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HIGHER ORDER ESTIMATES IN COMPLEX
INTERPOLATION THEORY

RICHARD ROCHBERG

Suppose {Aβ}o<o<ι is a scale of Banach spaces generated
from the couple (Ao,Aι) by complex interploation. If T is
a linear operator which is bounded on the couple then T is
bounded on the entire scale. Also, associated to the scale is
an operator Ωi which is generally nonlinear and unbounded
on Aι/2 such that the commutator [T, Ωi] is bounded on A1/2.
Here we extend the construction and produce a sequence
Ω2, Ω3,... which are increasingly nonlinear and unbounded but
such that certain combinations with T are bounded. The first
example is [T,Ω2] - Ωi[T,Ωi].

1. Background and Introduction.

For some time the author and others have explored second order estimates
obtained in interpolation theory. (See, for instance, [RW], [JRW], [CJMR],
[Ml], [MS], [Kl], and [K2].) Roughly, associated with an interpolation
scale of Banach spaces is an operator Ω which is generally unbounded on
spaces of the scale and which is often nonlinear. However, if T is a linear
operator which is bounded on the scale then the commutator [T, Ω] will also
be bounded on these spaces.

It was noted in the final comments in [RW] that in the context of complex
interpolation it was possible to go further, to obtain third order and higher
order estimates. However it was not clear at that time how to organize those
computations and results effectively. It is now clear how to give relatively
compact presentation of those results: the systematic presentation of those
higher order estimates, both in the abstract and in the particular instances
of classical function spaces, is the main content of this paper.

When these ideas are particularized to classical operators on classical func-
tion spaces we obtain results about boundedness of multiterm nonlinear ex-
pressions. The individual terms are unbounded and the final boundedness
is due to a subtle cancellation. (See, for instance, Corollaries 6.1, 6.5, and
6.6.) This is similar to what was found in [RW] and what is found in recent
work on compensated compactness [CLMS]. Here, however, the degree of
unboundedness of the individual terms is greater as is the degree of nonlin-
earity.

247



248 RICHARD ROCHBERG

The results on second order estimates are known to be related to recent
work on compensated compactness. For more on that see [M2], [M3], and
[IS]. We suspect that this relation persists for these higher order estimates
but we have no specific evidence.

Here, roughly, are the contents. In §2 we recall what we need of complex
interpolation theory and present the basic construction of our generalized
interpolation spaces XQ . In §3 we study the norm on XQ and some of its
subspaces. We also describe the norm using the nonlinear operator Ω and
its higher order generalizations. In §4 we prove a duality theorem for XQ1].
In §5 we prove an interpolation theorem for XQ and from that we derive
the commutator theorems. In §6 we particularize our general results to the
special cases of weighted L2 spaces, Lp spaces, and Banach lattices. A brief
final section contains a discussion of possible further research.

My thanks to Mario Milman with whom I discussed these ideas as they
were being developed.

2. The construction of X^n).

We will work in the context of the theory of complex interpolation of families
of Banach spaces as introduced in [CCRSW1] and [CCRSW2]. We now
recall that formalism as presented in [RW]. (For the reader who is not famil-
iar with this extension of classical complex interpolation theory we note that
if we restrict attention to boundary data which is constant on two halves of
the unit circle then by conformally mapping the strip to the unit disk we
recapture the classical complex interpolation theory of A. P. Calderόn. The
proofs here adapt to that context.)

We will present our results for families of finite dimensional spaces but
we will not allow factors in our estimates unless they are independent of
the families of spaces being considered, and in particular are independent
of the dimension of the spaces being considered. All that we say extends to
appropriate families of infinite dimensional spaces but the proofs then require
a distracting layer of technicalities. However the details in [CCRSW2],
which, in the language we will introduce here, show how to construct XQ in
the infinite dimensional context would extend to allow construction of XQ
in that context. (An alternative scheme for working with infinite dimensional
function spaces is in [Kl].)

