IRREDUCIBLE NON-DENSE $\mathbf{A}_{1}^{(1)}$-MODULES

V.M. Futorny

We study the irreducible weight non-dense modules for Affine Lie Algebra $A_{1}^{(1)}$ and classify all such modules having at least one finite-dimensional weight subspace. We prove that any irreducible non-zero level module with all finitedimensional weight subspaces is non-dense.

1. Introduction.

Let $A=\left(\begin{array}{rr}2 & -2 \\ -2 & 2\end{array}\right)$ and $\mathcal{G}=\mathcal{G}(A)$ is the associated Kac-Moody algebra over the complex numbers \mathbf{C} with Cartan subalgebra $H \subset \mathcal{G}$, 1-dimensional center $\mathbf{C} c \subset H$ and root system Δ.

A \mathcal{G}-module V is called a weight if $V=\bigoplus_{\lambda \in H^{*}} V_{\lambda}, V_{\lambda}=\{v \in V \mid h v=\lambda(h) v$ for all $h \in H\}$. If V is an irreducible weight \mathcal{G}-module then c acts on V as a scalar. We will call this scalar the level of V, For a weight \mathcal{G}-module V, set $P(V)=\left\{\lambda \in H^{*} \mid V_{\lambda} \neq 0\right\}$.

Let $Q=\sum_{\varphi \in \Delta} \mathbf{Z} \varphi$. It is clear that if a weight \mathcal{G}-module V is irreducible then $P(V) \subset \lambda+Q$ for some $\lambda \in H^{*}$. An irreducible weight \mathcal{G}-module V is called dense if $P(V)=\lambda+Q$ for some $\lambda \in H^{*}$, and non-dense otherwise.

Irreducible dense modules whose weight spaces are all one-dimensional were classified by S . Spirin [1] for the algebra $A_{1}^{(1)}$ and by D. Britten, F. Lemire, F. Zorzitto [2] in the general case. It follows from [2] that such modules exist only for algebras $A_{n}^{(1)}, C_{n}^{(1)}$. V. Chari and A. Pressley constructed a family of irreducible integrable dense modules with all infinite-dimensional weight spaces. These modules can be realized as tensor product of standard highest weight modules with so-called loop modules [3].

In the present paper we study irreducible non-dense weight \mathcal{G}-modules. We use Kac [4] as a basic reference for notation, terminology and preliminary results. Our main result is the classification of all irreducible non-dense \mathcal{G}-modules having at least one finite-dimensional weight subspace. This includes, in particular, all irreducible highest weight modules. Moreover, we show that this classification includes all irreducible modules of non-zero level whose weight spaces are all finite- dimensional.

The paper is organized as follows. In Section 3 we study generalized Verma modules $M_{\alpha}^{\varepsilon}(\lambda, \gamma), \alpha$ is a real root, $\lambda \in H^{*}, \gamma \in \mathbf{C}, \varepsilon \in\{+,-\}$ which do not necessarily have a highest weight (cf. [5]). By making use of the generalized Casimir operator and generalized Shapovalov form we obtain the criteria of irreducibility for the modules $M_{\alpha}^{\varepsilon}(\lambda, \gamma)$ without highest weight (Theorem 3.11).

In Section 4 we classify all irreducible Z-graded modules for the Heisenberg subalgebra $G \subset \mathcal{G}$ with at least one finite-dimensional graded component. Irreducible G - modules with trivial action of c were described earlier in [6]. Let $\delta \in \Delta$ such that $\mathbf{Z} \delta-\{0\}$ is the set of all imaginary roots in Δ. Following [6] we introduce in Section 5 the category $\tilde{\mathcal{O}}(\alpha)$ of weight \mathcal{G}-modules \tilde{V} such that $P(\tilde{V}) \subset \bigcup_{i=1}^{\ell}\left\{\lambda_{i}-k \alpha+n \delta \mid k, n \in \mathbf{Z}, k \geq 0\right\}$ where $\lambda_{i} \in H^{*}$, but without any restriction on the action of the center (unlike in [6] where the trivial action of the center is required). The irreducible objects in $\tilde{\mathcal{O}}(\alpha)$ are the unique quotients of \mathcal{G}-modules $M_{\alpha}(\lambda, V)$, where $\lambda \in H^{*}, V$ is irreducible Z-graded G-module. Modules $M_{\alpha}(\lambda, \mathbf{C})$, with $\lambda(c)=0$ were studied in [79]. If $\lambda(c) \neq 0$ and at least one graded component of V is finite-dimensional then the module $M_{\alpha}(\lambda, V)$ is irreducible $[\mathbf{8}, \mathbf{9}]$. In Section 6 we classify all irreducible non-dense \mathcal{G}-modules with at least one finite-dimensional weight subspace (Theorem 6.2). It turns out that these modules are the quotients of the modules of type $M_{\alpha}^{\varepsilon}(\lambda, \gamma)$ or $M_{\alpha}(\lambda, V)$. Moreover, any irreducible \mathcal{G} module of non-zero level whose weight spaces are all finite- dimensional is the quotient of $M_{\alpha}^{\varepsilon}(\lambda, \gamma)$ for some real root $\alpha, \lambda \in H^{*}, \gamma \in \mathbf{C}, \varepsilon \in\{+,-\}$ (Theorem 6.3).

2. Preliminaries.

We have the root space decomposition for $\mathcal{G}: \mathcal{G}=H \oplus \sum_{\varphi \in \Delta} \mathcal{G}_{\varphi}$, where dim $\mathcal{G}_{\varphi}=1$ for all $\varphi \in \Delta$. Denote by $\mathcal{U}(\mathcal{G})$ the universal enveloping algebra of \mathcal{G}, by W the Weyl group and by (,) the standard non-degenerate symmetric bilinear form on \mathcal{G} [4, Theorem 3.2]. Let $\Delta^{r e}$ be the set of real roots in Δ and $\Delta^{i m}$ be the set of imaginary roots in Δ. Fix $\alpha \in \Delta^{r e}$ and consider a subalgebra $\mathcal{G}(\alpha) \subset \mathcal{G}$ generated by \mathcal{G}_{α} and $\mathcal{G}_{-\alpha}$. Then $\mathcal{G}(\alpha) \simeq \operatorname{sl}(2)$ and we fix in $\mathcal{G}(\alpha)$ a standard basis $e_{\alpha}, e_{-\alpha}, h_{\alpha}=\left[e_{\alpha}, e_{-\alpha}\right]$ where $\left[h_{\alpha}, e_{ \pm \alpha}\right]= \pm 2 e_{ \pm \alpha}$. We will use the following realization of \mathcal{G} :

$$
\mathcal{G}=\mathcal{G}(\alpha) \otimes \mathbf{C}\left[t, t^{-1}\right] \oplus \mathbf{C} c \oplus \mathbf{C} d
$$

with $\left[x \otimes t^{n}+a c+b d, y \otimes t^{m}+a_{1} c+b_{1} d\right]=[x, y] \otimes t^{n+m}+b m y \otimes t^{m}-b_{1} n x \otimes t^{n}+$ $n \delta_{n,-m}(x, y) c$, for all $x, y \in \mathcal{G}(\alpha), a, b, a_{1}, b_{1} \in \mathbf{C}$. Then $H=\mathbf{C} h_{\alpha} \oplus \mathbf{C} c \oplus \mathbf{C} d$.

Denote by δ the element of H^{*} defined by: $\delta\left(h_{\alpha}\right)=\delta(c)=0$ and $\delta(d)=1$. Then $\Delta^{i m}=\mathbf{Z} \delta-\{0\}$ and $\pi=\{\alpha, \delta-\alpha\}$ is a basis of Δ. Let $\Delta_{+}=\Delta_{+}(\pi)$ be the set of all positive roots with respect to π. The root system Δ can be described in the following way: $\Delta=\{ \pm \alpha+n \delta \mid n \in \mathbf{Z}\} \cup\{n \delta \mid n \in \mathbf{Z}-\{0\}\}$. We have $\mathcal{G}_{ \pm \alpha+n \delta}=\mathcal{G}_{ \pm \alpha} \otimes t^{n}, n \in \mathbf{Z}, \mathcal{G}_{n \delta}=\mathbf{C} h_{\alpha} \otimes t^{n}, n \in \mathbf{Z}-\{0\}$. Set $e_{\alpha+n \delta}=e_{\alpha} \otimes t^{n}, e_{-\alpha+n \delta}=e_{-\alpha} \otimes t^{n}, n \in \mathbf{Z}, e_{m \delta}=h_{\alpha} \otimes t^{m}, m \in \mathbf{Z}-\{0\}$. Then $\left[e_{k \delta}, e_{m \delta}\right]=2 k \delta_{k,-m} c,\left[e_{k \delta}, e_{ \pm \alpha+n \delta}\right]= \pm 2 e_{ \pm \alpha+(n+k) \delta},\left[e_{\alpha+k \delta}, e_{-\alpha+m \delta}\right]=$ $\delta_{k,-m}\left(h_{\alpha}+k c\right)+\left(1-\delta_{k,-m}\right) e_{(k+m) \delta}$ for any $k, m \in \mathbf{Z}$.

For a Lie algebra $\mathcal{A}, S(\mathcal{A})$ will denote the corresponding symmetric algebra. We will identify the algebra $\mathcal{U}(H)=S(H)$ with the ring of polynomials $\mathbf{C}\left[H^{*}\right]$ and denote by σ the involutive antiautomorphism on $\mathcal{U}(\mathcal{G})$ such that $\sigma\left(e_{\alpha}\right)=e_{-\alpha}, \sigma\left(e_{\delta-\alpha}\right)=e_{\alpha-\delta}$. Set $\mathcal{N}_{+}=\sum_{\varphi \in \Delta_{+}} \mathcal{G}_{\varphi}, \mathcal{N}_{-}=\sum_{\varphi \in \Delta_{+}} \mathcal{G}_{-\varphi}$.

