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MATCHING THEOREMS FOR TWISTED ORBITAL
INTEGRALS

REBEccA A. HERB

Let F' be a p-adic field and E a cyclic extension of F' of
degree d corresponding to the character x of F*. For any
positive integer m, we consider H = GL(m, E) as a subgroup
of G = GL(md, F). In this paper we discuss matching of or-
bital integrals between H and (. Specifically, ordinary orbital
integrals corresponding to regular semisimple elements of H
are matched with orbital integrals on G which are twisted
by the character k. For the general situation we only match
functions which are smooth and compactly supported on the
regular set. If the extension E/F is unramified, we are able
to match arbitrary smooth, compactly supported functions.

§1. Introduction.

Let F be a locally compact, non-discrete, nonarchimedean local field of char-
acteristic zero. Let x be a unitary character of F'* of order d, and let E be
the cyclic extension of F' corresponding to . Let m and n be positive in-
tegers with n = md and write G = GL(n,F), H = GL(m,E). H can
be identified with a subgroup of G. In this paper we discuss matching of
orbital integrals between H and G. Specifically, ordinary orbital integrals
corresponding to regular semisimple elements of H are matched with orbital
integrals on G which are twisted by the character . For the general situ-
ation we only match functions which are smooth and compactly supported
on the regular set. If the extension E/F is unramified, we are able to match
arbitrary smooth, compactly supported functions.
Extend « to a character of G by k(g) = x(det g) and let

Go={9€G:k(g) =1}.

G, is an open normal subgroup of G of finite index and H C Gy. Let
C*(G) denote the set of locally constant, compactly supported, complex-
valued functions on G. For any v € G we let G, denote the centralizer of
v€G. If G, C Gy, let

AU = [ faye)n(a)dz, f € C=(0),
G4\G
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be the twisted orbital integral of f over the orbit of 7. If G, ¢ G, set
AS(f,v) = 0. Clearly for all z,y € G, f € C=(G),

AL (f,zv277) = K(2)AZ(f,7)-

Similarly we define

A" () = [ f@ya)ds, f € CR(H), v € B,
H

~

the ordinary orbital integral of f over the H-orbit of .

The main results of this paper are the following theorems. Let G’ denote
the set of regular semisimple elements of G and C°(G’) the subset of all
f € C*(@) with support in G'.

Theorem 1.1.
(i) Let fg € CX(G'). Then there is fy € C* (HNG') such that for all
yeHNG,
Ag (fG”Y) = AH(fH”Y)'

(ii) Conversely, suppose fg € C® (H NG') such that
AT (fu,zya™) = & (2) A7 (fu,7)

for all z € G,y € HN G’ such that zyz~' € H. Then there is fg €
C> (G') such that for ally € HNG',

AS (fo,7) = A" (fm,7)-

In the case that & is unramified, a stronger version of Theorem 1.1 can be
proven using results of [W2, Hn]. Let A¥ be the transfer factor defined as
in [W2].

Theorem 1.2. Assume that k is unramified.
(i) Let fe € C*(G). Then there is fg € C®(H) such that for all v €
HnG,
AEMAT (fo:7) = AT (fu, ) -

(ii) Conversely, suppose fi € C*(H) such that
AT (fu,zye™t) = AG (zyz™") AG (1) K(@)AT (fi,7)

for all z € G,y € HN G' such that zyz~* € H. Then there is fg €
C>(G) such that for allye HNG',
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The matching theorems for twisted orbital integrals will be used in an-
other paper to prove character formulas relating twisted characters on G to
ordinary characters on H. These will generalize the lifting theorem proven
by Kazhdan [K] in the case that m = 1. It will be shown in that paper that

AG (zyz™") = Ag (v)s(z) ™

for all x € Ng(H),y € HNG'. Thus when z € Ng(H), the condition on fy
in Theorem 1.2, (ii), is just

A (fu,zyz™') = A7 (fa,)

for all y € HNG". Since A" is an ordinary orbital integral, this is automatic
when z € H.

The proof of Theorem 1.1 is routine using an easy extension of results
in [V] to the twisted case and techniques as in [A-C, 1.3]. The proof of
Theorem 1.2 uses the fundamental lemma proven by [W2, Hn]. Assume
that x is unramified. Let K = GL(n,R) where R is the ring of integers
of F' and let H(G) denote the Hecke algebra of functions in C°(G) which
are K bi-invariant. Similarly, we define H(H), the Hecke algebra of H. Let
b: H(G) — H(H) be the homomorphism defined in [W2]. The following
theorem was proven by Waldspurger [W2] when the algebra F'(vy) is a prod-
uct of tamely ramified extensions of F' and was extended to the general case
(as well as to the case of characteristic F' not zero) by Henniart [Hn).

