U?)y = (H*® + Cy)(U?),but

(H®(U?) + C(0?)), = (H®(U?) + Cr=(U?)), = M + Co(U?).

() Mym) = M on the torus, but (M)b(n) # (./\;l)b(nﬂ) on the polydisk.

(f) (/\21 + Co(U?))bny # (M + Co(U?))y(n1), but (M + Cr2(U?))yn) =
(M + Cr2(T?))s.-

For the sake of simplicity, we discuss on T? and U?. Using the same
ideas of this paper, we can get the same results for 7" and U",n > 2. To
determine Bourgain algebras of various spaces X, the key is that if we want
to prove f ¢ Aj, how to prove it. We need to choose a weakly null sequence
{fz}n in X such that ||ff, + X|| does not converges to zero. How to choose
such a sequence is depending on f and especially on X'. Since we discuss
Bourgain algebras of similar type of spaces, we put emphasis on this point.
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2. Multipliers of (H*® + C)(T?).

As mentioned in the introduction, (H* + C)(T?) is a closed subspace of
L°(T?), but is not an algebra. In this section, we study the multiplier
algebra M of (H* + C)(T?). The following is a trivial fact.

Lemma 2.1. Let f € H®(T?). Then f € M if and only if f - C(T?) C
(H*™ + C)(T?).

For a function f in L®(T), let f(n) = [ f(e*)e~™™ dt/2m, the n-th
Fourier cofficient. Also for f € L*°(T?), let

n 2r p2m . . .
fln,m) = / f(e?,e®)e {™+m¥) dodey/(2m)2  for (n,m) € Z x Z,
o Jo

where Z is the set of integers. Then f € H*°(T?) if and only if f(n,m) =0
for every (n,m) ¢ Z, x Z,, where Z, = {0,1,2,...}. Let f € L>°(T?) and
k € Z. Then for almost every point e’ € T, there exists

L(f)(e’) = A f( e)e™* dy /2,

and I(f) € L°(T). We note that (I(f)) (n) = f(n, k). By the same way,
let

Te(f)(e / F(e?,e)e ™ do/or  ae. ¢ €T.

Then Ji(f) € L™(T) and (Ji(f)) (n) = f(k,n). For a function f €
L>(T?), ||f|l;> means the essential supremum norm on 7. For functions
f(e?), g(e¥) in L*(T'), we may identify these functions with f(e?,e’) =
f(e®) and g(e¥, e'¥) = g(e¥), respectively. By these identifications, we may
consider L>(T') as a subalgebra of L>(T?). The following lemmas follow
from the above definitions.

Lemma 2.2. For f € L*(T?), |Ii(f)llz < Ifllz= and |1T:(H)llz < 1Fllz=-

Lemma 2.3. Let f € L*°(T?).
(i) If h(e®) € L=(T), then Iy(h(e®)f) = h(e*)Ix(f) a.e. onT.

(ii) If g(e®¥) € L>(T), then Ji(g9(e™)f) = g(e®¥)Jx(f) a.e. on T.
For continuous functions on T2, we have
Lemma 2.4. If f € C(T?), then I;(f) and Ji(f) are contained in C(T).

Proof. Let € — €% in T. Then f(e¥",e'¥) — f(e'%,e™) uniformly in e*¥
as n — oo. Hence

L) (e /2"f I, e¥)e R /2

o [ fle, e dpjar = L) ).

0
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This implies I (f) € C(T). By the same way, Ji(f) € C(T). O

Lemma 2.5. Let f € L>(T?). Then f € H*®(T?) if and only if I(f) =
Ji(f) =0 a.e. on T for every k < 0.

~

Proof. We have f(n,m) = (In(f)) (n) = (Jo(f)) (m). Then f € H®(T?) if
and only if (I;(f)) (n) = (Ju(f)) (n) = 0 for every k < 0 and n € Z. This
is equivalent to I;(f) = Ji(f) = 0 a.e. on T for every k < 0. |

Let f € H°(T?). Then the Poisson integral f is analytic in U? and can
be represented by the Taylor series as

flz,w) = 3 f(n, k) z"w*  for (z,w) € U™

n,k=0

We can rewrite f as the following forms;

(A;) f(z,w) = i fa(z)w"™ = i gn(w)z™  for (z,w) € U?,

where f,(z) = £, f(k,n)z* and g,(w) = ¥, f(n, k)w*. Then we have

Lemma 2.6. Let f € H®(T?). Then for n >0,
(i) fn,gn € H®(U), hence there exist boundary functions f,(e*) and
gn(e®¥) in H®(T).
(i1)  fn(e®) = L,(f)(e®) and g,(e?) = J.(f)(e*¥) a.e. onT.
Therefore for f € H*(T?), we can write f as the following forms for every
k>0

k
(A2)  f(e¥,e?) = D I.(f)(€¥)e™ + ™Y F(e?,e¥) ~ae. on T

n=0

(As)  f(e?,e) = ZJ(f (e)ei™ 4 ei*+D8 G(ef e¥) a.e. on T?

n=0
for some F,G € H®(T?). Also we can write f as follows;
(43) f(e?,e™) = F,(e?,e") + ™) G, (e? e?) ae. onT?

where F,,G, € H®(T?) and Fn(i,j) =0 for 7,7 > n > 0. We note that

Z Ik (610 zk¢+z Jk(f zk0 Z f(St 1(30+t1,b)

0<s,t<n
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The following lemma is proved in [13, p. 105].

Lemma 2.7. Let f(e?) € H®(T)\ A(T). Then f(e)e= ¢ (H®+C)(T?).
Now we have the following characterization of M.

Theorem 2.1. M = {f € H*®(T?); It(f), Jx(f) € A(T) for every k > 0}.

Proof. First we shall prove that M C H®(T?). To prove this, let f €
L>(T?) \ H*(T?). By Lemma 2.5, I(f) # 0 or Jx(f) # 0 for some k < 0.
We assume that I;(f) # 0. It is not difficult to find a function h(e) €
H*>(T) such that h(e*®)I(f) ¢ C(T) (see Lemma 3.5). By Lemmas 2.2—2.5,
we have

|h(e)f + (H® + C)TH)| ;o = |[R(e®)Ik(f) + C(T)], > O.

Hence f ¢ M, so that we have M C H>®(T?).

Next we prove that if f € M then I(f), Ji(f) € A(T) for k > 0. To
prove this, suppose not. Then we may assume that

(1) I(f) ¢ A(T) for some k > 0.
Moreover we may assume that
(2) L(f) € A(T) for0<j<k.

By the first paragraph, we have f € H®(T?). We can write f as the form
(A2)

f(e?,e¥) = 3 L(f)(e?)e? + *D¥ F(e?,e¥) ae. onT?

=0
where F € H®(T?). Then

(3) f(eib‘,eitll)e—i(k—i-l)zp — Ik(f)(ei())e—i1/;
k-1
+ Z L(f)(e?)ei=*1D¥ 4 F(e? &%) ae. onT>

=0

Since I (f) € H®(T), by (1) we have I(f)(e?®) € H®(T) \ A(T). Hence
by Lemma 2.7, I;(f)(e®)e"* ¢ (H* + C)(T?). By (2), the second term
in the right hand side of (3) is contained in C(T?). Therefore fe i*+V¥ ¢
(H* + C)(T?). Hence f ¢ M. This is a desired contradiction.

Now we prove that if f € H>®(T?) and I(f),Ji(f) € A(T) for every
k > 0, then f € M. To prove f € M, by Lemma 2.1 it is sufficient to show
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that fc € (H® + C)(T?) for every c € C(T?). Let f = F, + "®+¥9@q,
be the form given by (43) for n > 0. By our assumption, F,, € A(T?) and
G, € H®(T?). For c € C(T?), there is a sequence {c,}, in C(T?) such that

n

(4) Cn= 3 Gnu; €Y and |lc— cpllpa = 0 (n — ).
k,j=—-n

Then

(5) Fnc, € C(T?) and Gc,e™+¥) ¢ H®(T?).

Now we have
|fe+ (H® + C)(T?)| e = | F(c = cn) + fen + (H® 4+ C)(T?)| 12
<Nf(e=ca)llgs + | (Fu + €m0 G)en + (H= + C)(T?)|

=|flc=ca)lly= by (5)
— 0 (n—o00) by (4).

Therefore fc € (H® + C)(T?). This completes the proof. O
Corollary 2.1. M is a proper subalgebra between A(T?) and H*°(T?).

Proof. A(T?) C M is a trivial fact. Let f(e?®) € H®(T) \ A(T). Then
by Theorem 2.1, f(e?) € H®(T?) \ M. Let f(¢) = 12, a.(" be the
power series of f and let g(z,w) = .22, a,(2w)" for (z,w) € U%. Then
g(e¥,e¥) € H*(T?) \ A(T?), and by Theorem 2.1 g € M. O

Corollary 2.2. Let f € H®(T?). Then f € M if and only if the Poisson
integral f can be extended continuously on U? \ T?.

Proof. Let f € H*(T?). By (A4,) and Lemma 2.6,
(6) Z z)w™  for (z,w) € U?,

where I,,(f) is the Poisson integral of I,,(f) € H>(T).
First, suppose that f € M. By Theorem 2.1, I,(f) € A(T). Since
I .(H)llx < I llz> by Lemma 2.2, f(z,w) is continuous on U x {w; |w| < r}
for every 0 < r < 1. Hence f can be extended continuously on U x U. By"
the same way as above, f can be extended continuously on U x U. Since
U\T?*= (U xU)u (U x U), f can be extended continuously on U2\ T
Next, suppose that f is continuous on U2\T2 By (6), Io(f)(z) = f(z,0) €
C(U), hence Io(f) € A(T). Since (f(z,w) — Io(f)(z))/w is also continuous
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on U?\ T?,I,(f) € A(T). By induction, we can prove I,(f) € A(T) for
n > 0. By the same way, we have J,(f) € A(T) for n > 0. By Theorem 2.1,
fEM. O

Let A be a closed subalgebra with A(T?) C A C H®(T?). A is called
to be x-invariant if f = F, + e"(®*¥) G, € A in the form (A3), then G, is
contained in A for every n > 0 (see [10, 14] for the case of the unit circle
T). By Theorem 2.1, we have the following corollary.