3. Generalized Verma modules.

The center of $\mathcal{U}(\mathcal{G}(\alpha))$ is generated by the Casimir element $z_{\alpha}=\left(h_{\alpha}+1\right)^{2}+$ $4 e_{-\alpha} e_{\alpha}$. Denote

$$
\begin{aligned}
\mathcal{N}_{\alpha}^{+} & =\sum_{\varphi \in \Delta_{+}-\{\alpha\}} \mathcal{G}_{\varphi}, & \mathcal{N}_{\alpha}^{-} & =\sum_{\varphi \in \Delta_{+}-\{\alpha\}} \mathcal{G}_{-\varphi} \\
T_{\alpha} & =S(H) \otimes \mathbf{C}\left[z_{\alpha}\right], & E_{\alpha}^{\varepsilon} & =(H+\mathcal{G}(\alpha)) \oplus \mathcal{N}_{\alpha}^{\varepsilon}, \varepsilon \in\{+,-\}
\end{aligned}
$$

Let $\lambda \in H^{*}, \gamma \in \mathbf{C}$. Consider the 1-dimensional T_{α}-module $\mathbf{C} v_{\lambda}$ with the action $\left(h \otimes z_{\alpha}^{n}\right) v_{\lambda}=h(\lambda) \gamma^{n} v_{\lambda}$ for any $h \in S(H)$, and construct an $H+\mathcal{G}(\alpha)$ module

$$
V(\lambda, \gamma)=\mathcal{U}(\mathcal{G}(\alpha)+H) \bigotimes_{\cdot T_{\alpha}} \mathbf{C} v_{\lambda}
$$

It is clear that the module $V(\lambda, \gamma)$ has a unique irreducible quotient $V_{\lambda, \gamma}$.
Proposition 3.1.
(i) If V is an irreducible weight $H+\mathcal{G}(\alpha)$-module then $V \simeq V_{\lambda, \gamma}$ for some $\lambda \in H^{*}, \gamma \in \mathbf{C}$.
(ii) $\quad V_{\lambda, \gamma} \simeq V_{\lambda^{\prime}, \gamma^{\prime}}$ if and only if $\gamma=\gamma^{\prime}, \lambda^{\prime}=\lambda+n \alpha, n \in \mathbf{Z}, \gamma \neq\left(\lambda\left(h_{\alpha}\right)+2 \ell+\right.$ $1)^{2}$ for all integers $\ell, 0 \leq \ell<n$ if $n \geq 0$ or for all integers $\ell, n \leq \ell<0$ if $n<0$.

Proof. This is essentially the classification of irreducible weight $s l(2)$-modules.

Let $\lambda \in H^{*}, \gamma \in \mathbf{C}, \varepsilon \in\{+,-\}$. Consider $V_{\lambda, \gamma}$ as E_{α}^{ε}-module with trivial action of $\mathcal{N}_{\alpha}^{\varepsilon}$ and construct the \mathcal{G}-module

$$
M_{\alpha}^{\varepsilon}(\lambda, \gamma)=\mathcal{U}(\mathcal{G}) \bigotimes_{\mathcal{U}\left(E_{\alpha}^{\varepsilon}\right)} V_{\lambda, \gamma}
$$

associated with $\alpha, \lambda, \gamma, \varepsilon$.
The module $M_{\alpha}^{\varepsilon}(\lambda, \gamma)$ is called a generalized Verma module. Notice that $V_{\lambda, \gamma}$ does not have to be finite-dimensional.

Proposition 3.2.

(i) $M_{\alpha}^{\varepsilon}(\lambda, \gamma)$ is a free $\sigma\left(\mathcal{U}\left(\mathcal{N}_{\alpha}^{\varepsilon}\right)\right)$ - module with all finite-dimensional weight subspaces.
(ii) $M_{\alpha}^{\varepsilon}(\lambda, \gamma)$ has a unique irreducible quotient, $L_{\alpha}^{\varepsilon}(\lambda, \gamma)$.
(iii) $M_{\alpha}^{\varepsilon}(\lambda, \gamma) \simeq M_{ \pm \alpha}^{\varepsilon^{\prime}}\left(\lambda^{\prime}, \gamma^{\prime}\right)$ if and only if $\varepsilon=\varepsilon^{\prime}, \gamma=\gamma^{\prime}, \lambda^{\prime}=\lambda+n \alpha, n \in \mathbf{Z}$ and $\gamma \neq\left(\lambda\left(h_{\alpha}\right)+2 \ell+1\right)^{2}$ for all $\ell \in \mathbf{Z}, 0 \leq \ell<n$ if $n \geq 0$ or for all $\ell \in \mathbf{Z}, n \leq \ell<0$ if $n<0$.

Proof. Follows from the construction of \mathcal{G} - module $M_{\alpha}^{\varepsilon}(\lambda, \gamma)$ and Proposition 3.1.

Let $R_{\lambda}=\left\{\left(\lambda\left(h_{\alpha}\right)+2 \ell+1\right)^{2} \mid \ell \in \mathbf{Z}\right\}$. Recall that V is called a highest weight module with respect to \mathcal{N}_{+}and with highest weight $\lambda \in H^{*}$ if $V=$ $\mathcal{U}(\mathcal{G}) v, v \in V_{\lambda}$ and $V_{\lambda+\varphi}=0$ for all $\varphi \in \Delta_{+}(\pi)$. Proposition 3.2, (iii) implies that $M_{\alpha}^{\varepsilon}(\lambda, \gamma)$ and $L_{\alpha}^{\varepsilon}(\lambda, \gamma)$ are highest weight modules with respect to some choice of basis of Δ and, therefore, are the quotients of Verma modules [4], if and only if $\gamma \in R_{\lambda}$. The theory of highest weight modules was developed in $[\mathbf{4}, \mathbf{1 0}]$.

Corollary 3.3.

(i) Let V be an irreducible weight \mathcal{G}-module, $0 \neq v \in V_{\lambda}$ and $\mathcal{N}_{\alpha}^{\varepsilon} v=0$. Then $V \simeq L_{\alpha}^{\varepsilon}(\lambda, \gamma)$ for some $\gamma \in \mathbf{C}$.
(ii) Let $\lambda \notin R_{\lambda}$. $L_{\alpha}^{\varepsilon}(\lambda, \gamma) \simeq L_{\alpha^{\prime}}^{\varepsilon^{\prime}}\left(\lambda^{\prime}, \gamma^{\prime}\right)$ if and only if $\varepsilon=\varepsilon^{\prime}, \alpha^{\prime}=\alpha$ or $\alpha^{\prime}=-\alpha, \gamma=\gamma^{\prime}, \lambda^{\prime}=\lambda+n \alpha, n \in \mathbf{Z}$ and $\gamma \neq\left(\lambda\left(h_{\alpha}\right)+2 \ell+1\right)^{2}$ for all $\ell \in \mathbf{Z}, 0 \leq \ell<n$ if $n \geq 0$ or for all $\ell \in \mathbf{Z}, n \leq \ell<0$ if $n<0$.

Proof. Since V is irreducible \mathcal{G} - module, $V^{\prime}=\mathcal{U}(\mathcal{G}(\alpha)) v$ is an irreducible $\mathcal{G}(\alpha)$-module and $V \simeq \sigma\left(\mathcal{U}\left(\mathcal{N}_{\alpha}^{\varepsilon}\right)\right) V^{\prime}$. Then V is a homomorphic image of $M_{\alpha}^{\varepsilon}(\lambda, \gamma)$ for some $\gamma \in \mathbf{C}$ and, thus, $V \simeq L_{\alpha}^{\varepsilon}(\lambda, \gamma)$ which proves (i). (ii) follows from Proposition 3.2, (iii).

From now on we will consider the modules $M_{\alpha}^{+}(\lambda, \gamma)(=M(\lambda, \gamma))$. All the results for the modules $M_{\alpha}^{-}(\lambda, \gamma)$ can be proved analogously. Set $z=z_{\alpha}$. For $\lambda \in H^{*}, \gamma \in \mathbf{C}$ and integer $n \geq 0$ we denote by $z(n)$ the restriction of z to the subspace $M(\lambda, \gamma)_{\lambda-n(\delta-\alpha)}$.
Proposition 3.4. If $\gamma \neq\left(\lambda\left(h_{\alpha}\right)+2 \ell+1\right)^{2}$ for all $0 \leq \ell<2 n$ then $\operatorname{Spec} z(n)=\left\{(2 k \pm \sqrt{\gamma})^{2} \mid k \in \mathbf{Z}, 0 \leq k \leq n\right\}$.
Proof. Denote $V_{n}=M(\lambda, \gamma)_{\lambda-n(\delta-\alpha)}, n>0$. One can easily show that $V_{n}=e_{\alpha-\delta} V_{n-1}+e_{-\delta} e_{\alpha} V_{n-1}+e_{-\alpha-\delta} e_{\alpha}^{2} V_{n-1}$. Let $V_{n-1}=\oplus V_{n-1}(\tau), \tau \in \mathbf{C}$,
where $V_{n-1}(\tau)=\left\{v \in V_{n-1} \mid \exists N:(z(n-1)-\tau)^{N} v=0\right\}$. Then the subspace $e_{\alpha-\delta} V_{n-1}(\tau)+e_{-\delta} e_{\alpha} V_{n-1}(\tau)+e_{-\alpha-\delta} e_{\alpha}^{2} V_{n-1}(\tau) \subset V_{n}$ is $z(n)$ - invariant and $z(n)$ has on it the eigenvalues τ and $(2 \pm \sqrt{\tau})^{2}$, thanks to the condition $\gamma \neq\left(\lambda\left(h_{\alpha}\right)+2 \ell+1\right)^{2}, 0 \leq \ell<2 n$, which implies that $z(n)$ has eigenvalues $(2 k \pm \sqrt{\gamma})^{2}, 0 \leq k \leq n$.