Theorem 1.3 (Waldspurger, Henniart). Let ¢ € H(G),y € HNG'. Then

A& (7)AE (¢, 7) = AT (b, 7).

Theorem 1.2 follows from Theorem 1.3 as follows. First, using standard
techniques, it is enough to prove a matching of orbital integrals in a neighbor-
hood of each semisimple element s of H. Further, by passing to centralizers,
it is easy to reduce to the case that s = 1. The matching in a neighborhood
of s =1 is a result of the following theorems which show that all germs in a
neighborhood of the identity come from Hecke functions.

Theorem 1.4 [W1, Hr]. Let uy,...,u, be a complete set of representatives
for the unipotent conjugacy classes of H. Then there are ¢1,...,¢, € H(H)
such that
1, ifl<i=j<p;
AH (¢i7 U’j) = . . .
0, if1<i#j<p.

Using the results of [V] we obtain the following corollary.
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Corollary 1.5. Let uy, ..., up, ¢1, ..., pp be as above. Let f € C*(H). Then
there is a neighborhood U of 1 in H so that for all vy € U,

AT (fy) = AT (fui) A7 (i,7) -

Let u be a unipotent element of G. If G, ¢ Gy, then AS(f,u) = 0 for all
f € C*(G). It is easy to show that the unipotent conjugacy classes O(u)
of G for which G, C G, are in bijective correspondance with the unipotent
conjugacy classes of H.

Theorem 1.6 [Hr|. Let vy,...,v, be a complete set of representatives for
the unipotent conjugacy classes in G such that G,, C G,. Then there are
Y1, .., ¥y € H(G) such that

L, f1<i=j<p;
AS (1/%', Uj) = . . .
0, if1<i#j<p.
An easy extension of germ expansions to the twisted case yields the fol-
lowing corollary.

Corollary 1.7. Let vy, ...,vp,%1,..., 9, be as above. Let f € C>(G). Then
there is a neighborhood U of 1 in G so that for all vy € U,

AG fa ZA (f’vz "pz, )

The organization of the paper is as follows.

In §2 we extend many of the results of Vignéras [V] to the case of twisted
orbital integrals.

In §3 we use the results of §2 to prove Theorems 1.1 and 1.2.

I would like to thank the Mathematics Departments of the University
of Toronto and the University of Wisconsin for their hospitality during the
preparation of this paper.

§2. Twisted Orbital Integrals.

Let G = GL(n,F) and let k be a unitary character of F* of order d, d a
divisor of n. In this section we do not assume that x is unramified. We
extend k to a character of G by setting x(g) = k(detg),9 € G. Let Gy =
{9 € G : k(g9) =1}. Then G, is an open normal subgroup of finite index in
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G. For any z € G we let G, denote the centralizer of z € G. If G, C Gy,
we let

Au(f, ) = /G I 67a0) s(g)o, | € C(C),a € G

be the twisted orbital integral of f over the orbit of z. If G, € G,, we let
A.(f,z) =0 for all f € C>(G). (We assume measures are normalized as in
[V, 1.h].)

In this section we will extend results of Vignéras on orbital integrals to
the twisted case. For z € G, define the normalizing factor d(z) as in [V, 1.g].
We will also write

F(f,2) = d(z)Ac(f, 2).

Let s be a semisimple element in G. Then as in [V, 1.j] we write A, for the
set of all elements z of G with semisimple part (of the Jordan decomposition
of z) conjugate to s. Let A, = UO (su,),1 < i < m, be the standard
decomposition as in [V, 1.j] where O(z) denotes the G orbit of € G. For
z € Gy we will write Oy(z) for the G, orbit of z.

Lemma 2.1. Fiz 1 < i < m and suppose that G,,, C Go. Then there is
fi € C(G) such that

L, ifi=y;
Fﬂ(fivsuj): P .

0, fi1#7.
Proof. As in [V, 1.k], for each 1 <14 < m there is a compact open subset K;
in G so that su; € K;, and K; N O (su;) = 0,1 < j <i-—1. Now suppose
that Gsu‘ g Go. Then

O (87,[,,() ~ Gsu, \G ~ Gsu, \GO X Go\G ~ 00 (sui) X G()\G

so that O (su,) is open and closed in O (su;). Thus there is K, C K,
compact open in G so that su; € K!,K! N O (su,) C O (su,). Now if f
is the characteristic function of K], then F, (f/, su;) # 0 because there can
be no cancellation in the integral, and F (f/,su;) =0,1 <j <17 —1. Now
using a standard Graham-Schmidt type procedure we can obtain f;’s as in
the lemma. g

Lemma 2.2. Let s € G be semisimple and suppose that f € C°(G) satisfies
F.(f,x) =0 for all z € A;. Then there is a neighborhood V; of s in G such
that F.(f,z) =0 for all z € V;.