Corollary 2.3.
(i) Let f € H®(T?) with f = F, + e"®+¥) G,, in the form (As). Then
f € M if and only if F, € A(T?) and G, € M for every n > 0.

(ii) M is x-invariant.

By the proof of [13, Theorem 2.2], A + C(T?) is a closed subspace of
L>(T?). Now we can characterize A for which A + C(T?) becomes an
algebra.

Theorem 2.2. Let A be a closed algebra with A(T?) C A C H*(T?). Then
A+ C(T?) is a closed subalgebra of L>(T?) if and only if AC M and A is
*-tnvariant.

Proof. We already know that A+ C(T?) is a closed subspace.Hence we need
to prove that A-C(T?) C A+ C(T?) if and only if A C M and A is
*-invariant.

First, suppose that AC(T?) C A+ C(T?). By Lemma 2.1, we have
A C M. To prove that A is *- invariant, let f € A. Since A C M, by
Corollary 2.3 (i) we can write as f = F, + e™*¥) G, F, € A(T?) and
G, € M for every n > 0. Since A(T?) C A, f — F, € A and

Gn = (f~Fo)e ™™ € (A-C(T*))NH*(T?) C A+A(T?) = A

Hence A is *-invariant.

Next, suppose that A C M and A is *- invariant. Let f € A with f = F,+
e”®+¥) @, in the form (4;), and ¢ € C(T?). Since A is
*-invariant, G,, € A. Since f € M, by Corollary 2.3 (i) we have F,, € A(T?).
As the proof of Theorem 2.1,

lc—call;z =+ 0 for somec,= D ang,; e*HY.
k,j=—n

Then fc, € A+ C(T?), and we have

Ife+ A+ C(T)| 72 = [1£(c = cn) + fen + A+ C(T?)] 12
< ”f(c - cn)”q‘z -0 (n — oo)
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Hence fce A+ C(T?). O
By Theorem 2.2 and Corollary 2.3 (ii), we have

Corollary 2.4. M + C(T?) is a closed subalgebra of L>™(T?).

3. Bourgain algebras on the torus.

In this section, we study the Bourgain algebras relative to L>(7?). We shall
prove the following theorem.

Theorem 3.1. (H*® + C)(T?)y = (H® +C)(T?)y = M.
The following corollary follows the above theorem.

Corollary 3.1.
(i) Mymy = M for everyn > 0.
(i) (H®+C)(T?)omny = M for everyn > 1.

To prove our theorem, we need some preliminary observations. For f €
L>(T?), we have lf(z,w), < ||fll;= and f(z,w) is harmonic in z € U for
each fixed w € U. We denote by f(e?,w) the boundary function of the
function f(z,w) in z € U. Then

fe?,w) € L2(T), | fe?,w)| < 1flp

27

and f(z,w) = f(e® w)P,(e?) db/2x.

0
By the same way, we have f(z,e¥) € L®(T) for each fixed z € U.

Lemma 3.1. Let (z,w) be a point in U”.

(1) If f € H®(T?), then f(e,w), f(z,€e) € H>(T).
(i) If f € C(T?), then f(e*,w), f(z,e"¥) € C(T).
(i) If f € M, then f(e,w), f(z,e¥) € A(T).

Proof. (i) and (ii) follow from [12, p. 18]. We note that if f € C(T?) then f
can be extended continuously to UZ. (iii) follows from Corollary 2.2. Il

Let M(H*(T)) be the space of nonzero mulitiplicative linear functionals
of H*(T'). With the weak*-topology, M (H*(T')) becomes a compact Haus-
dorff space and is called the maximal ideal space of H>(T'). It is well known
that the open unit disk U is a dense open subset of M (H>(T')). We identify
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a function f in H*°(T) with its Gelfand transform. Then H*(T') becomes
a sup-norm closed subalgebra of C(M(H>(T))), the space of continuous
functions on M (H>(T)) (see [8]). For A € T and f € H*(T), let

MA(H™(T)) = {z € M(H*(T)); z(z) = A};

wo(f,A) = sup {|f(C1) — F(&)5 61, <2 € MA(H™(T))}-

By the same way, we can define M (L*°(T)) and M,(L*(T)). We can con-
sider that M, (L*°(T")) C M,(H®(T)). Since every continuous function on T'
is constant on each M,(H>(T')), for a non-continuous function f in H*(T)
we have (for example, see [9, Lemma 1])

(1) sup {wo(f,A); A €T}/2 < |If +C(D)lly < sup {wo(f,A); A €T}

Here we see the right hand side strict inequality briefly. Since f ¢ C(T),
we have ||f + C(T)||; # 0. Since ||f + C(T)|| is the quotient norm of f €
H>(T) C L*(T) in L*(T")/C(T), there exists an extreme point x in the unit
ball of (L*(T)/C(T))* such that ||f + C(T)|l; = |u(f)|. We can identify
p with the Borel measure on M(L*(T)) such that [y ;e(r) 9 dpu = 0 for
every g € C(T). Since u is an extreme point, there exists A € T such that
M, (L*(T)) contains the support set of . Then

/ fdu|=|/ f+cdu’
My (L (T)) My (L>(T))

for every constant c. Taking c; such that [|f + coll p, (Lo(7)) i the smallest,
then by the definition of wy(f, A) and we(f, A) # 0 we have

If+C@Mlr =

IS + collag, (zoeiry) < wolfA)-

Therefore we get ||f + C(T)|l; < wo(f,A).
The following lemma is a key to prove Theorem 3.1.

Lemma 3.2. Suppose that f € H*(T?) and I;(f) ¢ A(T) for some k > 0.
Then for each 0 < r < 1, we have

fle*,w)+C@)|| > () +CDlr /2 # 0.

sup

jw]=r

Proof. By Lemma 2.6, I;(f) € H*®(T). Since I(f) ¢ A(T), I(f) ¢ C(T)
and || Iy (f) + C(T)||; # 0. Let

I' = M(H>(T)) x {w; |w| <1}
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Since I;(f) € H*®(T) for j > 0, we consider that I;(f) is a continuous
function on M(H*(T)). For each ( € M(H>(T)) and w € U, we have

> LN | < Il )- lwl’ by Lemma 2.2
j=n j=n

— 0 (n = o).

This means that the function

2) F(Gw) =) LUHOW, ¢eMH>T)) andweU
converges uniformly on I'. Hence F({,w) is a continuous function on I', and
for each fixed ¢ in M(H>(T))

(3) F({,w) is analytic in w on U.

We note that F(z,w) = f(z,w) on U?. Hence for each fixed wo with |wo| = r,
(4) F(C,wp), ¢ € M(H™(T)), is the Gelfand transform of f(e®,wp).

By our starting assumption, I;(f) ¢ A(T). Hence by (1) there exist points
¢; and (p in My (H*°(T)) for some A € T such that

(5) e (£)(G) = Le() ()l > 1 Le(f) + C(Dlr -

Recall the elementary fact that for an analytic function Y., a,w" on U,

> o

n=0

(6) rlae] < sup

|wl=r

Then we have

o, 1F(G,w) ~ FiGowll = swp > )G) - @) by @)

> r* | (£)(G) = Le(£)(G)l - by (3) and (6)
>t |I(f) + C(T)ll; by (5).
Hence there exists wy with |we| = 7 such that
|F(¢1ywo) = F(Caywo)l > r* [ 1(f) + C(T)ll -
Therefore by (4) we have
wo(f (e, w0),A) > r* |II(f) + C(D)lly -
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Hence by (1),
|7, we) + )| > () + CDly /2.
This completes the proof. [l

The following is a characterization of a weakly null sequence in the space of
continuous functions, and it is a direct corollary of the Lebesgue dominated
convergence theorem.

Lemma 3.3. Let B be a closed subspace of C(§2), where 2 is a compact
Hausdorff space. Let {f,}. be a sequence in B. Then {f,}, is weakly null
in B if and only if {f.}n s norm bounded and f, — 0 pointwise on 2.

The following lemma is given in [6] (see also [9]).

Lemma 3.4. Let {z,}, be a distinct sequence in U with |z,| — 1. Then
there is a subsequence {2, }; of {z,}n and there is a weakly null sequence
{h,}; in A(T) such that h;(z,,) = 1 for every j.

By considering a sequence of peaking functions, we have the following
lemma.

Lemma 3.5. For a function f in L*(T) with f # 0, there exists a weakly
null sequence {h,}, in H®(T) such that || fh, + C(T)||; does not converge
to 0 as n — oo.