Corollary 3.5. If $\gamma \notin R_{\lambda}$ then e_{α} and $e_{-\alpha}$ act injectively on $M(\lambda, \gamma)$.
Proof. If $\gamma \notin R_{\lambda}$ then $\operatorname{Spec} z(n) \bigcap R_{\lambda-n \beta}=\emptyset$ for all integer $n \geq 0$ by Proposition 3.4 and, therefore, e_{α} and $e_{-\alpha}$ act injectively on $M(\lambda, \gamma)$.

Fix $\rho \in H^{*}$ such that $(\rho, \alpha)=1,(\rho, \delta)=2$. Since $M(\lambda, \gamma)$ is a restricted module, i.e. for every $v \in M(\lambda, \gamma), \mathcal{G}_{\varphi} v=0$ for all but a finite number of positive roots φ, we have well-defined action of a generalized Casimir operator Ω on $M(\lambda, \gamma)[\mathbf{4}]$:

$$
\Omega v=(\mu+2 \rho, \mu) v+2 \sum_{\varphi \in \Delta_{+}} \bar{e}_{-\varphi} e_{\varphi} v, v \in M(\lambda, \gamma)_{\mu}
$$

where $\bar{e}_{-\varphi} \in \mathcal{G}_{-\varphi},\left(\bar{e}_{-\varphi}, e_{\varphi}\right)=1, \varphi \in \Delta_{+}$. Set $\tilde{\Omega}=2 \Omega+i d$.
Let $s_{\alpha} \in W, s_{\alpha}(\mu)=\mu-(\mu, \alpha) \alpha, \mu \in H^{*}$.
Lemma 3.6. For a \mathcal{G}-module $M(\lambda, \gamma)$

$$
\tilde{\Omega}=\left[\left(\lambda+2 \rho+s_{\alpha}(\lambda+2 \rho), \lambda\right)+\gamma\right] i d
$$

Proof. Follows from [4, Th.2.6] and definition of $\tilde{\Omega}$.
Lemma 3.7. Let $n>0, \beta=\delta-\alpha, 0 \neq v \in M(\lambda, \gamma)_{\lambda-n \beta}, \gamma \neq\left(\lambda\left(h_{\alpha}\right)+\right.$ $2 \ell+1)^{2}$ for all $0 \leq \ell<2 n$ and $\mathcal{N}_{\alpha}^{+} v=0$. Then $k^{2} \gamma=\left(n(\lambda(c)+2)-k^{2}\right)^{2}$ for some $k \in \mathbf{Z}, 0 \leq k \leq n$.

Proof. It follows from Lemma 3.6 that $z(n) v=\gamma^{\prime} v$ and
$\left(\lambda-n \beta+2 \rho+s_{\alpha}(\lambda-n \beta+2 \rho), \lambda-n \beta\right)+\gamma^{\prime}=\left(\lambda+2 \rho+s_{\alpha}(\lambda+2 \rho), \lambda\right)+\gamma$ which implies

$$
\gamma^{\prime}=\gamma+4 n(\lambda(c)+2)
$$

But, $\gamma^{\prime}=(2 k \pm \sqrt{\gamma})^{2}$ for some $k \in \mathbf{Z}, 0 \leq k \leq n$ by Proposition 3.4. Therefore, $k^{2} \gamma=\left(n(\lambda(c)+2)-k^{2}\right)^{2}$ which completes the proof.

Corollary 3.8. Let $\lambda \in H^{*}, \gamma \in \mathbf{C}-R_{\lambda}$. If $k^{2} \gamma \neq\left(n(\lambda(c)+2)-k^{2}\right)^{2}$ for all $n, k \in \mathbf{Z}, n>0,0 \leq k \leq n$ then \mathcal{G}-module $M(\lambda, \gamma)$ irreducible.

Proof. If the \mathcal{G}-module $M(\lambda, \gamma)$ has a non-trivial submodule M, then M contains a non-zero vector v of weight $\lambda-n(\delta-\alpha), n>0$, such that $\mathcal{N}_{\alpha}^{+} v=0$. Now, the statement follows from Lemma 3.7.

Consider the following decomposition of $\mathcal{U}(\mathcal{G})$:

$$
\mathcal{U}(\mathcal{G})=\left(\mathcal{N}_{\alpha}^{-} \mathcal{U}(\mathcal{G})+\mathcal{U}(\mathcal{G}) \mathcal{N}_{\alpha}^{+}\right) \oplus T_{\alpha} \mathbf{C}\left[e_{\alpha}\right] e_{\alpha} \oplus T_{\alpha} \mathbf{C}\left[e_{-\alpha}\right] e_{-\alpha} \oplus T_{\alpha}
$$

Let j be the projection of $\mathcal{U}(\mathcal{G})$ to T_{α}. Introduce the generalized Shapovalov form F, a symmetric bilinear form on $\mathcal{U}(\mathcal{G})$ with values in T_{α}, as follows (cf. [11]): $F(x, y)=j(\sigma(x) y), x, y \in \mathcal{U}(\mathcal{G})$. The algebra $\mathcal{U}(\mathcal{G})$ is Q-graded: $\mathcal{U}(\mathcal{G})=\bigoplus_{\eta \in Q} \mathcal{U}(\mathcal{G})_{\eta}$. It is clear that $F\left(\mathcal{U}(\mathcal{G})_{\eta_{1}}, \mathcal{U}(\mathcal{G})_{\eta_{2}}\right)=0$ if $\eta_{1} \neq \eta_{2}$. Denote $\mathcal{U}\left(\mathcal{N}_{-}\right)_{-\eta}=\mathcal{U}\left(\mathcal{N}_{-}\right) \bigcap \mathcal{U}(\mathcal{G})_{-\eta}$ and let F_{η} be a restriction of F to $\mathcal{U}\left(\mathcal{N}_{-}\right)_{-\eta}$.

For $\lambda \in H^{*}, \gamma \in \mathbf{C}$, consider the linear map $\theta_{\lambda, \gamma}: T_{\alpha} \rightarrow \mathbf{C}$ defined by $\theta_{\lambda, \gamma}\left(h \otimes z^{n}\right)=h(\lambda) \gamma^{n}$ for any $h \in S(H), n \in \mathbf{Z}_{+}$.

Set $\lambda_{k}=\lambda+k \alpha, k \in \mathbf{Z}$. Let $\mu=\lambda-n(\delta-\alpha) \in P(M(\lambda, \gamma)), n \in \mathbf{Z}_{+}$and $\gamma \neq\left(\lambda\left(h_{\alpha}\right)+2 s+1\right)^{2}$ for all integer $\mathrm{s}, 0 \leq s<2 n$. Then $\lambda_{2 n} \in P(M(\lambda, \gamma))$, $M(\lambda, \gamma)_{\lambda_{2 n}}=\mathbf{C} v_{n}$ and $M(\lambda, \gamma)_{\mu}=\mathcal{U}\left(\mathcal{N}_{-}\right)_{-n(\alpha+\delta)} v_{n}$. Set $F^{(n)}=F_{n(\alpha+\delta)}$. We define a a bilinear \mathbf{C}-valued form F_{μ}^{0} on $M(\lambda, \gamma)_{\mu}$ as follows:

$$
F_{\mu}^{0}\left(u_{1} v_{n}, u_{2} v_{n}\right)=\theta_{\lambda_{2 n}, \gamma}\left(F^{(n)}\left(u_{1}, u_{2}\right)\right), u_{1}, u_{2} \in \mathcal{U}\left(\mathcal{N}_{-}\right)_{-n(\alpha+\delta)}
$$

One can see that $\operatorname{dim} L(\lambda, \gamma)_{\mu}=\operatorname{rank} F_{\mu}^{0}$.
Lemma 3.9. Let $\lambda \in H^{*}, \gamma \in \mathbf{C}-R_{\lambda}$. The following conditions are equivalent:
(i) $M(\lambda, \gamma)$ is irreducible.
(ii) $F_{\lambda-n(\delta-\alpha)}^{0}$ is non-degenerate for all integers $n>0$.
(iii) $\theta_{\lambda_{2 n}, \gamma}\left(\operatorname{det} F^{(n)}\right) \neq 0$ for all integers $n>0$.

Proof. Follows from the Corollary 3.5.
Consider in T_{α} the following polynomials: $f_{m, k}=k^{2} z-(m(c+2)-$ $\left.k^{2}\right)^{2}, g_{s}=z-\left(h_{\alpha}+2 s+1\right)^{2}, s, m, k \in \mathbf{Z}, 0 \leq k \leq m$. Lemma 3.7 implies that if $\theta_{\lambda, \gamma}\left(g_{s}\right) \neq 0$ for all $s \in \mathbf{Z}, 0 \leq s<2 n$ and $\theta_{\lambda_{2 m}, \gamma}\left(f_{m, k}\right) \neq 0$ for all $m, k \in \mathbf{Z}, 0<m \leq n, 0 \leq k \leq m$, then $M(\lambda, \gamma)_{\lambda-n(\delta-\alpha)}=L(\lambda, \gamma)_{\lambda-n(\delta-\alpha)}$ and $\theta_{\lambda_{2 n}, \gamma}\left(\operatorname{det} F^{(n)}\right) \neq 0$. We conclude that the polynomial det $F^{(n)}$ is not identically equal to zero and has its zeros in the union of zeros of polynomials $f_{m, k}, 0<m \leq n, 0 \leq k \leq m, g_{s}, 0 \leq s \leq 2 n$. Therefore, $\operatorname{det} F^{(n)}$ is a product of factors of type $f_{m, k}$ and g_{s}.

Lemma 3.10. Let $n, m \in \mathbf{Z}, n>0,0<m \leq n$. Then $f_{m, k}$ is a factor of $\operatorname{det} F^{(n)}$ if and only if k is a divisor of m or $k=0$.