Proof. We follow the proof of [K, 3.8]. Let S = C° (A,). Since A, is G-
invariant, G acts on S by g f(z) = f (g7 'zg),9 € G,z € A,,f € S. Since
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A, is closed in G, restriction gives a mapping 7 : C>°(G) — S. Let S’ be
the dual of S and let A = {)\ €S :A (g . f) = k(g)A (f) NgeG, fe S}.
Then since G has only a finite number of orbits in A, we see that A is
generated by the A\;;1 < i < m, where A\(7(f)) = F. (f,su;). Let S, =
{ fes:a ( f ) =0,VA € A}. Then S, is the set of all finite sums of functions

of the form g - f — x(g)f.

Now let f € C(G) such that F,(f,su;) = 0,1 < ¢ < m. Then
f = n(f) € S, so there are gi,...,9x € G, f1,...,fx € S, such that f =
Sk 9 fi—r(g)fi. Let f; € C=(G) such that 7 (f;) = fi, and let
¢ =f—-F 9 fi+r(g)fi. Then 7(¢) = 0 so by [V, 2.4] there is
an open, G-invariant neighborhood V; of s such that ¢ is zero on V;. Thus
F.(¢,z) =0 for all z € V;. But for all z € G, F.(f,z) = F.(¢,z). O

Renumber ugy,...,u,, so that su;,1 < 7 < k, are the orbits of A, such
that G, C Go,1 < i < k. Suppose f1,..., fr € C°(Q) satisty F (fi, su;) =
6,1 < 14,5 < k,and fi, ..., fy € C°(G) satisfy A (f}, su;) = 6;5,1 <4,j < k.

Lemma 2.3. Let f € C*(G). Then there is a neighborhood V; of s in G so
that

FK(f)‘T) ‘—'ZFN (f)sui)Fn (fiam)

=1

and
k

A(fyz) = D A (fy5u:) A (ff )

i=1

for all z € Vy.

Proof. Let f' = f — Y% | F. (f,su;) fi. Then F,(f',su;) = 0,1 < j <k.
Thus by Lemma 2.2 there is a neighborhood V; of s such that F, (f',z) =0
for all z € V4. O

As in [V, 1l.m], for any s € G semisimple, we let T" be the center of
M = G,. Let u € Zg(T) be unipotent. Then (T,u) is called a standard
couple. For any subset X of G, let X" denote the subset of elements
z € X such that the dimension of the conjugacy class of z is greater than or
equal to the dimension of the conjugacy class of any y € X.

We can now extend Theorems A and B of [V, 1.n] to the twisted case.

Theorem 2.4. (A) Let f € C>(G) and let F(z) = F(f,z),z € G. Let
(T,u) be any standard couple. Then F has the following properties.

(i) F(9zg7") = K(9)F(z),Vz,9 € G;

(i1) the restriction of F to Tu™9 is locally constant;
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(iii) the restriction of F to Tu has compact support;

(iv) for every s € T there is a neighborhood Vi of s in T such that for

teVenTres,
k

F(tu) = F (su;) Fx (fi, tu)

=1
where su;, f;,1 <1 < k are defined as in Lemma 2.3.
(B) Conversely, if F is a function on G satisfying (i)-(iv) above, then
there is f € C®°(G) such that F(z) = F.(f,z) for all z € G.

Proof. Part (A) follows from Lemma 2.3 and [V, 2.7]. It also follows easily
from [V, 2.7] that if f' € C (T"*%) transforms according to ~ under the
action of W(Tu) = Ng(Tu)/Zg(Tu), then there is f € C (O (T")) such
that f'(t) = F.(f,t) for all t € T"9. Now the proof of (B) follows by an
induction argument as in [V, 2.8]. OJ

We can use Theorem 2.4 to obtain the following localization result. Let
Ty, ...,T. be a complete set of Cartan subgroups of G, up to G-conjugacy.
Let X =U_,T; CG.