Proof. We may consider that L>(T) = C(M(L*(T))) by Gelfand trans-
form. Since f # 0, there is a point zy € My(L*(T)) for some A € T
such that f(zo) # 0. Since one point set {zo} is not an open and closed
subset of M,(L>(T)) (see [8, p. 170]), there is a distinct sequence {z,},
in M,(L>*(T)) such that f(z,) — f(zo). By considering a subsequence,
we may assume that there is a sequence of disjoint open subsets {U,}, of
M(L*(T)) with z, € U,. Since z, is a weak peak point for H*(T) (see
[8, p. 207]), there is a sequence of functions {h,}, in H®(T) such that
ho(z,) = 1,||hn||M(Lw(T)) =1, and ||hn|l pepoo(rypv, = 0 (n — 00). Since
{U,}. is a sequence of disjoint subsets, by Lemma 3.3 {h,}, is a weakly null
sequence in H*®(T). Then we have

fhn + C(D)lly = wolfha,A)/2 by (1)
2 [(fha)(@n) = (fhn) (Tns1)] /2
> (If @) = [f @ns ) NAall prpoo (rypo, ) /2
— | f(zo)| # 0.
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The following is an elementary fact.

Lemma 3.6.

(i) Let ¥ be a bounded linear map from a Banach space B, to a Banach
space B,. If {fu}n is a weakly null sequence in By, then {¥(f,)}n is
weakly null in B,.

(ii) Let B; and B, be Banach spaces with B; C By and let {f,}» C B;.
Then {fn}nis weakly null in By if and only if {fn}n is weakly null in
B,.

We use this lemma like as the following ways. Since H®(T) C H>(T?),
a weakly null sequence in H*(T') is also weakly null in H>°(T?). Since the
Poisson integral is a norm preserving linear map from L>®(T?) to C*(U?),
for a sequence {f,}, in L*°(T?), {fn}. is weakly null in L>°(7?) if and only
if {fn}n is weakly null in C*°(U?). Now we can prove Theorem 3.1.

Proof of Theorem 3.1. We devide the proof into two steps.

Step 1. We shall prove M = (H*® + C)(T?),. By the definition of the
multiplier algebra M and Bourgain algebras, we have M C (H*® + C)(T?)s.
We prove (H*® + C)(T?), C M. Let f € (H*® + C)(T?)s.

First we prove f € H®°(T?). To prove this, suppose not. Then by Lemma
2.5, I (f) # 0 or Ji(f) # 0 for some k < 0. We assume that I;(f) # 0 for
some k < 0. By Lemma 3.5, there is a weakly null sequence {h, ()}, in
H>(T) and there is § > 0 such that | I;(f)h.(e’) + C(T)||, > 9 for every
n. By Lemma 3.6, {h,(e*)}, is weakly null in (H* + C')(Tz) By Lemmas
2.2—2.5, we have

[ Fha(e?) + (H® + C)YT?) g2 = |Ik(f)ha(e?) +C(T)||, > & for everyn.
Hence f ¢ (H* + C)(T?),. This contradiction shows that f € H>®(T?).
Next we prove f € M. To prove this, suppose not. By Theorem 2.1, we

may assume that I;(f) ¢ A(T) for some k > 0. By Lemma 3.2, there is a
sequence {w, }, in U such that |w,| — 1, |w,|* > 2/3, and

”f ,w,) + C(T )HT > |[I(f) + C(T)|l; /3 # 0 for every n.
By Lemma 3.4, by considering a subsequence of {w,}, we may assume that
there is a weakly null sequence {h,(e*¥)}, in A(T') such that h,(w,) =1 for
every n. Let b,(w) = (w — w,)/(1 — w,w) be the Blaschke factor, and let
gn(ew) = bn(ew)_l hn(ew)-

Then g,(e*¥) € C(T?), and by Lemma 3.6 {g,}, is weakly null in (H*® +
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C)(T?). Here for every h € H*(T?) and ¢’ € C(T?), put ¢, = ¢ b,, we have

1fgn +h+Cllps = || fhn(e™) + ba(€¥)h + cul| 12
> sup lf(z,wn)ﬁn(wn) + bn('wn)ﬁ(z,'wn) + En(z,wn)l

|z|<1

= sup If(z,wn) + Cn(z, wy)
|z|<l

= |fee
> ”f e, w,) +C(T)“T by Lemma 3.1 (ii)
> |Ik(f) +C(DMlly /3 # 0 by (7).

Therefore || fg, + (H*® + C)(T?)|| ;= does not converge to 0, hence f ¢ (H*+
C)(T?),. This contradiction shows f € M. Thus we get (H® + C)(T?), =
M.

Step 2. We prove M, = M. Since M is an algebra, M C M,. To prove
M, C M, let f € My. By [9, Theorem 4], we have M, C H*(T?). Hence
f € H>®(T?). We shall prove f € M by the same way as Step 1, but this
case is more easier. To prove f € M, suppose not. By Theorem 2.1, we may
assume that there is £ > 0 such that I;(f) ¢ A(T). By Lemma 3.2, there is
a sequence {w,}, in U such that |w,| = 1 and

) + &, wa) |

(8) |7 wn) + @), > IL()+C@)I /3 # 0.

By Lemma 3.4, we may assume that there is a weakly null sequence {h,(e*)}»
in A(T) such that h,(w,) = 1 for every n. By Lemma 3.6, {h,(e¥)}, is
weakly null in M. Then for h € M we have

[ fRa(e®) + Al pe > |s1|1<p1 ’f(z,wn)ﬁn(wn) + ;L(z,wn)|
> “ F(e,w,) + A(T) “T by Lemma 3.1 (i)
> || f(e,wa) + C(0)],
> | Ie(f) + C(T)|l 1 /3 by (8).

Hence || fhn(e™) + M||,. does not converge to 0, and f ¢ M,. This is a
contradiction. Therefore f € M. This completes the proof. a

By Corollary 2.4, M + C(T?) is a closed subalgebra of L>°(T?). We have
the following problem.

Problem 3.1. Is (M + C(T?)), = M+ C(T?) true ?
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4. Bourgain algebras on the polydisk.

In this and next sections, we shall study the Bourgain algebras relative to
C>=(U?). Recall the results on the open unit disk U. By [2, 11], we have

H®U), = H*(U)w = H®(U)+C(U) = (H®(T)) + Co(U).

First we shall prove the following theorem of Bourgain algebras relative to
C>(U?).

Theorem 4.1. Let A be the closed subspace such that A(T?) C A C
H>(T?). Then (A)y = (As) + Co(U?) relative to C>(U?), where A, is
the Bourgain algebra relative to L>(T?).

Let f € C®°(U?) and ¢ € T?. If f has the radial limit lim,_,; f(r(), we
denote it by f*(().

Lemma 4.1. Let B be a closed subspace of L*(T?). Let V be a closed
subspace of C=(U?) such that every f in V has the radial limit f* and
f*=0a.e. on T?. Then B+V is a closed subspace of C*(U?).

Proof. Let {f, + gn}n be a Cauchy sequence in B + V. By considering the
radial limits, {f,}, is a Cauchy sequence in B. Hence {f,}, and {g,}. are
Cauchy sequences in C*(U?). Hence we have our assertion. O

We use the following lemma frequently.

Lemma 4.2 (see the proof of [2, Theorem 8]). Let B be a closed sub-
space with A(T?) C B C L®(T?). Let V be a closed subspace of C*(U?)
such that every f in V has the radial limit f* and f* =0 a.e. on T2. If
g € (B + V), relative to C°(U?), then there exists the radial limit g* a.e.
on T?, and g* € By relative to L™ (T?).

Proposition 4.1. Let B be a closed subspace such that A(T?) C B C
L>®(T?) relative to C®(U?). Let f € (B)y. If f* = 0 a.e. on T?, then
f € Cy(U?).

Proof. To prove f € Cy(U?), suppose not. Then there is § > 0 and there

exists a sequence {(z,,wy,)}n in U? such that (z,,w,) converges to a point
in 8U? and

(1) |f(zn,wp)| > 6  for every n.

We may assume that |z,| — 1. By lemma 3.4 and considering a subsequence
of {z,}., we may assume that there is a weakly null sequence {p,(e%)}, in
A(T) such that

(2) Pn(zn) =1 forevery n.



182 KEIJI IZUCHI & YASUO MATSUGU

Since p,(e*’) € A(T) C A(T?) C B, by Lemma 3.6 {,(2)}, is weakly null
in B. Since f € (B), there exists g, in B such that

“fﬁn + c7n”U2 - 0

Since the radial limit of f vanishes a.e. on T2, ||gnl|y2 = ||gn|l;= = 0. Hence

limsup ||fp, + qn”U2 = limsup || fpnlly-
n—o00 n—oo

> limsup |f(zn,wn)| by (2)

n—oo

>46 by (1)
This is a contradiction. Therefore f € Cy(U?). O

Proof of Theorem 4.1. In [9, Theorem 4], the first author showed that A, C
H>(T?) for every closed subalgebra A with A(T?) C A C H*®(T?). Its proof
works for a closed subspace A. Hence we have A, C H*(T?). Since a weakly
null sequence in A is sup-norm bounded and converges to 0 uniformly on
each compact subset of U2, we have Co(U?) C (A),. To show (A,)” C (A)s,
let ¢ € A, and let {g,}, be a weakly null sequence in A. Then {gn}n is
weakly null in A and there exists h, in A such that ||gg, + hn|l;= — 0.
Since A, C H>(T?), ‘ggn + by I lggn + hnllp2. Hence § € (A), and
(A) +Co(U?) C (A i

To prove the converse inclusion, let f € (A),. Then by Lemma 4.2 (in
this case W = {0}), there exists the radial limit f* of f and f* € A,. By the
first paragraph, (f*)” € (A),, hence f — (f*) € (./1),, Since f — (f*) =0

a.e. on T?, by Proposition 4.1 we have f — (f*) € Go(U 2). Therefore
f € (As) + Co(U?), so that (A)y C (As) + Co(U?). O

Corollary 4.1.
(i) M)y = M+ GCo(U?).
(i) H>®(U?), = (H® + Co)(U?).