Proof. Assume that k is a divisor of m or $k=0$. Set $r=2 n+2 m+k$. Consider $\lambda \in H^{*}$ and $\gamma \in \mathbf{C}-\mathbf{Z}$ such that $\theta_{\lambda, \gamma}\left(f_{m, k}\right)=\theta_{\lambda, \gamma}\left(g_{r}\right)=0$. For integer $s \geq 0$
set $\nu_{s}=\lambda_{-s}=\lambda-s \alpha$. Then $\theta_{\nu_{s}, \gamma}\left(f_{m, k}\right)=\theta_{\nu_{s}, \gamma}\left(g_{r+s}\right)=0$ and $\nu_{s}\left(h_{\alpha}\right) \notin \mathbf{Z}$, which implies that $\theta_{\nu_{s}, \gamma}\left(g_{\ell}\right) \neq 0$ for all $\ell \in \mathbf{Z}, \ell<r+s$. Thus, the form $F_{\nu_{s}-i \beta}^{0}$, $\beta=\delta-\alpha$ is defined for all $s \geq 0,0<i \leq n$ and $M\left(\nu_{s}, \gamma\right) \simeq M\left(\lambda_{r}\right), s \geq 0$ by Proposition 3.2, (iii), where $M\left(\lambda_{r}\right)$ is the Verma module with highest weight $\lambda_{r}=\lambda+r \alpha$. Therefore, $M\left(\nu_{s}, \gamma\right)_{\nu_{s-i \beta}} \simeq M\left(\lambda_{r}\right)_{\nu_{s}-i \beta}, 0<i \leq n$ as $T_{\alpha^{-}}$ modules. The operator $z(m)$ has eigenvectors $w_{s}^{+}, w_{s}^{-} \in M\left(\lambda_{r}\right)_{\nu_{s}-m \beta}$ with eigenvalues $\gamma^{+}=\left(\lambda\left(h_{\alpha}\right)+4(n+m+k)+1\right)^{2}$ and $\gamma^{-}=\left(\lambda\left(h_{\alpha}\right)+4(n+m)+1\right)^{2}$ respectively. Since $\theta_{\nu_{s}, \gamma}\left(f_{m, k}\right)=0$, then

$$
\gamma^{*}=\gamma+4 m(\lambda(c)+2) \in\left\{\gamma^{+}, \gamma^{-}\right\}
$$

and
$\left(\nu_{s}+2 \rho+s_{\alpha}\left(\nu_{s}+2 \rho\right), \nu_{s}\right)+\gamma=\left(\nu_{s}-m \beta+2 \rho+s_{\alpha}\left(\nu_{s}-m \beta+2 \rho\right), \nu_{s}-m \beta\right)+\gamma^{*}$.
Let $w_{s}^{*} \in\left\{w_{s}^{+}, w_{s}^{-}\right\}$and $z(m) w_{s}^{*}=\gamma^{*} w_{s}^{*}$. Then

$$
\tilde{\Omega} w_{s}^{*}=\left[\left(\nu_{s}-m \beta+2 \rho+s_{\alpha}\left(\nu_{s}-m \beta+2 \rho\right), \nu_{s}-m \beta\right)+\gamma^{*}\right] w_{s}^{*}
$$

by Lemma 3.6. But, $w_{s}^{*} \in M\left(\lambda_{r}\right)$ and

$$
\tilde{\Omega} w_{s}^{*}=\left(2\left(\lambda_{r}+2 \rho, \lambda_{r}\right)+1\right) w_{s}^{*}
$$

by Corollary 2.6 in [4]. Hence

$$
2\left(\lambda_{r}+2 \rho, \lambda_{r}\right)+1=\left(\nu_{s}-m \beta+2 \rho+s_{\alpha}\left(\nu_{s}-m \beta+2 \rho\right), \nu_{s}-m \beta\right)+\gamma^{*}
$$

and

$$
\left(\lambda_{r}+2 \rho, \lambda_{r}\right)=\left(\lambda_{r}+2 \rho-\tau^{*}, \lambda_{r}-\tau^{*}\right)
$$

where $\tau^{*}=m \delta-k \alpha$ if $\gamma^{*}=\gamma^{+}$and $\tau^{*}=m \delta+k \alpha$ if $\gamma^{*}=\gamma^{-}$. If k divides m or $k=0$ then τ^{*} is a quasiroot and $D=\operatorname{Hom}_{\mathcal{G}}\left(M\left(\lambda_{r}-\tau^{*}\right), M\left(\lambda_{r}\right)\right) \neq 0$ [10, Prop. 4.1].

Let $0 \neq \chi \in D$. Then $\chi\left(M\left(\lambda_{r}-\tau^{*}\right)\right) \cap M\left(\lambda_{r}\right)_{\nu_{s}-n \beta} \neq 0$ and therefore, $\theta_{\lambda_{2 n-s, \gamma}}\left(\operatorname{det} F^{(n)}\right)=0$ for any integer $s \geq 0$. It implies that if $\lambda \in H^{*}$, $\gamma \in \mathbf{C}-\mathbf{Z}$ and $\theta_{\lambda, \gamma}\left(f_{m, k}\right)=0$ then $\theta_{\lambda, \gamma}\left(\operatorname{det} F^{(n)}\right)=0$. Thus, $f_{m, k}$ is a factor of det $F^{(n)}$. Conversely, suppose that $f_{n, k}$ is a factor of $\operatorname{det} F^{(n)}, k \neq 0$ and k is not a divisor of n. Let $r=4 n+k$. Consider a pair $(\lambda, \gamma) \in H^{*} \times(\mathbf{C}-\mathbf{Z})$ such that $\theta_{\lambda, \gamma}\left(f_{n, k}\right)=\theta_{\lambda, \gamma}\left(g_{r}\right)=0$ but $\theta_{\lambda, \gamma}\left(f_{p, q}\right) \neq 0$ for all $0<p<n$, $0 \leq q \leq p$ (such λ and γ always exist). Then $\theta_{\lambda, \gamma}\left(\operatorname{det} F^{(n)}\right)=0$ and the Verma module $M\left(\lambda_{r}\right)$ has an irreducible subquotient with highest weight $\lambda_{r}-\tau^{*}$, where τ^{*} is one of $n \delta+k \alpha, n \delta-k \alpha$. But, this contradicts the Theorem 2 in [10]. Therefore, $f_{n, k}$ can not be a factor of $\operatorname{det} F^{(n)}$ if $k \neq 0$ and k is not a divisor of n.

Let now $0<m<n, 0<k<m, k$ is not a divisor of m and $f_{m, k}$ is a factor of $\operatorname{det} F^{(n)}$. Consider a pair $(\lambda, \gamma) \in H^{*} \times \mathbf{C}$ such that $\theta_{\lambda, \gamma}\left(f_{m, k}\right)=0$, $\theta_{\lambda, \gamma}\left(f_{p, q}\right) \neq 0$ for all $p, q \in \mathbf{Z}, 0<p \leq n, 0 \leq q \leq p,(p, q) \neq(m, k)$ and $\theta_{\lambda, \gamma}\left(g_{s}\right) \neq 0$ for all $s \in \mathbf{Z}$. As it was shown above $f_{m, k}$ is not a factor of $\operatorname{det} F^{(m)}$ which implies that $\theta_{\lambda_{2 m}, \gamma}\left(\operatorname{det} F^{(m)}\right) \neq 0$. Now it follows from Lemma 3.7 that $M(\lambda, \gamma)_{\lambda-n \beta}=L(\lambda, \gamma)_{\lambda-n \beta}$ and $\theta_{\lambda_{2 n}, \gamma}\left(\operatorname{det} F^{(n)}\right) \neq 0$. But, this contradicts the assumption that $f_{m, k}$ is a factor of $\operatorname{det} F^{(n)}$. The Lemma is proved.

For $n \in \mathbf{Z}, n>0$ denote $X_{n}=\{0\} \cup\left\{k \in \mathbf{Z}_{+} \left\lvert\, \frac{n}{k} \in \mathbf{Z}\right.\right\}$.
Theorem 3.11. Let $\lambda \in H^{*}, \gamma \in \mathbf{C}-R_{\lambda}$. \mathcal{G}-module $M(\lambda, \gamma)$ is irreducible if and only if $k^{2} \gamma \neq\left(n(\lambda(c)+2)-k^{2}\right)^{2}$ for all $n \in \mathbf{Z}, n>0, k \in X_{n}$.

Proof. Follows from Lemmas 3.9 and 3.10.

4. Irreducible representations of the Heisenberg subalgebra.

Consider the Heisenberg subalgebra $G=\mathbf{C} c \oplus \sum_{k \in \mathbf{Z}-\{0\}} \mathcal{G}_{k \delta} \subset \mathcal{G}$. It is a Z-graded algebra with $\operatorname{deg} c=0, \operatorname{deg} e_{k \delta}=k$. This gradation induces a Z-gradation on the universal enveloping algebra $\mathcal{U}(G): \mathcal{U}(G)=\bigoplus_{i \in \mathbf{Z}} \mathcal{U}_{i}$.

In this section we study the irreducible \mathbf{Z}-graded G - modules. The central element c acts as a scalar on each such module. In general, we say that a G-module V is a module of level $a \in \mathbf{C}$ if c acts on V as a multiplication by a.
4.1. G-Modules of non-zero level. Let $G_{+}=\sum_{k>0} \mathcal{G}_{k \delta}, G_{-}=\sum_{k<0} \mathcal{G}_{k \delta}$. For $a \in \mathbf{C}^{*}=\mathbf{C}-\{0\}$, let $\mathbf{C} v_{a}$ be the 1-dimensional $G_{\varepsilon} \oplus \mathbf{C} c$-module for which $G_{\varepsilon} v_{a}=0, c v_{a}=a v_{a}, \varepsilon \in\{+,-\}$. Consider the G-module

$$
M^{\varepsilon}(a)=\mathcal{U}(G) \bigotimes_{\mathcal{U}\left(G_{\varepsilon} \oplus \mathbf{C} c\right)} \mathbf{C} v_{a}
$$

associated with a and ε.
The module $M^{\varepsilon}(a)$ is a Z-graded: $M^{\varepsilon}(a)=\sum_{i \in \mathbf{Z}} M^{\varepsilon}(a)_{i}$ where

$$
M^{\varepsilon}(a)_{i}=\left(\sigma\left(\mathcal{U}\left(G_{\varepsilon}\right)\right) \cap \mathcal{U}_{i}\right) \otimes v_{a} .
$$

Proposition 4.1.