Lemma 2.5. Let V be a closed and open subset of X such that O(V)NX =
V. Then given f € C>(Q) there is fy € C(G) such that

F.(f,7)=F:(fv,7),7eV

and
Fn (fV,’)I) = 077 € X\V

Proof. Let F(z) = F.(f,z),z € G. For any z € G, write z = s(z)u(z) for
the Jordan decomposition of z. Define

Fole) = {F(m), if s(z) € O(V);

0, otherwise.
Then for any z,9 € G,s(gzg™") = gs(z)g~* € O(V) if and only if s(z) €
O(V). Thus if s(z) € O(V) we have Fy(z) = Fy (gzg™') = 0. If s(z) €
O(V) we have Fy (gzg™') = F (9z9™"') = k(9)F(z) = s(9)Fv(z). Thus Fy
satisfies (i) of Theorem 2.4.

Let (T,u) be any standard couple. We can assume that T C T; C X
for some T;. Let Vo = V NT. It is open and closed in T. Let xy be the
characteristic function of Vyu. It is a locally constant function. Further
Fy|r, = F|ry - xv since, using our assumption that O(V) N X = V, for
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every tu € Tu,t € O(V) if and only if ¢ € V. Thus Fy satisfies (ii) and (iii)
of Theorem 2.4.

Finally, fix s € T. If s ¢ Vr, there is a neighborhood U of s in T such
that UNVr = 0. Now Fy (su;) = 0 for all 7 and Fy(tu) = 0 for all t € U.
Thus Fy satisfies the germ expansion in U. If s € Vr, then let Vr be a
neighborhood of s in T such that for all t € Vp NT7¢9,

F(tu) = ZF (su;) Fye (fi,tu) .

Let Vg, = Vg N Vr. Then for all t € Vi, Fy(tu) = F(tu). Also Fy (su;) =
F (su;) for all . Thus Fy also satifies (iv). O

Let s € G be an arbitrary semisimple element. Let {T1,...,T}} be repre-
sentatives for the Cartan subgroups of G, up to G-conjugacy, such that s €
T;,1 <i<r7r. Let M be the centralizer of sin G. Then T; C M,1 <i <,
and for any ¢ € C°(M),y € T; N G', we can define

AY@7) = [ (miym) s(m)dm

TA\M
lf’I’Z C Go and A,]:I(’lp,’)’) =0if Ti ¢ Go.

Lemma 2.6.
(i) Let f € C*(G). Then there are neighborhoods V; of s in T; and 9 €
C*(M) so that forall 1 <i<r,y€eV,NG,

AS(f,y) =AY (1,7).

(ii) Let ¢ € C>*(M). Then there are neighborhoods V; of s in T; and
f € C*(Q) so that for all1 <i<r,yeV,NG,

AZ(f,7) = AL (7).

Proof. The proof is an easy generalization of the argument used in [V, 2.5].
Define su;, f;,1 < j < k as in Theorem 2.4. Let T be the center of M.

Fix f € C(G) and let Q = supp f. Then using [HC], there are neigh-
borhoods V; of s in T; and an open, compact subset w C M\G so that
g WigNnQ=0,1<1i<r, unless Mg € w. Further, as in [V, 2.5], there is a
neighborhood V of s in T and an open, compact subset C C M\G so that
9 WujgnQ=0,1<j <k, unless Mg € C. Choose o € C>(G) so that

. 1, if Mge CUuw;
a(g) = / a(mg)dm = -
M 0, if Mgg CUuw.
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Define
P(m) = /Ga(m)m(a:)f (z7'mz) dz,m € M.

Then 3 € C* (M), and it is easy to check that forall1 <i <r,ye V,NG",
AZ(f, 1) = A (7).
Further, forall 1 <j <k,yeV,
AL (fovuy) = A (9, 7).

This proves part (i) of the Lemma.

Define su,, f;,1 < j < k as above and let fj = d(su,) f;. Then the f]
satisfy AS (f;,su,) = 03,1 < 4,1 < k. To prove part (ii), we use (i) to
choose neighborhoods V; of s in T,,1 < ¢ <7 and V of s in T, and functions
Y, € CP(M),1 <j<k,sothatforall1<j<k,1<i<r,yeV,NT/,

AS (f17) =AY (45,7).
Further, forall 1 <1< k,y €V,
AG (f,7m) = AY (5, 7)
Thus the functions 1); satisfy

1, ifj=1
0, ifj#1L.

Now fix ¢ € C°(M). Asin [V, 2.5], the orbital decomposition of A; »; and
A, can be represented by the same elements suy, ..., St,,. Also M, = G,
and M, = M NGy, so that M, C M, if and only if G,,, € G,. Thus we can
also take su,, ..., su; the same for M and G. Thus using Lemma 2.3 applied
to M there is a neighborhood U of s in M so that for all m € U,

Aﬁl (%,su,) = {

k
AM(p,m) =Y AY (b, m) AY (4, su,).
7j=1
Define f € C°(G) by

=Y A (¥,5u) fi(9),9 € G

i=1
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Then for all y € G,

AC(f,7) w,su] ) AC (f],’y)

n'Ma

But now we have
AS (£1,7) =AM (5,7) , Y €ViNT,1<i <71 <5 <k,

so that .
AS(f,7) = DAY (3, su;) AY (5,7) -
Jj=1
Thus for y e V,NUNT/,1 <4 <r, we have

AL () = AL (. ).