Proof. By Theorems 3.1 and 4.1, we have (i). Since H®(T?), = H*(T?) [9],
we have (ii). O

To determine the Bourgain algebra of a subspace of C*(U?) which con-
tains Cy(U?), we need the following two lemmas to find a weakly null se-
quence.

Lemma 4.3 (see the proof of Lemma 1 [7]). Let B be a Banach space and K
is a positive number. Let {f,}, be a sequence in B such that ”ZLI anfall <
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K for every k and complex numbers a,, with |a,| = 1. Then f, is a weakly
null sequence in B.

Lemma 4.4. Let {z,}, be a sequence in U with |z,| — 1. Then there is a
weakly null sequence {hi}i in H*®(U) such that both {z,; |hi(2,)| > 1} and
{zn; hi(2,) = 0} are infinite sets for each k.

Proof. This is essentially proved in [7, Theorem 2]. By considering a sub-
sequence, we may assume that {z,}, is an interpolating sequence, that is,
for each bounded sequence of complex numbers {a,}, there is a function
h in H*(U) such that h,(z,) = a, for every n. By [5, p. 294], there is a
sequence {f,}, in H*(U) such that

fn(zn) =1 and fn(zlc) =0 lfniéka
z |fa(2)| < K (€ U) for some constant K.

n=1

We divide the set of positive integers into infinite disjoint subsets
Ukz1 {"k,j}?il- Let

hi(z) = Z fro,;(z)  for each k.
Jj=1
Then hy, € H*(U) and
Yo @) £ Y Ifalz)l < K forzeU.
k=1 n=1

Hence by Lemma 4.3, {h} is a weakly null sequence in H*(U) and
{2n; |he(2za)] 2 1} = {z"k,;, ?.;1 and {zn; hi(zn) =0} = {zn}n\{znk,j ;’il'
|

Recall that Cr2(U?) is the space of functions f in C(U?) which vanish on
T?. Let B be a closed subspace of L*°(T?) and let V be a closed subspace of
Cr2(U?). Then by Lemma 4.1, B + V is a closed subspace of C®(U?). We
study the Bourgain algebra of B + V relative to C®(U?).

Proposition 4.2. Let B be a closed subspace such that H *(T?) C B C
L>®(T?). Let V be a closed subspace of Cr2(U?). Let f € (B+ V). If
f*=0a.e. onT?, then f € Co(U?).

Proof. Let f € (B + V),. Suppose that f* = 0 a.e. on T?. To prove
f € Cy(U?), suppose not. Then there is § > 0, and there is a sequence
{(2n,wn)}n in U? such that {(2,,w,)}, converges to a point Ay in AU? and

(3) |f(2n,wn)| > & for every n.
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We may assume that |z,] — 1. Here we use Lemma 4.4. Then there is a
weakly null sequence {hy (%)}, in H*(T) such that both {zn; izk(zn)| > 1}
and {2,; hi(z,) = 0} are infinite sets for each k. By Lemma 3.6, we may

consider that {h(z)} is a weakly null sequence in B+V. Since f € (B+V),,
there exist g, € B and ¢; € V such that

i+, 0

Since ¢ = 0 on 72 and f* = 0 a.e. on T2, by taking radial limits we have
Iléklluz = Hgk”T2 — 0. Hence

(@ [#he+a],, = o

Since ¢ € CTz([jz) and (zn,wn) = Ao, Ck(2n,wn) = ck(Xo) (n — o00) for
each k. Since {z,;hi(z,) = 0} is an infinite set, we have

“ka + Ck”U2 > Lmsup |f(2n, wp)he(2n) + & (2n, wn)|

n—oo

2 |ex(Mo)l-

Therefore by (4), cx(Ao) = 0 (k — 00). Since {zn;|hi(z,)| > 1} is an
infinite set, we have

[ £+ ], = limsup | (zns wa) ok (22) + € (2, )
>6—lec(ho)l by (3).

Since cx(Ag) — 0, we have

it [+, 2

This contradicts (4). Consequently, we have f € Co(U?). O

Corollary 4.2.
(@) (H*+C)U?)p = (H® + Co)(U?).
(ii) H°°(U2)b(n) = (H® +Co)(U)pny = (H™+ Co)(U?)  for every
n>1.

Proof. Since (H®+C,)(U?) is an algebra, (H®+Cy)(U?) C (H®+C,)(U?)s.
To prove the converse inclusion, let f € (H® + Cy)(U?),. By Lemma 4.2,
f* € H®(T?), = H®(T?). Therefore f — (f*) € (H® + Co)(U?)s. By
Proposition 4.2, f — (f*) € Co(U?). Hence f € H®(T?) + Co(U?) =
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(H* + Cy)(U?). Consequently we get (i). By Corollary 4.1 and (i), we have
(i) O

We note that the proof of Proposition 4.2 actually proved the following
proposition.

Proposition 4.3. Let B be a closed subspace such that H*(T?) C B C
L®(T?). Let V be a closed subspace of Cr2(U?). Let f be a function in
C>(U?) such that there ezists the radial limit f* and f* = 0 a.e. on T?.

If “fizk + B+ V”U2 — 00 for every weakly null sequence {hy}r in H*(T?),
then f € Co(U?).
Since H®(U?) + C(U?) = (H® + C)(T?) + Cr2(U?), by Lemma 4.1

H>(U?) + C(U?) is a closed subspace of C*®(U?) but it is not an algebra.
We denote by M, the multiplier algebra of H*(U?) + C(U?), that is,

= {f € C®(U?); f- (H*(U*) +C(U?) c H*(U?) +C(U*)}.

Since constants are contained in H*(U?) 4+ C(U?), M, C H®(U?)+ C(U?).
Now we have a following characterization of M.

Theorem 4.2. M, = M+ Co(U?) = (H®(U?) + C(U?)),.

Proof. 1t is tirivial that Co(U?) C M;. To show M C My, let f e M.
Since C(U?) = C(T?) + Co(U?), it is sufficient to show that f - C(T?)” C
H>(U?) + C(U?). By the definiton of the Poisson integral, it is not difficult
to see that for c € C(T?),

(5) (fe = (fe) )(zn,wn) = 0 as |z,) = 1 and |w,| — 1.

Since f € M, by Corollary 2.4 we have fc € M+C(T?). Hence by Corollary
2.2, fé and (fc) can be extended continuously on U? \ T?. Then by (5),
fé— (fe¢)” € C(U?). Therefore

fée = (fo) + (fe—(fo)) € M+C(T?) +C(0% c H®(U?) +C(0?).

Thus f € M,, so that M + Co(U?) C M;. By the definition of Bour-
gain algebras, the multiplier algebra is contained in the Bourgain algebra.
Therefore we have

M+Co(U?) € My C (H®(U?) + C(TU?),.

Next we prove (H®(U?) + C(U?)), C M + Co(U?). Let g € (H®(U?) +
C(U?)s. We have H®(U?) + C(U?) = (H*® + C)(T?) + Cr=(U?). By
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Lemma 4.2, g has the radial limit and g* € (H* + C)(T?),. By Theorem
3.1, g* € M. By the first paragraph, we have g—(g*) € (H®(U?)+C(U?)),.
Hence by Proposition 4.2, g — (g*) € Co(U?), so that (H*®(U?) +C(U?)), C
M + C,(U?). This completes the proof. U

By Lemma 4.1, H®(U?)+Cr2(U?) is also a closed subspace of C*(U?) but
it is not an algebra. We denote by M, the multiplier algebra of H ©(U?) +
Cr=(U?), that is,

My = {f € C®(U?); f-(H*(U?) + Cr=(U?) C H*(U?) + Cr=(U*)}-
Then we have the following theorem.
Theorem 4.3. My, = M+ Co(U?) = (H®(U?) + Cr=(0?))s.

The difficulty of the proof is to show (H®(U?)+Cyr2(U?)), C M+Co(U?).
To prove this, we need some lemmas. First we have the notation which will
be used in Section 5.

Definition 4.1. For a function f in C*(U?) and ¢ € U?, let

o(f,0) = sup {h;gsogp 1F(Ca) = FED: Corin € U, Gy — 4}.

Then w(f, () is an upper semicontinuous function in ¢ € dU?, and w(f,({) =
0 if and only if f can be extended continuously at ¢ € U2, The following
lemma follows from the above definition.

Lemma 4.5. Let f,g € C*°(U?). Then
(i) Nfllg= 2 w(f,0)/2  for every ¢ € OU?;
(i) w(f+9,¢) 2 w(f,{) —w(g,¢) for every ¢ € OU?;
(iii) 4f f can be extended continuously at ¢, then w(fg,¢) = |f(¢)]| w(g,().

The following lemma is an application of Lemma 3.2. Recall the definition
of wo(f,A) for f € H®(T) and X € T (see the paragraph above Lemma 3.2).
We note that

wo(f,A) = sup {limsup \f(z;) = F(z)|; =,2 € U,zj,2; = /\}-

j—o0

Lemma 4.6. Let f € H®(T?) and f ¢ M. Then there exists d > 0 such
that {¢ € OU* \ T* w(f,¢) > &} is an infinite set.

Proof. Since f € H*®(T?)\ M, by Theorem 2.1 we may assume that I;(f) ¢
A(T) for some k > 0. Since I(f) € H*(T) by Lemma 2.6,

1 (f) + C(T)||; > 0.
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Let 6 = ||I(f) + C(T)|l; /3. By Lemma 3.2, there is a distinct sequence
{wp}n in U such that |w,| — 1 and

”f(ew, wy) + C(T)”T > § for every n,

where we consider that (e, w,) is a function in e € T. By (1) in Section
3,
|h+C(T)|l; < sup {wo(h,A);A €T} for h € H*(T).