(i) The G-module $M^{\varepsilon}(a)$ is irreducible.
(ii) $M^{\varepsilon}(a)$ is a $\sigma\left(\mathcal{U}\left(G_{\varepsilon}\right)\right)$-free module.
(iii) $\operatorname{dim} M^{\varepsilon}(a)_{i}=P(|i|)$ where $P(n)$ is a partition function.

Proof. (ii) and (iii) follow directly from the definition of $M^{\varepsilon}(a)$. Since $a \neq 0$ one can easily show that for any non-zero $u \in \sigma\left(\mathcal{U}\left(G_{\varepsilon}\right)\right)$ there exists $u^{\prime} \in$ $\mathcal{U}\left(G_{\varepsilon}\right)$ such that $0 \neq u^{\prime} u v_{a} \in M^{\varepsilon}(a)_{0}$ which implies (i) and completes the proof.

Lemma 4.2. If V is a \mathbf{Z}-graded G-module of level $a \in \mathbf{C}^{*}$ and $\operatorname{dim} V_{i}<\infty$ for at least one $i \in \mathbf{Z}$ then

$$
\text { Spec }\left.e_{\delta} e_{-\delta}\right|_{V} \subset\{2 m a \mid m \in \mathbf{Z}\}
$$

Proof. Let $v \in V_{j}$ be a non-zero eigenvector of $e_{\delta} e_{-\delta}$ with eigenvalue b and $b \neq 2 m a$ for all $m \in \mathbf{Z}$. Since $a \neq 0$, if $e_{n \delta} v=0$ then $e_{-n \delta} v \neq 0, n \in$ $\mathbf{Z}-\{0\}$. Denote $Y=\left\{n \in \mathbf{Z}-\{0,1\} \mid e_{n \delta} v \neq 0\right\}$. We may assume without lost of generality that $j=i$ and $\left|Y \cap \mathbf{Z}_{+}\right|=\infty$. Elements e_{δ} and $e_{-\delta}$ act injectively on the subspace spanned by $e_{\delta}^{k} v, e_{-\delta}^{k} v, k \in \mathbf{Z}$. Then, for each $k \in Y \cap \mathbf{Z}_{+}, e_{\delta} e_{-\delta}\left(e_{k \delta} v\right)=b e_{k \delta} v$ and $0 \neq e_{-\delta}^{k} e_{k \delta} v \in V_{i}$. Set $w_{k}=e_{-\delta}^{k} e_{k \delta} v$. Then $e_{\delta} e_{-\delta} w_{k}=(b+2 k a) w_{k}, k \in Y \cap \mathbf{Z}_{+}$. This contradicts the assumption that $\operatorname{dim} V_{i}<\infty$. Therefore, $b=2 m a$ for some $m \in \mathbf{Z}$.

For a Z-graded G-module V and $j \geq 0$ denote by $V^{[j]}$ the \mathbf{Z}-graded G module with $\left(V^{[j]}\right)_{i}=V_{i-j}, i \in \mathbf{Z}$.

We describe now all irreducible \mathbf{Z}-graded G-modules of non-zero level with finite-dimensional components.

Proposition 4.3.

(i) Let V be an irreducible \mathbf{Z}-graded G-module of level $a \in \mathbf{C}^{*}$ such that $\operatorname{dim} V_{i}<\infty$ for at least one $i \in \mathbf{Z}$. Then $V^{[j]} \simeq M^{\varepsilon}(a)$ for some $\varepsilon \in\{+,-\}, j \in \mathbf{Z}$.
(ii) $\operatorname{Ext}^{1}\left(\left(M^{\varepsilon}(a)\right)^{[j]}, M^{\varepsilon^{\prime}}(a)\right)=0$ for any $j \in \mathbf{Z}, \varepsilon, \varepsilon^{\prime} \in\{+,-\}$.

Proof. (i) By Lemma 4.2 Spec $\left.X\right|_{V} \subset\{2 m a \mid m \in \mathbf{Z}\}$ where X stands for $e_{\delta} e_{-\delta}$. Let $V_{i} \neq 0, n$ be an integer with maximal absolute value such that $\left.2 n a \in \operatorname{Spec} X\right|_{V_{i}}$ and let $0 \neq v \in V_{i}, X v=2 n a v$. Assume that $n>0$. Then $e_{k \delta} v=0$ for all $k>1$. Indeed, if $e_{k \delta} v \neq 0$ for some $k>1$ then $X\left(e_{k \delta} v\right)=e_{k \delta} X v=2 n a e_{k \delta} v$ and $2(n+k) a$ is an eigenvalue of X on V_{i} which contradicts the assumption. Therefore, $e_{k \delta} v=0$ for all $k>1$. Consider the element $\tilde{v}=e_{\delta}^{n-1} v \neq 0$. Then $e_{-\delta} e_{\delta} \tilde{v}=e_{k \delta} \tilde{v}=0, k>1$. If $e_{\delta} \tilde{v} \neq 0$ then $v_{p}=e_{\delta}^{p} \tilde{v} \neq 0, e_{k \delta} v_{p}=0$ and, hence $e_{-k \delta} v_{p} \neq 0$ for all $p>0, k>1$. This would imply that $\operatorname{dim} V_{i}=\infty$. Therefore, $e_{\delta} \tilde{v}=0$ and $V=\mathcal{U}(G) \tilde{v} \simeq M^{+}(a)$ up to a shifting of gradation. If $n \leq 0$ then, clearly,
$V \simeq M^{-}(a)$ up to a shifting of gradation. Suppose that $V_{i}=0$ but, for example, $V_{\imath-1} \neq 0$. Then $e_{k \delta} v=0$ for any non-zero $v \in V_{\imath-1}$ for all $k>0$ and thus $V=\mathcal{U}(G) v \simeq M^{+}(a)$ up to a shifting of gradation. This completes the proof of (i).
(ii) Follows from the proof of (i) and Proposition 4.1, (ii).

Lemma 4.4. Every finitely-generated \mathbf{Z}-graded G-module V of level $a \in \mathbf{C}^{*}$ such that $\operatorname{dim} V_{\imath}<\infty$ for at least one $i \in \mathbf{Z}$ has a finite length.

Proof. If $V_{i}=0$ then statement follows from Proposition 4.3. Let $V_{i} \neq 0, n$ be an integer with maximal absolute value such that $\left.2 n a \in \operatorname{Spec} e_{\delta} e_{-\delta}\right|_{V_{i}}$ and v be a corresponding eigenvector. It follows from the proof of Proposition 4.3, (i) that $V^{\prime}=\mathcal{U}(G) v \simeq M^{\varepsilon}(a)$ up to a shifting of gradation. Consider a G-module $\tilde{V}=V / V^{\prime}$. Then $\operatorname{dim} \tilde{V}_{i}<\operatorname{dim} V_{\imath}$ and we can complete the proof by induction on $\operatorname{dim} V_{i}$.

Now we are in the position to establish the completely reducibility for for finitely-generated G-modules of non-zero level with finite-dimensional components.

Proposition 4.5. Every finitely-generated \mathbf{Z}-graded G-module V of a nonzero level such that $\operatorname{dim} V_{\imath}<\infty$ for at least one $i \in \mathbf{Z}$ is completely reducible.

Proof. Follows from Lemma 4.4 and Proposition 4.3.
4.2. G-modules of level zero. The irreducible G-modules of level zero are classified by V. Chari [6]. We recall this classification.

Let $\tilde{G}=\mathcal{U}(G) / \mathcal{U}(G) c$ and let $g: \mathcal{U}(G) \rightarrow \tilde{G}$ be the canonical homomorphism. For $r>0$ consider a Z-graded ring $L_{r}=\mathbf{C}\left[t^{r}, t^{-r}\right]$, $\operatorname{deg} t=1$ and denote by P_{r} the set of graded ring epimorphisms $\Lambda: \tilde{G} \rightarrow L_{r}$ with $\Lambda(1)=1$. Let $L_{0}=\mathbf{C}$ and $\Lambda_{0}: \tilde{G} \rightarrow \mathbf{C}$ is a trivial homomorphism such that $\Lambda_{0}(1)=1$, $\Lambda_{0}\left(g\left(e_{k \delta}\right)\right)=0$ for all $k \in \mathbf{Z}-\{0\}$. Set $P_{0}=\left\{\Lambda_{0}\right\}$.

Given $\Lambda \in P_{r}, r \geq 0$ define a G-module structure on L_{r} by:

$$
e_{k \delta} t^{r s}=\Lambda\left(g\left(e_{k \delta}\right)\right) t^{r s}, \quad k \in \mathbf{Z}-\{0\}, c t^{r s}=0, s \in \mathbf{Z}
$$

Denote this G-module by $L_{r, \Lambda}$.

Proposition 4.6.

(i) Let V be an irreducibe \mathbf{Z}-graded G-module of level zero. Then $V \simeq L_{r, \Lambda}$ for some $r \geq 0, \Lambda \in P_{r}$ up to a shifting of gradation.
(ii) $L_{r, \Lambda} \simeq L_{r^{\prime}, \Lambda^{\prime}}$ if and only if $r=r^{\prime}$ and there exists $b \in \mathbf{C}^{*}$ such that $\Lambda\left(g\left(e_{k \delta}\right)\right)=b^{k} \Lambda^{\prime}\left(g\left(e_{k \delta}\right)\right), k \in \mathbf{Z}-\{0\}$.

Proof. (i) is essentially Lemma 3.6 in [6]; (ii) follows from [6, Prop. 3.8].

Remark 4.7. All the results of Section 4, except Proposition 4.1 (iii), are hold for the Heisenberg subalgebra of an arbitrary Affine Lie Algebra.