§3. Matching Theorems.

Let G = GL(n,F),K = GL(n, R), and let k be a unitary character of F'*
of order d, d a divisor of n. Unless otherwise noted we will assume that & is
unramified.

As in Theorem 1.6 we let u,,...,u; represent the unipotent conjugacy
classes with G,,, C Gy, and ¢, ..., ¢ € H(G) satisfy A, (¢;,u;) = ;5. The
following lemma is a special case of Lemma 2.3.

Lemma 3.1. Let f € C°(G). Then there is a neighborhood U of 1 in G so
that

An(f) 7) = ZAN (f7 ’U,,-) An (¢i7 7)

forallye UNG'.

Now let E be the cyclic extension of order d of F' corresponding to « and let
H = GL(m, E),md = n. Fix an embedding of H in G as in [W2]. Then for
v € H we can define both the ordinary orbital integral A (f,v), f € C*(H),
and the twisted orbital integral AS(f,7), f € C®(G).

Write H(G), H(H) for the Hecke algebras of G and H respectively. Lt
b : H(G) — H(H) be the homomorphism of H(G) onto H(H) defined as
in [W2], and define the transfer factor AZ as in [W2, HI|. The following
theorem was proven by Waldspurger [W2] for F of characteristic zero and
F(vy) tamely ramified over F, and was extended by Henniart [Hn].
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Theorem 3.2 (Waldspurger, Henniart). Let f € H(G),y € HNG'. Then

AGMAL(f,7) = AT (bf, ).

Write Zg for the center of G.

Theorem 3.3. Let z € Zg.

(1) Let fo € C*(G). Then there are a neighborhood U of z in H and
fu € CX(H) so that

AGAT (fa,7) = A (fu,7)

forally e UNG'.
(il) Let fy € C>*(H). Then there are a neighborhood U of z in H and
fo € CX(QG) so that

AG (AT (farr) = A (fas)
forally e UNG".

Proof. Suppose first that z = 1 is the identity. Define wuy,...,u; € G,

¢1y-ydr € H(G), as in Lemma 3.1. Let fo € C*(G) and let V be a
neighborhood of 1 in G so that

k

AS (for) = DAL (fa,us) AL (41,7)

=1

for all y € VNG'. Define fy € C°(H) by

Jo = ZAS (fa,us) (bos) -

i=1
Let U =V N H. Then using Theorem 3.2, for all y € U NG’

AGMAT (forv) = AT (fo,w) AG(YAT (4:,7)

=1
k

=SNG (fayus) A (bdi,v) = AT (F, ) -

=1

Now let u},...,u; € H, ., ..., ¢, € H(H) be defined as in Theorem 1.4 so
that wj,...,u), represent the unipotent conjugacy classes in H and
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AH( i1 J> = 0;;. Let fy € C*(H) and let U be a neighborhood of 1
in H so that

k
A (fa ) = S A (fr i) A (81,)

for ally € UNH'. Choose ¢, ..., ¢ € H(G) so that bp; = ¢}, 1 <1 <k, and
define

fG"EA fH7 z i'

Then as above

AGMAL (fary) = D A (Frr, i) AG (AL (83,7)

Mw

-
Il
—

H(fH)’U';)AH (¢:)7) = AH (fo)’)

~
Il
—

i
.M»

foraly e UNG'.
To extend the result to arbitrary z € Zs, we use right translation by z as
in [V, 2.5]. O

We want to extend the matching of Theorem 3.3 to a matching which is
valid for every v € HN G'. In order to do this, we need to be able to match
orbital integrals in the neighborhood of any semisimple element of H.

Let s € H be an arbitrary semisimple element. Let My be the centralizer
of s in G and let My be the centralizer of s in H.

Lemma 3.4.
(i) Let g € C®(Mg). Then there are a neighborhood U of s in My and
Yy € CP (My) so that for ally e UNG,

AGMAYE (Y, 7) =AM (Y, ) .

(i1) Letpy € C* (Mpy). Then there are a neighborhood U of s in My and
g € C= (Mg) so that for ally e UNG',

AG(Y)AYE (g, v) =AM (r,7) .