Hence for each n there exists a point e’ in T such that
wo(f(eie,wn),eiﬂ,.) > d.
Since

Wo (f(eiG, 'wn)a ew")

sup {limsup |f(z5,wn) — f(z5,wa)l; 25,2 € U,x5,2; = e“’"},

j—oo

we have 5 3

w(f, (e wn)) > wo(f(e”,wn), ™).
Put ¢, = (e“~,w,). Then {(,}, is a distinct sequence in OU? \ T? and
w(f,¢,) > 6 for every n. a

Proof of Theorem 4.3. 1t is trivial that ~C’O(U 2) € M. By Corollary 2.2, we
have M - C2(U?) C Cr2(U?). Hence M C M, and

M +Co(U?) € My C (H®(U?) + Cr2(T?))s.

We shall prove that (H*(U?) + Crz(U?)), C M + Cy(U?). To show this, let
g € (H®(U?) 4+ C12(U?)),. By Lemma 4.2, g* € H®(T?), = H*(T?). Let
{hx}+ be a weakly null sequence in H*(T?). Since g € (H®(U?)+Cr2(U?))s,
there exists g, € H*(U?) and b, € Cy2(U?) such that

— 0.

(6) ”.‘Jilk + gk + bi -

By considering the radial limits, ||g*hx + g}||;» — 0. Since g*, hy € H®(T?),

| B+ af,, = llg*he+aill = 0.

uU?2

Then by (6), we have

|9 =@ ))he+be,, = 0.
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Hence

|9 = (@) )hs + B=(U?) + Cra(@?)|| | — 0.

U2

Therefore by Proposition 4.3, we have
(7) 9-(g") € Co(U?).

Next, to show (g*) € (H=(U?) + Cr2(U?))s, let {fn + cn}n be a weakly
null sequence in H*(U?) + Crz(U?). Since g € (H*®(U?) + Cr2(U?))s,

I9(fa + cn) + H®(U?) + Cr2(T?)|| . — 0.

By (7), (g - (g*)N)(fn + Cn) € CO(U2) C CT2(02). Hence

(9°) (fa+ ca) + H2(U?) + Cra(0%)
= l9(fa +ea) = (9= (4))(fn + ca) + H=(U?) + Cra(0?)

= |lg(fn + ca) + H2(U?) + Cra(0?)]
— 0 asn— oo

U2

This implies that
(8) (9") € (H®(U?) +Cr=(U%))s-

Now we show g* € M. To show this, suppose not. Then g* € H*(T?)\M.
By Lemma 4.6, there exist § > 0 and a distinct sequence {(,}, in OU? \ T?
such that ¢, — (, € OU?, ¢, # (o, and

(9) w((g*),¢n) > &  for every n.

Take a sequence of disjoint open subsets {V,}, of U? such that V,NT? =0
and ¢, € V,. Take functions d, in C(U?) such that

(10) do(¢n) = 1,0 < d, <1 onU? andd, = 0 onU?\V,.

Then by Lemma 3.3, {d,.}, is a weakly null sequence in_CTz(U 2). By (8),
there are sequences {g,}, in H*(U?) and {p,}, in Cr2(U?) such that

— 0 as n — oo.

(9" dn+ g +pa

By considering the radial limits, ||g.||,> = [|95/l7= = 0. Hence

Uz——)O as n — oo.

(11) |(e") dn +pn
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By Lemma 4.5, we have

() dn+n] . 2 sup {w((g") dns )/2}
= sup {lda(Olw((9%) 5 ¢)/2}

> S%p {]dn(Cn)lw((g*Yv Cn)/2}
>4¢ by (9) and (10).

This contradicts (11). Hence g* € M. Consequently by (7), we have g €
M + Cy(U?), so that (H*®(U?) + Cr2(U?))y C M + Cy(U?). This completes
the proof. O

By Corollaries 4.1 and Theroems 4.2 and 4.3, we have the following,.

Corollary 4.3. (M), = (H®(U?) + C(U?)), = (H®(U?) 4 Cr2(U?))s.

5. Higher Bourgain algebras on the polydisk.

In Section 4, we proved that

Hoo(Uz)b(n) = (Hoo + Co)(U2)b(n) = (Hoo + Co)(U2)
for every n > 1. In this section, we study the n-th Bourgain algebras (M)inys
(M + Co(U?))s(ny, and (M + Cr2(U?))p(n) relative to C*°(U?). In Theorem
5.1, we shall prove that

(M)b(n) # (M)b(n+1) for every n > 0.

Since (M)s1y = M+ Co(U?) by Corollary 4.1 (i), the above fact means that
all the higher Bourgain algebras of M + Co(U?) are all distinct. But the
situation is not the same if we start from M + Cr2(U?). In Theorem 5.2, we
shall prove that

(M+Cr2(U*))pny = (M +Cr2(U?%), for every n> 1.

Spaces M + Co(U?) and M + Cr2(U?) are similar to each other, but the
properties of these Bourgain algebras are completely different. Notations are
little bit complicated, but the essential idea is simple and like the following.
Consider Bourgain algebras of Cy(U) and C(U) relative to C®°(U). It is
rather easy to show that C(U)pmy = C(U)s and Co(U)pny # Co(U)p(nt1)-
When determing (M + Co(U?))p(n), it appears the phenomenon on 9U? \
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T? like as Co(U)p(n). When determing (M + C12(U?))p(my, it appears the
phenomenon on 9U? \ T? like as C(U)y(n)-
To describe (M + Co(U?))y(n) explicitly, we need some notations. Let

T = (T x0)U(0xT).

Then T is a closed subset of U2. By induction, we define the families of
closed subsets of T. If A is a subset of T, we denote by A%, the derived
set of A, the set of cluster points of A. We write A*™ for (A4™~1)? and
A4® = A Let A; be the family of finite subsets of T. Consider that the
empty set is contained in A;. Let A, be the family of closed subsets E of T
such that E¢ € A;. Assume that the family A, is defined. Then A,,,, is the
family of closed subsets F of T such that F¢ € A,, that is, F4™ € A,. By
our definition, every subset in A, is a countable closed set, A,, C A4, and

A, # A,y for every n.
Forfef’and0<r§1,weput

_ J (e w); Jw| < r}if € = (7,0),
b, = {{(z,ew); 2] <} if € = (0, ).

Then D(¢,7) C U? and D(€,7)NT? = for every ¢ € Tand 0 < 7 < 1.
Now we have the following notation.

Definition 5.1. For f € C®(U?) and ¢ € 9U?, let

7(¢) = sup {limsup T CnEUz,Cn—)C}-

n—00

Then f is an upper semicontinuous function on dU2. To describe (M +
Co(U?))b(n), we introduce new spaces C,(U?).
Definition 5.2. We denote by C,(U?),n > 1, the space of functions f in
C*(U?) such that for each § > 0, there exists ,0 < r < 1, and there exists
E € A, depending on é such that {¢ € dU?; f(¢) > 6} C U{D(¢,r);¢€ € E}.
By the upper semicontinuity of f, we can see that the above definiton is

equivalent to the following one.

Definition 5.2°. We denote by C,(U?),n > 1, the space of functions
f in C*(U?) such that for each § > 0, there exists E € A, such that
{¢ € dU? f(¢) > 6} C U{D(1);¢€ € E} and f =0o0n T2

For, if f € C,(U?) in the sense of Definition 5.2, then it is easy to prove
f € C,(U?) in the sense of Definition 5.2’. To see the converse, suppose that
g € C,(U?) in the sense of Definition 5.2’. Then for each § > 0, there exists
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E € A, such that {¢ € 9U?;f(¢) > 6} C U{D(1);6 € E}and f =0
on T2. Since f is upper semicontinuous, {¢ € dU?; f(¢) > 6} is a compact
subset of OU? \ T?. Hence for each ¢ € E, there exists r¢ with 0 < r¢ < 1
such that

{C€aU? f(¢) 2 6} N(D(E,1) \ D(&,re)) = 0.

Therefore )
{¢eaU? f({) 26} C U{D(&,re);€ € E}.

We may assume moreover that

{CeaU? f(¢) 26} n(D( 1)\ D(&,r)) #0

for every r with 0 < r < r¢. We need to prove that sup {r¢;§ € E} < 1.
To show this, suppose not. Then there is a sequence {{,}, in E such that
e, — 1. Then there exists ¢, in OU? such that

f(¢n) 26 and (, € D& 1)\ D, (1+17)/2).

Let (o be a cluster point of {(,},. Then we have
(o €T? and f(() > 6.

This is the desired contradiction. Hence Definitions 5.2 and 5.2’ are equiva-
lent.

By our definition, f = 0 on T? for f € C,(U?). Since each element E in
A, is a closed subset of T, U{D(¢,r); ¢ € E} is a closed subset of 8U2. For a
closed subset F of OU?, it is not difficult to find a function f in C*(U?) such
that f = xr, the characteristic function for F on U?. Since A, # Apt1, We
have

Cn(U?) # Cny1(U?)  for every n > 0.

Now our theorem is the following.
Theorem 5.1. (M + Co(U?))yny = M+ Co(U?)  for every n > 0.

Corollary 5.1. ) ~ 5
(i) (M)sny = (HX(U?) + C(U?))on) = (H®(U?) + C12(U?))p(ny = M +
Cn_1(U?)  for everyn > 1.