5. The category $\tilde{\mathcal{O}}(\alpha)$.

Let $\alpha \in \pi$. Following [6] we define category $\tilde{\mathcal{O}}(\alpha)$ to be the category of weight \mathcal{G}-modules M satisfying the condition that there exist finitely many elements $\lambda_{1}, \ldots, \lambda_{r} \in H^{*}$ such that $P(M) \subseteq \bigcup_{i=1}^{r} D\left(\lambda_{i}\right)$ where

$$
D\left(\lambda_{i}\right)=\left\{\lambda_{i}+k \alpha+n \delta \mid k, n \in \mathbf{Z}, k \leq 0\right\}
$$

Notice that the trivial action of c, as in [6], is no longer required. It is clear that $\tilde{\mathcal{O}}(\alpha)$ is closed under the operations of taking submodules, quotients and finite direct sums.

Denote $B_{\alpha}=\sum_{n \in \mathbf{Z}} \mathcal{G}_{\alpha+n \delta}$. Then $\mathcal{G}=B_{-\alpha} \oplus(H+G) \oplus B_{\alpha}$.
Let V be an irreducible \mathbf{Z}-graded G-module of level $a \in \mathbf{C}$ and let $\lambda \in H^{*}$, $\lambda(c)=a$. Then we can define a $B=(H+G) \oplus B_{\alpha}$-module structure on V by setting: $h v_{i}=(\lambda+i \delta)(h) v_{i}, B_{\alpha} v_{i}=0$ for all $h \in H, v_{i} \in V_{i}, i \in \mathbf{Z}$.

Consider the \mathcal{G}-module

$$
M_{\alpha}(\lambda, V)=\mathcal{U}(\mathcal{G}) \bigotimes_{\mathcal{U}(B)} V
$$

associated with α, λ, V.

Proposition 5.1.

(i) The \mathcal{G}-module $M_{\alpha}(\lambda, V)$ is $S\left(B_{-\alpha}\right)$ - free.
(ii) $\quad M_{\alpha}(\lambda, V)$ has a unique irreducible quotient $L_{\alpha}(\lambda, V)$.
(iii) $P\left(M_{\alpha}(\lambda, V)\right)=(D(\lambda)-\{\lambda+n \delta \mid n \in \mathbf{Z}\}) \cup P(V) \subset D(\lambda)$.
(iv) $\quad M_{\alpha}(\lambda, V) \simeq M_{\alpha^{\prime}}\left(\lambda^{\prime}, V^{\prime}\right)$ if and only if $\alpha^{\prime} \in\{\alpha+n \delta \mid n \in \mathbf{Z}\}$ and there exists $i \in \mathbf{Z}$ such that $\lambda=\lambda^{\prime}+i \delta$ and $V^{[i]} \simeq V^{\prime}$ as graded G-modules.

Proof. Follows from the construction of \mathcal{G} - module $M_{\alpha}(\lambda, V)$.
Now we describe the classes of isomorphisms of irreducible modules in $\tilde{\mathcal{O}}(\alpha)$.

Proposition 5.2.

(i) Let \tilde{V} be an irreducible object in $\tilde{\mathcal{O}}(\alpha)$. Then there exist $\lambda \in H^{*}$ and an irreducible G - module V such that $\tilde{V} \simeq L_{\alpha}(\lambda, V)$.
(ii) $\quad L_{\alpha}(\lambda, V) \simeq L_{\alpha}\left(\lambda^{\prime}, V^{\prime}\right)$ if and only if there exists $i \in \mathbf{Z}$ such that $\lambda=$ $\lambda^{\prime}+i \delta$ and $V^{[i]} \simeq V^{\prime}$ as graded G-modules.

Proof. One can see that \tilde{V} contains a non-zero element $v \in \tilde{V}_{\lambda}$ such that ${\underset{\tilde{V}}{\alpha}} v=0$. Then $V=\mathcal{U}(G) v$ is an irreducible Z-graded G - module and $\tilde{V} \simeq \mathcal{U}\left(B_{-\alpha}\right) V$. This implies that \tilde{V} is a homomorphic image of $M_{\alpha}(\lambda, V)$ and, therefore, is isomorphic to $L_{\alpha}(\lambda, V)$, which proves (i). Part (ii) follows from Proposition 5.1, (iv).

Lemma 5.3. If $0<\operatorname{dim} L_{\alpha}(\lambda, V)_{\mu}<\infty$ for some $\mu \in H^{*}$ then $\operatorname{dim} V_{i}<\infty$ for all $i \in \mathbf{Z}$.

Proof. If $\lambda(c)=0$ then $V^{[j]} \simeq L_{r, \Lambda}$ for some $r \geq 0, \Lambda \in P_{r}, j \in \mathbf{Z}$ by Proposition 4.6 and, hence $\operatorname{dim} V_{i} \leq 1$ for all $i \in \mathbf{Z}$. Let $\lambda(c)=a \in \mathbf{C}^{*}$ and $V^{[j]} \simeq M^{\varepsilon}(a)$, for any $j \in \mathbf{Z}, \varepsilon \in\{+,-\}$. By Proposition 4.3, (i), $\operatorname{dim} V_{i}=\infty$ for all i. If $a \in \mathbf{Q}_{+}\left(a \notin \mathbf{Q}_{+}\right.$respectively $)$then $\lambda\left(h_{\alpha}\right)-n a \notin \mathbf{Z}_{+}$for all integer $n \geq n_{0}$ ($n \leq n_{0}$ respectively) and for some $n_{0} \in \mathbf{Z}$. Thus, $e_{\alpha-n \delta} e_{-\alpha+n \delta}$ acts injectively on $L_{\alpha}(\lambda, V)$ for all $n \geq n_{0}$ ($n \leq n_{0}$ respectively) which implies that $\operatorname{dim} L_{\alpha}(\lambda, V)_{\mu}=\infty$. But, this contradicts the assumption. We conclude that $V^{[j]} \simeq M^{\varepsilon}(a)$ for some $j \in \mathbf{Z}, \varepsilon \in\{+,-\}$ and $\operatorname{dim} V_{i}<\infty$ for all $i \in \mathbf{Z}$.

Theorem 5.4. Let $\tilde{V} \in \tilde{\mathcal{O}}(\alpha)$ be an irreducible.
(i) [6] If \tilde{V} is of level zero then $\tilde{V} \simeq L_{\alpha}\left(\lambda, L_{r, \Lambda}\right)$ for some $\lambda \in H^{*}, \lambda(c)=0$, $r \geq 0, \Lambda \in P_{r}$.
(ii) If \tilde{V} is of level $a \in \mathbf{C}^{*}$ and $\operatorname{dim} \tilde{V}_{\mu}<\infty$ for at least one $\mu \in P(\tilde{V})$ then $\tilde{V} \simeq L_{\alpha}\left(\lambda, M^{\varepsilon}(a)\right)$ for some $\lambda \in H^{*}, \lambda(c)=a, \varepsilon \in\{+,-\}$.

Proof. (i) follows from Propositions 5.2 and 4.6 , while (ii) follows from Lemma 5.3, Propositions 5.2 and 4.3.

In some cases we can describe the structure of modules $L_{\alpha}(\lambda, V)$.
Let $\lambda(c)=0, r=0, \Lambda=\Lambda_{0}, L_{0, \Lambda_{0}} \simeq \mathbf{C}$. Set $\tilde{M}(\lambda)=M_{\alpha}(\lambda, \mathbf{C})$. Notice that $\tilde{M}(\lambda) \simeq S\left(B_{-\alpha}\right)$ as vector spaces and, therefore, $P(\tilde{M}(\lambda))=$ $\{\lambda-n \alpha+k \delta \mid k, n \in \mathbf{Z}, n>0\} \cup\{\lambda\}$ and
$\operatorname{dim} \tilde{M}(\lambda)_{\lambda-n \alpha+k \delta}=\infty, n>1, \operatorname{dim} \tilde{M}(\lambda)_{\lambda}=\operatorname{dim} \tilde{M}(\lambda)_{\lambda-\alpha+k \delta}=1, k \in \mathbf{Z}$.

Proposition 5.5.

(i) $L_{\alpha}(\lambda, \mathbf{C}) \simeq \tilde{M}(\lambda)$ if and only if $\lambda\left(h_{\alpha}\right) \neq 0$.
(ii) If $\lambda\left(h_{\alpha}\right)=0$ then $L_{\alpha}(\lambda, \mathbf{C})$ is a trivial one-dimensional module.

Proof. Proposition follows from [7, Proposition 6.2] and is also proved in [8].

Let $\lambda(c)=a \in \mathbf{C}^{*}$. Set $M^{\varepsilon}(\lambda, a)=M_{\alpha}\left(\lambda, M^{\varepsilon}(a)\right)$. We have

$$
P\left(M^{\varepsilon}(\lambda, a)\right)=\{\lambda-k \alpha+n \delta \mid k, n \in \mathbf{Z}, k>0\} \cup\left\{\lambda-\varepsilon n \delta \mid n \in \mathbf{Z}_{+}\right\}
$$

and
$\operatorname{dim} M^{\varepsilon}(\lambda, a)_{\lambda-k \alpha+n \delta}=\infty, k>0, n \in \mathbf{Z}, \operatorname{dim} M^{\varepsilon}(\lambda, a)_{\lambda-\varepsilon n \delta}=P(n), n \in \mathbf{Z}_{+}$.
Proposition 5.6. $[8,9] L_{\alpha}\left(\lambda, M^{\varepsilon}(a)\right) \simeq M^{\varepsilon}(\lambda, a)$.
Recall, that $\tilde{\mathcal{G}}$-module \tilde{V} is called integrable if $e_{ \pm \alpha}$ and $e_{ \pm(\delta-\alpha)}$ act locally nilpotently on \tilde{V}. All irreducible integrable \mathcal{G}-modules in $\tilde{\mathcal{O}}(\alpha)$ of level zero were classified in [6]. In fact, they are the only integrable modules in $\tilde{\mathcal{O}}(\alpha)$.

Corollary 5.7. If \tilde{V} is irreducible integrable \mathcal{G}-module in $\tilde{\mathcal{O}}(\alpha)$ then \tilde{V} is of level zero.