Proof. Write Mg = [[t_, GL (n,, F;) where the F; are extensions of degree
of F and Zle n;r, = n. For each 1 <1 < k, let x; be the character of F*
given by k;(A) = k (Np,;r())). Now the center T of Mg is isomorphic to
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[I5, F*. For \; € FX,1 < i < k, write a ()1, ..., \;) for the corresponding
element of Tg. Then

k

K(a (A1, ey Ag)) = Hni ().

=1

Let d; be the order of ;. Then if there is 1 < 1 < k such that d; does not
divide n;, there is a € T so that x(a) # 1. But since s € H is semisimple, it
is contained in some Cartan subgroup 7" of H. But every Cartan subgroup of
H is a Cartan subgroup of G so that T C T. Thus Tz C H so that k(a) =1
for all a € Tg. Thus d; divides n; for all 7. Write n;, = m;d;,1 <14 < k and
let F; be the extension of F; corresponding to ;. It is the minimal extension
of F; containing E. Now My = [I~_, GL (m;, E;).

Thus Mg = Hle GL (n;, F;) and My = [[-_, GL (m;, E;) are products of
groups G; = GL (n;, F;), H; = GL (m;, E;) of the same type as our original
groups G and H. Further, if ¢ = (91,92, ...,9x) € Mg = [1G;, then detg g =
[1 Ng,/r (detg, g;) so that x(g) = [1k; (g;). Thus s-twisted orbital integrals
on Mg are the products of x;-twisted orbital integrals on the factors G;. Now
since s € My is central in M, we can apply Theorem 3.3 to match functions
g € C° (Mg) in a neighborhood of s with functions ¥} € C° (M) using
the transfer factor A%g Thus to complete the proof of the lemma it suffices

-1
to show that there is a neighborhood U of s in My so that AZ (Aﬁg ) is
constant and non-zero on U N G', so we can also match using the transfer
factor AZ. This is proven in Lemmas 3.5 and 3.6 below. O

In order to complete the proof of Lemma 3.4, we must define the trans-
fer factors. For v,8 € H, let cy,...,c,, respectively di,...,d,, denote the
eigenvalues of -y, resp. d, in some extension of E. As in [W2, HI] we set

r,0) = T] (e ).

Then for all y € HNG', we define

o=

(m—n)

2

AG(y) = I rr,m™

o,7T€EG(E/F),0#T

det(7) B

F

where G(E/F') denotes the Galois group of E/F. Further, we set

AL (y) =1
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for all v € H if d is odd. If d is even, let o, be the unique element of order
2 in G(E/F) and let v denote the valuation in E. Then we define

Ag’z(fy) - (_l)r/a(r(ww))
for all v € H. Finally, for all v € H N G’', we define
AE(Y) = Ag" (MAG* (7).

We now return to the notation of Lemma 3.4 so that s € H is an arbitrary
semisimple element with centralizers Mg and My in G and H respectively.

-1
Lemma 3.5. There is a neighborhood U of s in Mg so that Ag’l (A%gl)
15 constant and non-zero on U N G'.

Proof. For vy € HN G, let ¢, ..., ¢, denote the eigenvalues of v considered
as an element of H = GL(m, E) and let d,,...,d, denote its eigenvalues
considered as an element of G = GL(n, F'). Define

A= ] (-¢), Actv= [I (di-4d).

1<i#j<m 1<i#j<n

Fix y € HNG'. For each o0 € G(E/F), let ¢(i,0),1 < ¢ < m, denote the
eigenvalues of oy as an element of H = GL(m, E). Then as an element of
G = GL(n, F),v has eigenvalues c(i,0),1 < i < m,o € G(E/F). Thus we
can rewrite

II  rlev,™) =Ac(y)Ne/rAu(y)™
o,TEG(E/F),0#T

and
(m=n)
2

AR y) = |Ae)|Z 1A E

det(v)|

Now use the notation in the proof of Lemma 3.4 so that we have My =
HHiaMG = HG,’, where for 1 < ) S k, H, =GL (mi,Ei) ,Gi =GL (ni,F,-).
Then for any v = [[v; € My N M{;, we have

Ayt (y) =TT A& (v)
(mans

= 126 (WIE 18k (0)IF  |det (%)

F;
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Thus
AE () AN )T = AR [T INryrde, (67

< |8nIF TTINeebn (0l

(m—n) (n,‘——ml)
2

II dcgt () .