(i)  (Mogn) # (M)ons1y  for everyn > 0.
Proof. By Corollary 4.1, Theorems 4.2 and 4.3, (M), = (H®(U?)+C(U?)), =

(H®(U?) 4 Cr2(U?))y = M + Co(U?). Then by Theorem 5.1, we get (i) and
(ii). O
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To prove our theorem, we need some lemmas. The following lemma follows
from Definition 5.1.

Lemma 5.1. Let f,g € C*(U?) and { € QU?. Then

(i) if g can be extended continuously at ¢, then (fg) (¢) = |9(¢)| F(¢);
(i) (fg9) < fg on0U?%

@) NIf +Co@lya = fllovss

(iv) (f+9) (O = F(¢)—a()-

Lemma 5.2. Let f € C®(U?) and 0 < r < 1. For § > 0, the set F of

points & in T such that D(£,r) N {¢ € BU?; F(¢) > 6} # 0 is a closed subset
ofT

Proof. Let {{,}. be a sequence in F' such that &, — § for some &, € T.
We may assume that &, = (e¥,0), & = (e,0), and 6, — 6,. By our
assumption, there is a point w,, in U with |w,| < r such that

fle®,w,) > 6.

Let wy be a cluster point of {w,},. Then |wy| < r, and by the upper
semicontinuity of f, B
f(ew",wo) Z (5

Since (€', wo) € D(o,T), we have & € F. Hence F is a closed subset of
T. O
Lemma 5.3. Let B be a closed subspace with M C B C L*(T?).  Let V

be a closed subspace of C*(U?) such that f =0 onT? for every f € V. If
G € (B +V), and the radial limit G* =0 a.e. on T?, then G =0 on T?.

Proof. We note that by Lemma 4.1, B+V isa closed subspace of C*°(U?).
To prove G = 0 on T2, suppose not. Then G(¢) # 0 for some ¢ € T?. Hence
there exists a sequence (, = (z,,w,) in U? such that |z,| = 1,|w,| — 1 and

(1) |G (2, wa)| > |G(Q)I/2  for every n.

Here we have |z,w,| < 1 and |z,w,| = 1. By Lemma 4.4, there is a weakly
null sequence {gx }+ in H*(U) such that

(2) {znwn; |gk(2znw,)| > 1}  is an infinite set
for each k. Let

(3) Gi(z,w) = gi(zw)  for (z,w) € U
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By the proof of Corollary 2.1, we have G, € M. Since
H®U)3q = Q(z,w) = q(zw) € M

is a bounded linear map, by Lemma 3.6 G is a weakly null sequence in /\Et
and so is in B + V. Since G € (B + V), there exist sequences {hy}; in B
and {cx}x in V such that

4) ”GG,c + hy + c"”m —0 ask — oo.

Since G* = c; = 0 a.e. on T?, by considering radial limits, we have “izk“m =
I|hllp= = 0 as k — oo. Hence by (4),

(5) IGGx +cxllyz = 0 as k — oo.

Since ¢, € W, by our assumption lim, ., cx(z,,w,) = 0 for each k. Now
we have

|GGk + cklly= > limsup |G (2, ws)Gr(2n, Wn) + ck(2n, wy)|

> limsup |G(2n, wn)gr(2znwn)| by (3)

n—oo

>|G(¢)l/2 by (1) and (2).
This contradicts (5). (]
The following lemma follows Definition 5.2.

Lemma 5.4.

(i) Ca(U?)-Cu(U?) = Ca(U?).

(ii) M + C,(U?) is a closed subalgebra of C®(U?).

(iii) Let {f; + ce}x be weakly null in M + C,(U?). Then {fi}x is weakly

null in M.
(iv) Let {fi}x be weakly null in M, 0 < r < 1, and ¢ € T. Then
fk — 0 as k — oo.
D(¢,r)

Proof. (i) is trivial by the definition of C,(U?).

(ii) By Lemma 4.1, M + C,(U?) is a closed subspace. By (i), it becomes
an algebra.

(iii) It is easy to see that each function in M + C,,(U?) is represented by
the form f + ¢ uniquely, where f € M and ¢ € C,(U?). Then M+C,(U?) 3
f+4¢— f e Misabounded linear map. By Lemma 3.6, {fx}: is weakly
null in M. Hence we get (iii).
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(iv) Since fx € M, by Corollary 2.2 we may consider that f} is continuous
on U2\ T?. Since {fi}; is weakly null in M, {fi}; is sup-norm bounded
and converges to 0 pointwise in U2 \ T2. Since D(¢,7) C U? \ T? and f; is
analytic in D(¢,7), ”fk”D(g N —0as k — oo. O

Lemma 5.5. Let f € C,,1(U?) and let {fi}« be a weakly null sequence in
M. Then ”ff,c + C,(U?) 'U2 —0 as k — oo.

Proof. Let f € Cpy1(U?) and let { fi}x be a weakly null sequence in M.
Then {fi}x is sup-norm bounded. We may assume that

< 1 for every k.

(6) |7/
Since f; € M, by Corollary 2.2 we may consider that fi is a continuous
function on U? \ T?. Since f € C,11(U?), f =0 on T?. Then by Lemma 5.1

(i),

(7) (FF) () = 1feQ) F¢)  for ¢ € OU™.
Let § > 0 arbitrarily. Put
(8) § = {¢edU? f(¢) > é}.

Since f € C,1(U?), there exist E € A4, and r,0 < r < 1, such that
(9) S c U{D(r); € E}

Since E € A4, E4™ is a finite set. Let

(10) D = U {D(,r); £ € E4™},

Then D C U?,DNT? =, and by Lemma 5.4 (iv)

(11) ”fk”D - 0 ask— oo.

By (7) and (11), there exists ko depending on d such that

(12) (ffx) < 6/2 onD for every k > k.

Hereafter we assume k > k,. Let

(13) B, = {neU% |(ff)m = é}.
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Then By is a closed subset of U2. We denote by B;, the closure of By, in U?.
By (6), we have

(14) By C {ne€U% |f(n) = é}.
By (8) and (14),

(15) S D B,noU.

By (12) and (13),

(16) ByNnD = .

It is not difficult to find a function p in C*°(U?) such that

(17) 0<p<1 onU?%
(18) p=1 on By
(19) p=0 on (AU?)\ B.

By (13), (17), and (18), we have ”ffk(l —p)”u2 < 4. Hence

(20) [CZACETN e

U2

Here we prove that
(21) fiw € Ca(U?).
Let 0 > 0. By Lemma 5.1 (ii),

(22) (ffip)” < ffip  on U™

Then by (15) and (19),

(23) {¢CedU? (ffin) (() >0} C S

We denote by E, the set of ¢ € E such that

(24) D(&,r) N {¢€dU? (ffip) () =0} # 0.

Since E € A,y1, by the definition of Api1, E is a closed subset. Since
f € Cry1(U?), by Lemma 5.4 (i) ffip € Cpny1(U?). Hence by Lemma 5.2,
Ey is a closed subset of E. By (9) and (23),

(25) {¢ €dU? (ffip) (¢) 20} C U{D(1); € € By}
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By (16), (19), and (22), we have (ffip) = 0 on D. Hence by (10) and (24),
Ey; N E4™ = (. Therefore

(Ep)¥™ C EynEY™ = ¢,

This means that (Ep)?™~1 is a finite set and E, € A,. By (25), we get (21).
Now we have

|£5+ o),

Fi(1=p) + ffip + Cu(U?) -
fR=p)+CaU)]|,, by (21)

< |£ia-p) + o),
=A@ -p)],,, by Lemma 5.1 (i)
<é by (20).

Since the above inequality holds for every § > 0 and k > ko (ko depends
on ¢), we have “ffk -l-C'n(UQ)”U2 — 0 as k — oo. This completes the
proof. O

Proof of Theorem 5.1. 1t is sufficient to prove that
(M +C(U?))y, = M+ Crpr(U?) forn>0.

First we shall prove that M+ Cpy1(U?) C (M+C,L(U?))s. By Lemma 5.4
(ii), M + C,(U?) is a closed algebra. Hence M + C,(U?) C (M + Cr(U?))s-
To prove C,,,(U?) C (M + Cn(U?))s, let f € Cpy1(U?) and {f,c +cr} is a
weakly null sequence in M + C,(U?). By Lemma 5.4 (iii), {f} is weakly
null in M. Then

|£(Fe+e0) + M+ ),
= ”fj?,c+./\;t+C,,(U2)”U2 by Lemma 5.4 (i)
< |[#f+ Catt?)],

=0 as k— oo by Lemma 5.5.

Hence f € (M + Cn(U?)),. Thus we have M 4 Cpyy (U?) C (M 4 Co(U?))s-
Next we shall prove that (M + C,(U?))y C M + Cpys(U?). Let g €
(M+C,(U?)),. By Lemma 4.2, there exists the radial limit g* a.e. on T? and
g* € M,. By Theorem 3.1, we have g* € M. To prove g — (g*) € Cpry1(U?),
suppose that g — (g*) ¢ Cpy1(U?). We shall lead a contradiction. We put

G =g-(g7) € C=(U).
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Then by the first paragraph, G € (M + C,(U?));. Here we can use Lemma
5.3. Then

(26) G =0 onT
Since G ¢ C,.,,(U?), there is § > 0 such that
(27) {¢edU? G() 26} ¢ U{D(,r); £ € E}

for every E € A,,; and r with 0 < r < 1. Since G is upper semicontinuous
on dU?, by (26) there exists 7o with 0 < ry < 1 such that

{¢ € dU? G(¢) 28} C U{D(&,m); £ €T}
We denote by E, the set of £ in T such that
(28) D(¢,m) N {¢€dU? G({) 20} # 0.
By Lemma 5.2, E, is a closed subset of T, and

{¢€aU? G(¢) 26} C U{D(mo); € € B}

Hence by (27), Ey ¢ Anyy. Then (Ep)™ is an infinite set. Take a distinct
convergent sequence {)\}, in (Eo)¥™. Here for the sake of simplicity, we
assume that Ey C T x 0. Put A\, = (e®*,0). Then {e¥*}, is a convergent
sequence in 7. By Lemma 3.4, we may assume moreover that there is a
weakly null sequence {g;(e*)}+ in A(T) such that gi(e**) = 1 for every k.
We consider that g.(e*) is a function in A(7?). Then g, is weakly null in
M + C,(U?), and

(29) gr = gr(e®) one? xU.