Proof. Suppose \tilde{V} is of level $a \neq 0$. Since \tilde{V} is integrable, it follows from Proposition 5.6 that $\tilde{V} \neq L_{\alpha}\left(\lambda, M^{\varepsilon}(a)\right), \varepsilon \in\{+,-\}$. Then $\tilde{V} \simeq L_{\alpha}(\lambda, V)$ and for any $k \in \mathbf{Z}_{+}$there exist $i>k, j<-k$ such that $V_{i} \neq 0, V_{j} \neq 0$. Now the same arguments as in the proof of Lemma 5.3 show that $e_{-\alpha}$ and $e_{\delta-\alpha}$ are not locally nilpotent on such module and, therefore, \tilde{V} has a zero level.

Remark. (i) The structure of modules $L_{\alpha}\left(\lambda, L_{r, \Lambda}\right), r>0$ is unclear is general. Some examples were considered in [1, 12].
(ii) Most of the results of Section 5 can be generalized for an arbitrary Affine Lie Algebra $[6,7,12]$.

6. Non-dense \mathcal{G}-modules.

Definition. An irreducible weight \mathcal{G}-module V is called dense if $P(V)=$ $\lambda+Q$ for some $\lambda \in H^{*}$ and non-dense otherwise.

In this section we classify all irreducible non-dense \mathcal{G} - modules with at least one finite-dimensional weight subspace. Our main result is the following Theorem.

Theorem 6.2. If \tilde{V} is an irreducible non-dense \mathcal{G}-module with at least one finite-dimensional weight subspace then \tilde{V} belongs to one of the following disjoint classes:
(i) highest weight modules with respect to some choice of π;
(ii) $L_{\alpha}^{\varepsilon}(\lambda, \gamma), \alpha \in \Delta^{r e}, \lambda \in H^{*}, \gamma \in \mathbf{C}-R_{\lambda}, \varepsilon \in\{+,-\}$;
(iii) $L_{\alpha}\left(\lambda, L_{r, \Lambda}\right), \alpha \in \Delta^{r e}, \lambda \in H^{*}, \lambda(c)=0, r \geq 0, \Lambda \in P_{r}$.
(iv) $\quad L_{\alpha}\left(\lambda, M^{\varepsilon}(a)\right), \alpha \in \Delta^{r e}, \lambda \in H^{*}, a \in \mathbf{C}^{*}, \lambda(c)=a, \varepsilon \in\{+,-\}$.

Moreover, we can describe the irreducible \mathcal{G}-modules of non-zero level with finite-dimensional weight subspaces.

Theorem 6.3. Let \tilde{V} be an irreducible \mathcal{G}-module of level $a \neq 0$ with all finite-dimensional weight subspaces. Then $\tilde{V} \simeq L_{\alpha}^{\varepsilon}(\lambda, \gamma)$ for some $\alpha \in \Delta^{r e}$, $\lambda \in H^{*}, \lambda(c)=a, \gamma \in \mathbf{C}, \varepsilon \in\{+,-\}$.

Remark 6.4. Theorems $6.2,6.3$ imply that in order to complete the classification of all weight irreducible \mathcal{G}-modules one has to study the following classes:
(i) Modules of type $L_{\alpha}(\lambda, V)$ where V is a graded irreducible G-module of non-zero level with all infinite- dimensional components.
(ii) Dense \mathcal{G}-modules of zero level.
(iii) Dense \mathcal{G}-modules of non-zero level with an infinite-dimensional weight subspace.
These classification problems are still open.
The proof of Theorem 6.2 is based on some preliminary results. We start with the following Definition.
Definition 6.5. A subset $P \subset \Delta$ is called closed if $\beta_{1}, \beta_{2} \in P, \beta_{1}+\beta_{2} \in \Delta$ imply $\beta_{1}+\beta_{2} \in P$. A closed subset $P \subset \Delta$ is called a partition if $P \cap-P=\emptyset$, $P \cup-P=\Delta$.

Lemma 6.6. Let P be a partition, $P \ni \delta, P^{r e}=P \cap \Delta^{r e}, \beta \in \Delta^{r e}$.
(i) If $\left|P^{r e} \cap\left\{\beta+k \delta \mid k \in \mathbf{Z}_{+}\right\}\right|<\infty$ or $\left|P^{r e} \cap\{-\beta+k \delta \mid k \in \mathbf{Z}\}\right|<\infty$ then $P^{r e}=\{\varphi+n \delta \mid n \in \mathbf{Z}\}$ for some $\varphi \in \Delta^{r e}$.
(ii) If $\left|P^{r e} \cap\{\beta+k \delta \mid k \in \mathbf{Z}\}\right|=\left|P^{r e} \cap\left\{-\beta+k \delta \mid k \in \mathbf{Z}_{+}\right\}\right|=\infty$ then $P=\Delta_{+}(\tilde{\pi})$ for some basis $\tilde{\pi}$ of Δ.

Proof. Recall that $\Delta=\{ \pm \beta+k \delta \mid k \in \mathbf{Z}\} \cup\{n \delta \mid n \in \mathbf{Z}-\{0\}\}$. It follows from [7] that there exist $w \in W$ and $\beta^{\prime} \in \Delta^{r e}$ such that

$$
w P=\left\{\beta^{\prime}+k \delta \mid k \in \mathbf{Z}\right\} \cup\{k \delta \mid k>0\}
$$

or

$$
w P=\left\{\beta^{\prime}+n \delta,-\beta^{\prime}+k \delta \mid n \geq 0, k>0\right\} \cup\{k \delta \mid k>0\}=\Delta_{+}\left(\pi^{\prime}\right)
$$

where $\pi^{\prime}=\left\{\beta^{\prime}, \delta-\beta^{\prime}\right\}$. Then

$$
P=\left\{w^{-1} \beta^{\prime}+k \delta \mid k \in \mathbf{Z}\right\} \cup\{k \delta \mid k>0\}
$$

or $P=\Delta_{+}\left(w^{-1} \pi^{\prime}\right)$. This implies the statement of Lemma.
Definition 6.7. A non-zero element v of a \mathcal{G}-module V is called admissible if $\mathcal{N}_{\varphi}^{\varepsilon} v=0$ or $B_{\varphi} v=0$, for some $\varphi \in \Delta^{r e}, \varepsilon \in\{+,-\}$.

Lemma 6.8. If the \mathcal{G}-module V contains a non-zero vector $v \in V_{\lambda}$ such that $e_{\varphi} v=0$ and $\lambda+k \delta \notin P(V)$ for some $\varphi \in \Delta^{r e}, k \in \mathbf{Z}-\{0\}$ then V contains an admissible vector.

Proof. We will assume that $k>0$. The case $k<0$ can be considered analogously. We prove the Lemma by the induction on k. Let $k=1$. Then we have $e_{\varphi+m \delta} v=e_{\delta} v=0$ for all $m \geq 0$. If $e_{\varphi-i \delta} v=0$ for all $i>0$ then $B_{\varphi} v=0$ and v is admissible. Let $e_{\varphi-n \delta} v \neq 0$ for some $n>0$ and $e_{\varphi-i \delta} v=0,0 \leq i<n$. Set $\tilde{v}=e_{\varphi-n \delta} v \neq 0$. Then $e_{\varphi-i \delta} \tilde{v}=e_{\delta} \tilde{v}=e_{-\varphi+(n+1) \delta} \tilde{v}=0, i<n$ and, thus, $e_{\psi} \tilde{v}=0$ for any $\psi \in \tilde{P}=\{\varphi-i \delta,-\varphi+(n+j+1) \delta,(j+1) \delta \mid i<n, j \geq 0\}$. One can see that $\tilde{P} \cup\{-\varphi+n \delta\}$ is a partition and $\tilde{P}=\Delta_{+}(\tilde{\pi})-\left\{\varphi^{\prime}\right\}$ for some $\varphi^{\prime} \in \Delta^{r e}, \tilde{\pi}=\left\{\varphi^{\prime}, \delta-\varphi^{\prime}\right\}$, by Lemma 6.6. Hence, $\mathcal{N}_{\varphi^{\prime}}^{+} \tilde{v}=0$ which proves the Lemma for $k=1$.