F i

X dgt(fy)

We can index the eigenvalues of v in GL(n, F') as ¢(¢,7,t),1 <7 <k,1 <
3 <n;,1<t<r;,so that

HNF/FAG v) =TI I1le, b, ) = (i, 5", ).

it g#§

Then we have

’Y)HNF,/FAG,» ()= II TlleG, 4. t) =@, 4,1

(4,0)#@ ) 3,5

Thus v = Ag(y)I1; Nr/rlAa, (7)™ extends to a continuous function on
Myg. Further, when v = s, ; is central in G; for all ¢ so that c(i,j,t) =
c(i,j',t) for all 7, 7, 7', ¢t. But since Mg = [] G; is the full centralizer of s in G
we have c(i, j, t) # c(i', 5/, ') if (i, t) # (i, ¢'). Thus Ag(y) I, Nr/rle, (1)~
is non-zero at y = s. Similarly, we see that v — Ay () [I; Ng,/eAm, ()~
extends to a continuous function on My which is non-zero at v = s. Finally,
the determinant factors are certainly continuous and non-zero on all of M.
Thus
v A (AN ()

extends to a function which is constant in a neighborhood of s in My.

O

-1
Lemma 3.6. There is a neighborhood U of s in My so that AG? (AM" 2)
1s constant and non-zero on U NG'.

Proof. We first need to derive an alternate formula for Ag’z. Let oo be a
generator of G(E/F'). For all v € H we define

A= I r(okvaiv).

0<i<j<d—1

Then for each v € HN G',A(y) is an element of E*. Clearly r(d,7) =
(—=1)™r(v,d) for all 4,0 € H. Thus it is easy to see that

00l (7) = (1)™*DA(y), Vy € H.
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If m(d — 1) is even we let g = 1. Suppose that m(d — 1) is odd. Then d
is even. Define E, = {e € E : 02e = e}. Then E,/F is a cyclic extension of
degree 2 and we can choose a unit ey € F, such that Ey = Flep], 0pep = —ep.
With these choices of e, we have egA(7y) € F for all vy € H. We now claim
that

AG* () =k (0h()), YE€HNG'

Let 1 be an unramified character of E* which extends «. Thus for all
e € E*,n(e) = ¢¥#(®) where ( is a primitive d** root of unity. Now since e,
is a unit we have

A& () =n (e0A() =7 (A()) -

Now 5
Il r(ov, ™) = £+A(v)*
o#T
so that
ve (A()) = %VE (H r(ov, Tv)) :
o#T
But
H T(G’Y’ 77) = NE/F (H 'I’(’y, T’Y)) .
oFT T#1
Thus
~ 1 .
VE (A(7)) = 5 H Vg (NE/F"' (’Y, US’Y))-

But forany 1 <:<d-1,

ve (Ngsrr (v,087y)) = ve (Ng/rog ' (047,7))
=vg (Ng/rr (7,007)) -

Further, vg (Ng/r(e)) = dvg(e) for all e € EX. Thus, calculating modulo d,
we have

. NEZIG 'y,o%'y , if d is even;
VE(AW)):{S,E(( ) if d is odd.

d
Now when d is even 0§ = o so we can conclude that

< (=1)ver(oeM) | if 4 is even;
A =
7(A) {1, if d is odd.
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This completes the proof that AZ? (y) = & (eOZ\(’y)) , YEHNG'.
Similarly, for all v = ], v; € I H;, we have

Ay () = [ 5 (eo,iAi (’Yi))

where eo,,-,Ai are defined for the pair H;,G,. Since k; = s o Np,p, for
vy=1I]v € Mg NG we have

AGE)ANE o) =5 () T Neye (cosdi () ).

-1
Thus AS? (A%gﬂ) will extend to a function which is constant and non-
zero in a neighborhood of s if we can show that

v A(Y) HNF;/F (eo,iAi (’Yi))_l

extends to a continuous function on My which is not zero at v = s. Note
that, using the notation in the proof of Lemma 3.6, we have

A()? = £ [ r(o7,m7) = £86(V)Ne/rAu(y) ™.

oHET
Thus the analysis proceeds exactly as in Lemma 3.6. That is,
Ny -1 -
[1 N /rF (eo,iAi (’yl-)) cancels out exactly the terms in A(7y) which are zero
when v = s. O

Let T1,...,T; denote the Cartan subgroups of H containing s, up to G-
conjugacy.

Lemma 3.7.
(1) Let fo € C*(G). Then there are neighborhoods V; of s in T; and
fu € CX(H) so that for all1 <i<k,y€eV,NG,

Ag(?’Mf (fe,7) = A" (fe,7) -

(i1) Let fg € C*(H). Then there are neighborhoods V; of s in T; and
fe € CX(G) so that for all1 <i<k,yeV,NG,

Proof. This follows easily from combining Lemmas 3.4 and 2.6. a
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Locally there is no obstruction to matching twisted orbital integrals on G
with ordinary orbital integrals on H. However, if fy € C°(H) is to match
orbital integrals with f; for all h € H N G', we must have

(*) A (fr,zha™) = k(2)AG (zha ™) A (h) ™ A7 (fu,h)
forall h € HNG' and z € G such that zhz™' € H.