By Lemma 5.1 (i),

(30) (Gar) (O) = 13O G()  for ¢ € BU.
Let
(31) E, = {£ € Eo; |g:(€)] > 1/2}.

Then E; is a closed subset of E;, and by (29) (e?*,0) € E; for each k.
Since (e%%,0) = Ay € (Eo)% ™, by (31) A\; € (Ex)*™. Hence (E;)%™ " is an
infinite set. Therefore Ey ¢ A, for every k. This means that U{D({,¢);§ €
E,} is not contained in U{D({,7,);€ € F} for every F € A,. Hence by
Definition 5.2,

(32) {iengk lellpery = 0  for every c € Co(U?).
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Since E;, C Ey, by (28)

”G'”D(E,ro) > § for every £ € Ey.

Hence by (29), (30), and (31), we have

(33) ”(ng)—”D(E,ro) > 6/2 for every £ € E.

Since G € (M + C(U%))s and {g }+ is weakly null in M + C,(U?), there
exists a sequence {h; + ¢ }x in M + C,,(U?) such that

”G§k +f~l.k +ck“U2 — 0.

Since G* = ¢} =0 a.e. on T?, ”izk “m = ||h&||z= — 0. Hence
(34) |Ggr + cklly= = 0 as k — oo.
But we have

Gk + celly= = 1(Gge + k) llope
> sup ||(Gg + cx) |l pge.ro)
£EE)

> 50p {I(G) o) ~ IGtlloenm} by Lemma 5.1 (iv)
>0/2 ~ inf lawloeny by (39)
=4/2 by (32).

This contradicts (34). This completes the proof. O

In Theorem 5.1, we proved that the higher Bourgain algebras of M+
Co(U?) are all different. Next we shall study (M + Cr2(0?))s(n). We prove
that (M + Cr2(0?))pm) = (M + Cr2(U?))s for every n. To describe its
Bourgain algebra, we need to introduce a new space W (U?). Recall the
Definition 4.1, for a function f in C®(U?) and ¢ € dU?,

o(£,0) = sup {limsup 1£(G.) = ) Gusn € U7, Gurten = ¢}

Definition 5.3. We denote by W (U?) the space of functions f in C*®(U?)
such that

i) f =0 onT?

(it) for § >0, {¢ € AU?;, w(f,¢) > 4} is a finite set.
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Roughly speaking, W (U?) is the set of functions in C*(U?) whose bound-
ary functions are continuous except finite sets. We note that Crz2(U?) is
contained in W (U?) properly. It is not difficult to see the following.

Lemma 5.6. Let f € W(U?). Then ||f + Cr2(U?)] < |lw(f, s
Since w(f,() is an upper semicontinuous function in ¢ € dU?, we have

Lemma 5.7. Let f € W(U?) and let {(,}n be a distinct sequence in OU>.
Then liminf, ., w(f,(,) =0.

Now we have the following theorem.
Theorem 5.2. (.A;l + CTZ(U2))(,(n) = (M + CTz([jz))b = M + W(UZ)

Proof. Step 1. We shall prove M 4+ W (U?) C (M + Cr2(0?)),. By Corollary
2.2, for each function h in M we may consider that h is a continuous function
on U2\ T2. Then M + Cr2(U?) becomes a closed subalgebra of C*®(U?).
Hence M + Cr2(U?) C (M + Cr2(T?)),. i

To prove W(U?) C (M + Cr2(U?)),, let f € W(U?) and let {f, + ca}n
be a weakly null sequence in M+ Cr2(U?). Then by Lemma 3.3 there is a
constant K > 0 such that

(35)

fn+cn v < K for every n.

By the definition of W (U?), f = 0 on T? and there is a sequence {(;}; in
OU? \ T? such that {¢ € dU%* w(f,¢) # 0} = {(x}». By Lemma 5.7,

(36) w(f,&) = 0 ask — oo.
Since {f, + ¢n}» is weakly null,
(37) (fa+c)(C) = 0 (n—00) for each k.
Since f =0 on T2, (f(fx + ¢2))” =0 on T2. Therefore by Lemma 4.5 (iii),
[ (Faten). Q)0 = 599 (£, G) [(Fa+ ) (G0)
—0 (n—o00) by (35), (36), and (37).
Then by Lemma 5.6,

|#(Fu+en)+Cr(@)], = 0 asn— oo,

Hence f € (M + Cr2(U?))y. Thus M + W (U?) C (M + Cr2(TU?))s.
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Step 2. Next we prove (M + Cr2(U?))y C M + W(U?). Let g € (M +
C12(U?))s. By Lemma 4.2, there exists the radial limit g* a.e. on T? and
g* € My = M. By the first paragraph, g —(¢*) € (M + Cr2(U?));. We put

G =g-(g") € Cx(U?).

We prove G € W(U?). To prove this, suppose that G ¢ W(U?). Since
G € (M + Cr2(U?)),, by Lemma 5.3 we have G = 0 on T2. Then for some
d > 0, there is a distinct sequence {(},, in (OU?)\T? such that w(G, {,) > 2§
for every n. We may assume that {(,}, is a convergent sequence. Since
Cr2(U?) is a C*- algebra, it is not difficult to find a weakly null sequence
{hn}n in Cr2(U?) such that h,(¢,) = 1 for every n. Since every function in
M + Cr2(0?) is continuous on (8U?) \ T?, by Lemma 4.5 we have

”Gh,,+./\;t+CTz(l72)”U2 > W(Ghn,G)/2 = w(G,(a)/2 > 6.

This means that G ¢ (M + Cr2(U?)),. But G € (M + Cr2(U?)),. This is a
contradiction.

Step 3. Next we prove (M + W(U?)), = M + W(U?). By Steps 1 and 2,
we have

(M +Cr2(0?)y = M+ W(U?).

Then M + W (U?) is a closed subalgebra of C*(U?). Hence M + W (U?) C
M +W(U?))s.

To prove the converse inclusion, let h € (M + W(U?)),. By Lemma 4.2,
h* € M, = M. By the above fact, h — (h*) € (M + W (U?)),. We put

H = h— (k") € C®U?).

We prove H € W(U?). To prove this, suppose that H ¢ W(U?). Since
H € (M + W (U?))s, by Lemma 5.3 we have H = 0 on T?. Then for some
o > 0, there is a distinct convergent sequence {(}, in (8U?) \ T? such that

(38) w(H,(,) > o for every n.

Let ¢, — (o € 0U?. Since w(H,() is upper semicontinuous in { € dU?,
w(H, () > o and ({, € dU? \ T?. Take a sequence of open subsets {V,,}, of
U? such that

o]

(39) (i €V, VuNT? = 0, and (| Vo = {Go}-

n=1
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Take a sequence of open subsets {W,,},, of U? such that

(40) (LEW,CV, and WoNW, = 0 ifn # k.
Take a sequence of functions {h,}, in Cr2(U?) such that

(41) lAnlly = 1, Ba($s) = 1, and b, = 0 on U?\ W,.

We divide the set of integers into disjoint infinite subsets,
U {nk,j}j = {1,2, } and {'n,k,j}j N {ni,j}j = m lfk 76 7.
k=1

Let o
Hy = Y hn, onU.
j=1

By (39), (40), and (41), Hy € C*(U?), H}, can be extended continuously on
0U?\ {¢o}, and H; = 0 on T?. Hence H, € W(U?). Moreover we have

(42) Hi((n,,) = 1  for every j.
Since - .
Z |Hy| < Z |h] < 1  onU?
k=1 n=1
by Lemma 4.3 {H;}; is a weakly null sequence in C>(U?), and so is in
M+ W(U?).

Since H € (M + W (U?)),, there is a sequence {g; + ¢} in M + W(U?)
such that
”HHk +§k + Ck“U? — 0.

Since H* = ¢; = 0 on T?, by considering the radial limits, ||gk|l,. =
lgx|lz= = 0. Hence

(43) |HHy + clly= — 0.
But we have

|HHj + cillye Zlirgigp w(HHy + ¢y, ;)/2 by Lemma 4.5 (i)
Zli;gigp (w(HHk,Zn,w.) — w(ck,¢n,,;))/2 by Lemma 4.5 (ii)

> (o — li;r_l)gf w(ck;Cn,;))/2 by (38), (42) and Lemma 4.5 (iii)
=o0/2 by Lemma 5.7.
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This contradicts (43). Hence (M +W (U?)), C M+ W (U?). This completes
the proof. O

Remark 5.1. In Theorem 5.1, we proved that M + C,(U?) # (M +
C1(0?)). In Theorem 5.2, we proved that M + W (U?) = (M + W (U?)),.
The spaces C;(U?) and W (U?) are similar in these definitions. But these
spaces consist of much different kind of functions. A boundary function of
a function in C; (U vanishes on U? except a countable set. A boundary
function of a function in W (U?) is continuous on dU? except a countable
set.