Assume now that the Lemma is proved for all $0<k^{\prime}<k$ and consider two cases:
(i) There exists $n \in \mathbf{Z}, 0<n<k$ such that $e_{\varphi+i \delta} v=0$ for all $0 \leq i<n$ but $e_{\varphi+n \delta} v \neq 0$. Then $e_{\varphi+i \delta} \tilde{v}=e_{-\varphi+(k-n) \delta} \tilde{v}=0,0 \leq i<n$ where $\tilde{v}=e_{\varphi+n \delta} v$ and $e_{-\varphi+(k-n) \delta} \tilde{v} \in V_{\lambda+k \delta}=0$. If $k-n=1$ or $k-n>1$ and $e_{-\varphi+\delta} \tilde{v}=0$ then $\mathcal{N}_{+} v=0$ and \tilde{v} is admissible. Let $k-n>1$ and $v^{\prime}=e_{-\varphi+\delta} \tilde{v} \neq 0$. Then $v^{\prime} \in V_{\lambda^{\prime}}, e_{\varphi^{\prime}} v^{\prime}=0, \lambda^{\prime}+(k-n-1) \delta \notin P(V)$ where $\lambda^{\prime}=\lambda+(n+1) \delta$, $\varphi^{\prime}=-\varphi+(k-n) \delta$ and V has an admissible element by the induction hypotheses.
(ii) Let $e_{\varphi+i \delta} v=0$ for all $0 \leq i \leq k$. Since $e_{k \delta} v=0$ we have $e_{\varphi+i \delta} v=0$ for all $i \geq 0$. If $\tilde{v}_{m}=e_{m \delta} v \neq 0$ for some $0<m<k$ then $\tilde{v}_{m} \in V_{\lambda^{\prime}}$, $\lambda^{\prime}=\lambda+m \delta, e_{\varphi} \tilde{v}_{m}=0, \lambda^{\prime}+(k-m) \delta \notin P(V)$ and we can apply induction. Assume that $\tilde{v}_{m}=0$ for all $0<m<k$. Then we have $e_{\varphi+i \delta} v=e_{m \delta} v=0$, $i \geq 0,0<m \leq k$. If $e_{\varphi-j \delta} v=0$ for all $j>0$ then $B_{\varphi} v=0$ and v is admissible. Otherwise, let n be a minimal positive integer such that $\tilde{v}=e_{\varphi-n \delta} v \neq 0$. Then $e_{\varphi-j \delta} \tilde{v}=e_{-\varphi+(n+k) \delta} \tilde{v}=e_{i \delta} \tilde{v}=0, i \geq 0, j<$ n. Assume that $e_{-\varphi+(n+1) \delta} \tilde{v}=0$. We have $e_{\psi} \tilde{v}=0$ for any $\psi \in \tilde{P}=$ $\{\varphi-j \delta,-\varphi+(n+m) \delta, m \delta \mid j<n, m>0\}$. The set $\tilde{P} \cup\{-\varphi+n \delta\}$ is a partition, $\left|\tilde{P}^{r e} \cap\{\varphi+i \delta \mid i \geq 0\}\right|=\left|\tilde{P}^{r e} \cap\{-\varphi+i \delta \mid i>0\}\right|=\infty$ and, therefore, $\tilde{P}=\Delta_{+}(\tilde{\pi})-\left\{\varphi^{\prime}\right\}$ for some $\varphi^{\prime} \in \Delta^{r e}, \tilde{\pi}=\left\{\varphi^{\prime}, \delta-\varphi^{\prime}\right\}$ by Lemma 6.6. We conclude that $\mathcal{N}_{\varphi^{\prime}}^{+} \tilde{v}=0$ and \tilde{v} is admissible. Finally, suppose that $v^{\prime}=e_{-\varphi+(n+1) \delta} \tilde{v} \neq 0$. Then $v^{\prime} \in V_{\lambda^{\prime}}, e_{\varphi} v^{\prime}=0, \lambda^{\prime}+(k-1) \delta \notin P(V)$ where λ^{\prime} stands for $\lambda+\delta$ and, thus V has an admissible element by the assumption of induction. This completes the proof of Lemma.

Proposition 6.9. Let V be an irreducible non-dense \mathcal{G}-module. Then V contains an admissible element.

Proof. Let $\lambda \in P(V)$ and $\lambda+\varphi \notin P(V)$ for some $\varphi \in \Delta$. We can assume that $\varphi \in \Delta^{r e}$. Indeed, let $\varphi=\delta$. If $e_{\alpha} v=e_{\delta-\alpha} v=0$ for some $0 \neq v \in V_{\lambda}$, $\alpha \in \Delta^{r e}$ then V is a highest weight module with respect to $\{\alpha, \delta-\alpha\}$ and v is admissible. If, for example, $e_{\alpha} v \neq 0$ then $\lambda^{\prime}=\lambda+\alpha \in P(V)$ and $\lambda^{\prime}+(\delta-\alpha) \notin P(V)$. Hence, we can assume that $\lambda+\varphi \notin P(V), \varphi \in \Delta^{r e}$. Let $\underset{\sim}{0} \neq v \in V_{\lambda}$. If $v^{\prime}=e_{\varphi-n \delta} v \neq 0$ for some $n \in \mathbf{Z}-\{0\}$ then $e_{\varphi} v^{\prime}=0, v^{\prime} \in V_{\tilde{\lambda}}$, $\tilde{\lambda}=\lambda+\varphi-n \delta, \tilde{\lambda}+n \delta \notin P(V)$ and Proposition follows from Lemma 6.8. If $e_{\varphi-n \delta} v=0$ for all $n \in \mathbf{Z}$ then $B_{\varphi} v=0$ and v is admissible.

Corollary 6.10. If \tilde{V} is an irreducible non-dense \mathcal{G}-module then either $\tilde{V} \simeq L_{\alpha}^{\varepsilon}(\lambda, \gamma)$ or $\tilde{V} \simeq L_{\alpha}(\lambda, V)$ for some $\alpha \in \Delta^{r e}, \lambda \in H^{*}, \gamma \in \mathbf{C}, \varepsilon \in\{+,-\}$ and irreducible G - module V.

Proof. Follows from Proposition 6.9, Corollary 3.3 (i) and Proposition 5.2.

Now Theorem 6.2 follows from Corollary 6.6 and Theorem 5.4.
Proof of Theorem 6.3. Let $\mu \in P(\tilde{V})$. Consider the \mathcal{G}-submodule $V=$ $\mathcal{U}(G) \tilde{V}_{\mu} \subset \tilde{V}$. Then it follows from Proposition 4.5 that V is completely reducible and moreover each irreducible component is isomorphic to $M^{\varepsilon}(a)$, $\varepsilon \in\{+,-\}$ up to a shifting of gradation by Proposition 4.3, (i). Denote by V^{+}the sum of all irreducible components of V isomorphic to $M^{+}(a)$ and assume that $V^{+} \neq 0$. Let $0 \neq v \in V^{+} \cap \tilde{V}_{\chi}, \chi \in P(\tilde{V})$ and $V^{+} \cap \tilde{V}_{\chi+\delta}=0$. We will show that for any $\alpha \in \Delta^{r e}$ there exists $m_{\alpha} \in \mathbf{Z}_{+}$such that $e_{\alpha+m \delta} v=0$ for all $m \geq m_{\alpha}$. Indeed, let $v_{0}=e_{\alpha} v \neq 0$. Consider the G-module $\mathcal{U}(G) v_{0}$ which is again completely reducible by Proposition 4.5. If $e_{k \delta} v \neq 0$ for all $k>0$ then $v_{k}=e_{\delta}^{k} v_{0} \neq 0$ for all $k>0$. But, for big enough k, v_{k} will belong to the direct sum of irreducible components of $\mathcal{U}(G) v_{0}$ each of which is isomorphic to $M^{-}(a)$ up to a shifting of gradation. This contradicts Proposition 4.1, (ii), since $e_{\delta}^{2} v_{k}=2^{k+2} e_{\alpha+(k+2) \delta} v=2 e_{2 \delta} v_{k}$. Thus, there exists $m_{\alpha} \geq 0$ such that $e_{\alpha+m_{\alpha} \delta} v=0$ and, therefore, $e_{\alpha+m \delta} v=0$ for any $m \geq m_{\alpha}$.

Suppose that $\chi+\delta \in P(\tilde{V})$. Since \tilde{V} is irreducible there exists $0 \neq$ $u \in \mathcal{U}(\mathcal{G})$ such that $0 \neq u v \in \tilde{V}_{\chi+\delta}$. It follows from the discussion above that $e_{n \delta} u v=0$ for big enough $n \in \mathbf{Z}_{+}$. The G-submodule $V^{\prime}=\mathcal{U}(G) u v$ is completely reducible by Proposition 4.5 and since $V^{+} \cap \tilde{V}_{\chi+\delta}=0$, any irreducible component $L \subset V^{\prime}$ such that $L \cap \tilde{V}_{\chi+\delta} \neq 0$ is isomorphic to $M^{-}(a)$ up to a shifting of gradation. Hence, $e_{n \delta} \tilde{v} \neq 0$ for any non-zero $\tilde{v} \in V^{\prime} \cap \tilde{V}_{\chi+\delta}$ by Proposition 4.1, (ii) and $e_{n \delta} u v \neq 0$ in particular. This contradiction implies that $\chi+\delta \notin P(\tilde{V})$ and therefore \tilde{V} is a non-dense
\mathcal{G}-module. Applying Theorem 6.2 we conclude that $\tilde{V} \simeq L_{\alpha}^{\varepsilon}(\lambda, \gamma)$ for some $\alpha \in \Delta^{r e}, \lambda \in H^{*}, \lambda(c)=a, \gamma \in \mathbf{C}, \varepsilon \in\{+,-\}$ which completes the proof.

Acknowledgement.

The author gratefully acknowledges the support of the Natural Sciences and Engineering Research Council of Canada.

References

[1] S. Spirin, \mathbf{Z}^{2}-graded modules with one-dimensional components over the Lie Algebra $A_{1}^{(1)}$, Funkts. Anal. Prilozhen., 21 (1987), 84-85.
[2] D. Britten, F. Lemire and F. Zorzitto, Pointed torsion free Modules of Affine Lie Algebras, Commun. in Algebra, 18 (1990), 3307-3321.
[3] V. Chari and A. Pressley, A new family of irreducible, integrable modules for Affine Lie Algebras, Math. Ann., 277 (1987), 543-562.
[4] V. Kac, Infinite Dimensional Lie Algebras, 3rd Edition, Cambridge University Press 1990.
[5] J. Lepowsky, Generalized Verma modules, loop space cohomology and MacDonald type identities, Ann. Sci. Ecole Norm. sup., 12 (1979), 169-234.
[6] V. Chari, Integrable representations of Affine Lie Algebras, Invent. Math., 85 (1986), 317-335.
[7] H. Jakobsen and V. Kac, A new class of unitarizable highest weight representations of infinite dimensional Lie algebras, Lecture Notes in Physics, 226 (1985), 1-20.
[8] V. Futorny, On Imaginary Verma modules over the affine Lie algebra $A_{1}^{(1)}$, Oslo University preprint, 1991-9.
[9] , Irreducible graded $A_{1}^{(1)}$ - modules, Funkts. Anal. Prilozhen., 26 (1992), 73-75.
[10] V. Kac and D. Kazhdan, Structure of representations with highest weight of infinitedimensional Lie algebras, Advances in Math., 34 (1979), 97-108.
[11] N. Shapovalov, On bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Funkts. Anal. Prilozhen., 6 (1972), 307-312.
[12] V. Futorny, Imaginary Verma modules for Affine Lie Algebras, Canad. Math. Bull., to appear.

Received July 12, 1993 and revised December 2, 1993.
Kiev University
Kiev, 252617, Ukraine
E-mail address: FUTORNY@UNI-ALG.KIEV.UA