Theorem 3.8.
(i) Let fg € C*(G). Then there is fy € C>(H) so that for ally € HNG',

AGVAE (fa,7) = A (fr,7) -

(ii) Let fg € C*(H) satisfying (*). Then there is fo € C*(G) so that for
alye HNG',

AG(AL (fe,v) = A (fu,7) -

Proof. (i) Let Ty, ..., T}, be a complete set of Cartan subgroups of H up to
H-conjugacy. For each i, let Q; be the support of A% (fg,) restricted to T;.
Let X = UT; and Q = USQ;. Then Q is a compact subset of X. For each
s € X, use Lemma 3.7 to find U(s), a compact open neighborhood of s in
X, and f, € C>*(H) such that

AG(MAE (fo,7) = A (f5,7) , 7 € U(s) NG

Note that since both sides are invariant under H-conjugacy, the equality is
in fact valid for all v € Ox(U(s)) N G'. Write U'(s) = Ox(U(s)) N X.

Since ) is compact, there are sy, ..., s, so that Q@ C U_, U’ (s;). By shrink-
ing if necessary we can assume that the U’ (s;) are disjoint. Now by Lemma
2.5 applied to ordinary orbital integrals on H, there are f; € C*(H),1 <
i < p, so that

A (o) = {AH (foom), iy €U (59
0, if vy e X\U' (s;).
Let fg=3%7%, fi. Thenforye X NG, if y € U’ (s;), then
AT (fu,7) = Ai (fsi7) = ARG(MAT (e, 7) -
If v ¢ UY_ U’ (s;), then v & Q so that

Af (fe,7)=0= A" (fH,’Y) .
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(ii) Let T3, ...,Tx be a complete set of Cartan subgroups of H up to G-
conjugacy. For each i, let Q; be the support of A (fy,-) restricted to T,.
Let X = UT; and 2 = UQ;. Then Q is a compact subset of X. For each
s € X, use Lemma 3.7 to find U(s), a compact open neighborhood of s in
X, and f, € C*(G) such that

AG(VAE (for) = A (fu, ),y € U(s) NG".

Note that since both sides transform in the same way with respect to G-
conjugacy, the equality is in fact valid for all v € Og(U(s)) N HNG'. Write
U'(s) = Og(U(s)) N X. Now the proof is finished in the same way as that
of (i) using Lemma 2.5. O

If we drop the assumption that £/ F' is unramified, we can obtain a weaker
version of Theorem 3.8 as follows. Let s be a semisimple element of H and
as before let T1, ..., T, be the Cartan subgroups of G which contain s, up to
G-conjugacy. Suppose that Mg = My. Then T; C Mg = My C H for all
1 <7 <r. We can use the results of §2 to prove the following lemma.

Lemma 3.9. Suppose s € H is a semisimple element such that Mg = Myg.
(i) Let fo € C>(G). Then there are neighborhoods V; of s in T; and
fu € C*(H) so that for all1 <i<r,vyeV,NG',

Ag (va'Y) :AH (fH77)'

(ii) Let fy € C>*(H). Then there are neighborhoods V, of v, in T, and
fe € C2(Q) so that for all1 <i<r,y€V,NG',

AS (fa,7) = AT (fu,7) -

Proof. For part (i), use Lemma 2.6 to match fo € CX®(G) with g €
C (Mg). Now use Vignéras’s version of Lemma 2.6 [V] applied to H and
ordinary orbital integrals to match ¢y = ¢g € C*° (My) with fg € C°(H).
For part (ii) go backwards. |

Suppose that s € HNG'. Then Mg = My is a Cartan subgroup of H
and G, so that we can apply Lemma 3.9 in a neighborhood of s. Thus if
we restrict our attention to functions supported on such points, we can use
Lemmas 3.9 and 2.5 to prove the following theorem.

Theorem 3.10.
(i) Let fo € C>(G"). Then there is fy € C(H NG') so that for all
vye HNG',
Ag (fGa’Y) = AH (fHa’Y) .
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(i)

[A-C]

(HC]
(H1]

(Hn]
[Hr]

K]
(8]
(vl

(Wi]
(W2]

REBECCA A. HERB

Let fyg € C°(H N G') such that
A" (fu,zye™t) = K(@)A™ (fu,7)

forally € HNG',z € G such that zyz~! € H. Then there is fg €
C(G') so that for ally € HNG',

A7 (fa1) = A" (fa,) .-
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