6. Bourgain algebras of the polydisk algebra.

In [9], the first author dertermined the Bourgain algebra of the disk algebra
A(T) relative to L>(T). Succeedingly in (3], Cima, Stroethoff and Yale de-
termined the Bourgain algebra of the disk algebra A(U) relative to C*(U).
In this section, we briefly study the Bourgain algebras of the polydisk alge-
bra.

Let X be the maximal ideal space of L>(T?). We may consider that

L*>*(T?) = C(X) by Gelfand transform. For A = (A, A;) € T?, we put
Xy = {z € X; z(z) = M\,w(z) = A}
For f € L>(T?), let

wo(f,A) = sup {|f(A1) = F(R)]; A1, A2 € X}

Definition 6.1. We denote by V(T?) the space of f € L°(T?) such that
{X € T?* wo(f, ) > €} is a finite set for every € > 0.
In [9, Corollary 1], the first author proved that

(1) AT )pmy = A(T?)y = (H®NV)(T?) foreveryn>1
relative to L>°(T?). First we have the following proposition.

Proposition 6.1. (H* NV)(T?) C M, and (H* NV + C)(T?) is a closed
subalgebra of L>(T?).

Proof. Let f € (H*NV)(T?). By the definition of V (T?), there is a sequence
{An}n in T? such that {)\.}, = {} € T%wo(f,\) # 0}. Hence we may
consider that f is continuous on T2\ {\,},. Therefore for a convergent
sequence {e?~}, in T to e, f(e’~,e™¥) converges to f(e*,e¥) pointwise
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for every e € T except a countable set. Thus we have I(f)(e?) —
I.(f)(e¥) for every k > 0. Since I;(f) € H>®(T), this means that I (f) €
A(T) for k > 0. By the same way, Ji(f) € A(T) for k¥ > 0. By Theorem
21, feM.

Let f = F, +¢e™™®+%) @, be in the form (A;3). Since f € M, by Corollary
2.3 we have F,, € A(T?). Hence by the definition of V(T?) we have G, €
(H*® NV)(T?). This means that (H> N V)(T?) is *-invariant. By Theorem
2.2, (H® NV + C)(T?) is a closed subalgebra of L>(T?). O

By (1) and Theorem 4.1, we have
Proposition 6.2. A(U?), = (H®NV)(T?)), = (H®NV)(T?) +Co(U?).

To prove the results in Section 5, we only used the following properties of
M,
(a) M is a closed subalgebra of L*°(T?);
(b) My = M;
(c) for every f in M, f can be extended continuously on U? \ T?;
(d) for a sequence {{,}, in U? such that ¢, converges to some point in T2,
there exists a weakly null sequence {gx }x in M such that {(,; |gx(¢n)] > 1}
is an infinite set for each k.

By (1) and Proposition 6.1, (a), (b), and (c) are true for (H> N V)(T?)
instead of M. We shall show in Proposition 6.3 that (d) is true for (H* N

V)(T?) instead of M. Therefore all results in Section 5 are true for (H*° N
V)(T?) instead of M and we have the following two theorems.

Theorem 6.1. 3 )
(1) ((H®NV)T?) +Co(U?))sny = (H®NV)(T?) +C,(U?) for every
n > 0.
(i) A0 = (HXNV)(T?) +Cna(U?)  for everyn > 1.
(ili) The n-th Bourgain algebras of A(U?) are all distinct.

Theorem 6.2. ((H® NV)(T?) + Crz(U))smy = (H® NV)(T?) +
Cr2(U?), = (H®NV)(T?) + W(U?) forn > 1.

Proposition 6.3. For a sequence {(,}, in U? which converges to some point
in T?, there exists a weakly null sequence {gi}r in (H® NV)(T?) such that
{¢n; 19x(¢a)| = 1} is an infinite set for each k. Moreover for every § > 0,
{¢n;19x(Cn)| < 8} is an infinite set for each k.

Proof. First, by induction we constract a sequence of functions {Fj}; in
A(U?) satisfying some additional conditions. Let I' = {{,}, and ¢, — A for
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some A € T?. Since {A} is a peak point for A(U?) (see [12, p. 132]), there
exists f in A(U?) such that

(2) Ifll;e = 1, F(A) = 1, and [f| <1 onU?\{A}.

Let {0,}» be a sequence of positive numbers such that

3) i o, < 1/4.

Choose & €T such that |f(&)| > 3/4. Take a positive integer t; such that
|F(1 = f)(&)| > 3/4. Let Fy = f(1 — f"). By (2), we have ||F1[lg. < 2.
Since F;(\) = 0, there is an open subset V; of U? such that

Ae Vi, G ¢ Wi, and ||Fifly, < o1

Next take a positive integer s, such that |f*2| < o, on U?\ V;. Choose
& € I' such that & € V] and |f*2(€;)| > 3/4. Take a positive integer ¢, such
that |f*2(1 — f2)(&)| > 3/4. Let F, = f*>(1 — f*2). Then ||F,||z. < 2 and
|Fy3| < 205 on U2\ V;. Since F,()\) = 0, there is an open subset V, of U?
such that

A € 1/2 C ‘/1, §2 ¢ ‘/2, ”F1“V2 < 0'2/2, and ”F2”V2 < 02/2.

Continue these processes succeedingly. As a result, we can get sequences
{F,}, in A(U?), {¢,.} in T, and open subsets {V,}, of U, we put V, = U?,
such that

(4) A€ Vo CV, and (] Va = {A}
n=1

(5) fn S Vn—l\Vn;

(6) [Eallg= < 2

(7) [Fa(én)l > 3/4

(8) [ Fally, < ox/k  fork2>n;

9) | Falligzyvyy <20n fork <n.
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Now we devide the set of integers into infinite disjoint subsets;
U {ms}i = {1,2,...} and {m;};n{ni;}; = 0 ifk#s.
k=1

Let
gk = 42 F,., for eachk.
Jj=1

For each m, we have

j=n

lim sup (Z IIFjII(az\Vm)) <limsup 3 20; by (9)

=0 by (3).

205

Hence by (4), 372, Fn,; converges uniformly on each compact subset of

U?\ {)\}, so that
(10) gr is continuous on U?\ {A}.

For each k, we have
o0
(11) > Il <22 o
i#k j=k—1
for
k-1 o
> MF oy S 1B, + X IFllgaw,
i#k j=1 j=k+1

<ow + Y, 20; by (8) and (9).

j=k+1
Therefore by (3)
1

(12) Z ”Fj”(vk_l\vk) < 5
i#k

Hence by (6) we have 3272, [|Fjll(g2\(ny) < 5/2, so that gx € H>(U?).

(10), we have
g € (H=NV)(T?).

By
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Since 37,2 llgklly2 < X520 1Fjlly= < 5/2, by Lemma 4.3 {g; } is a weakly
null sequence in H*(U?). Hence {g} } is weakly null in (H*°NV)(T?). Also
for each i, we have

ng(énk,i)‘ 24{‘Fnkx(€nk1)l - Z |Fnk,; (fnk;)l}
J#i
>4{3/4 - Z ”E”(Vnk,,-l\""k,‘) by (5) and (7)
t#£ng,;

>4(3/4—1/2) = 1 by (12).

Hence {¢ € T';|gx(¢)| > 1} is an infinite set.

At last, let k,m be positive integers with k& # m. Then ny; # N,
for every i and j. For each i, there exists a positive integer p; such that
énm. € Vp—1\V,,. If i = o0, then p; — co. Hence by (11), we have

96060 )] < ACS [, ()
< 4(2 i o;)

—0 asi—o0 by (3).

Therefore for every € > 0, {¢ € T;|gx(¢)| < €} is an infinite set. This
completes the proof. O

In the rest of this section, we study (A(U?) + Co(U?))s(ny and (A(U?) +
Cr2(U?))y(ny relative to C*(U?). By the same way as the construction of
the families {A,}, of closed subsets of T', we can define the families {I',.},
of closed subsets of T2. Let I'; be the set of finite subsets of T2. Consider
that the empty set is contained in I';. Let I',, be the set of closed subsets E
of T? such that E? € I',,_;. We have the following definition which is similar

to Definiton 5.2’.

Definition 6.1.  We denote by C}(U?),n > 1, the space of functions

f in C*=(U?) such that for each & > 0, there exists £ € A, such that

{C €U f(¢) > 6} C U {D(E1);€ € E} and {¢ € T f(¢) > 8} € T,
Then C,,(U?) C C},,,(U?) and C,(U?) # C,,,(U?). Of course, C,(U?) is

strictly contained in C! (U?). We can prove the following theorem.

Theorem_ 6.3. )
(i) (AU?) + Co(U))smy = (H®NV)(T?) + C,(U?).
(ii) (AU?) + Co(U?)s(n) # (A(U?) + Co(U?))pnt1) for every n > 0.
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To describe (A(U?) + Cr2(U?))s(n), We need other new spaces.
Definition 6.2. We denote by W,(U?) the space of functions f in C>®(U?)
such that for each § > 0,

(D) {CeT* f(¢)>d} € Tn;
(i) {¢ € 0U?\ T?; w(f,¢) > &} is a finite set.

Then W,(U?) C W,41(U?) and W, (U?) # W,41(U?). We can prove the
following theorem.

Theorem 6.4. ) 3
(i) (AU?) +Cr2(U*))omy = (H®OV)(T?) + Wo(U?).
(i) (A(U?) + Cr2(U?))pny # (AU?) + Cr2(U?))p(nt1) for every n > 0.

We leave both proofs of Theorems 6.3 and 6.4 for the reader. The ideas to
prove these are the same as the ones used in the proofs of Theorems 5.1 and
5.2. Theorem 6.4 (ii) is an interesting fact which contrasts with Theorem
5.2.
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