We begin with a family T of iV-dimensional Banach spaces parameterized
by the points e%θ,0 < θ < 2π, of Γ, the unit circle. Thus, corresponding
to eιθ we have XQ which is normed by || \B. Of course we suppose this is
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measurable in θ. We denote the Euclidean norm on CN by | |. Set

AQ = sup
M

I
aθ = infMl,

\v\

We make the technical assumption

(2.1) [\log(Aθ/aθ)\dθ<oo.
JT

Let Hj? be the space of CN-valued holomorphic functions, F, on the unit
disk which have radial boundary values α.e. (also denoted by F) and for
which

||F||=eβββup||F(e'%<oo.

Under the assumption (2.1) the correspondence between the functions and
their boundary values is perfect, exactly as for traditional H°°.

For F e Hf write F = ΣF(ή)zn. Pick and fix a positive integer n. Let
XQ1^ be the vector space (CN)n given the following norm. For vo,vi,...,
υn_i E CN set V = (υ 0 , . . . , vn_χ). Set

(2.2) ||F||x(n)=inf{||F||;FE^,F(i)=^,j=O,..^

The subscript "0", which we will often omit, is to remind us that we are
working with the coefficients of the expansion of F about 0. As in [RW] we
could also consider other base points.

A normal families argument shows that the infimum in (2.2) is attained.
It will also be convenient to insure that this extremal function is unique.
One way to do this is to require that

(2.3) for a set of θ of positive measure the Banach spaces Xθ

are uniformly convex.

This will be a standing assumption for the rest of the paper. In this case
the extremal function is unique and we denote it by
AM(V)(z). Hence

We write

(2.4)
j=0
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Thus

For convenience we set Ω̂  = Ω^ . (In the absence of (2.3) A^ is not well
defined. However much of what follows remains true if we add "for any
choice of extremal function.")

3. The description of the norm.

In this section we show how to estimate the norm on X^ in terms of the
norm in X^ and the operators Ω ^ introduced in (2.4). Throughout this
section and the remainder of the paper we will write || || for the norm on

Note that X^ is the interpolation space (at the origin) associated with the
boundary data Xg.

Suppose n and k are given positive integers. We wish to define three
maps; the shift Sn^, the extension En,k and the restriction Rn,k. Sn,k maps
X(n) t Q Jjf(»+*). p o r γ = ( ^ ^ ^ j g χ(n)

(3.1)

E^k maps X^ to χ(-+ f c). For V = {υ0,... ,vn_i) G X ( n )

(3.2) Entk{V) = (Vo,... , V l , Ω n , n ( n ,«n+ib-l,

Λn,fc maps X^n +^ to 1 ^ . For W = (w0,... ,wn+k^) €

(3.3) Rnik(W) = (w0,...,wn^).

Proposition 3.1.
(1) £>n,k is an isometry.
(2) En%k is an isometry.
(3) Rn,k is a contraction.

Proof. To prove (1) it suffices to verify that for V in X^

This follows at once from the fact that \zk\ = 1 on Γ, the definitions, and
the fact that A^n+k^{SntkV) must be divisible by zk.

To prove (2) first note that A^(V)(z) is a competing function in the
extremal problem defining the norm of Enik(V). Hence
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To obtain an estimate in the other direction we note that,

\\En,k(V)\\ = \ \ A ( n + k \ E n ?

The previous line also shows why (3) holds. D

We now recall the notion of twisted direct sum of Banach spaces. Given
two Banach spaces, A and £?, and a map Ω : A —> B (which is not assumed
to be linear) we define the twisted direct sum to be the vector space {(α, b) :
α G A, b G B}. We measure size in this space by

(3.4) | |(α,6)| |Ω = ||α|U + | | δ - Ω α | | B .

This vector space together with the functional in (3.4) is denoted AQ(B B.
Note that we are abusing notation in (3.4), || | |Ω is not actually a norm.
We could give general conditions on Ω which force this functional to be
comparable to a norm. However when we use the construction we will have
a norm at hand for comparison.

For υ G X ( o ) set Ωϋ>(v) = ( Ω ^ , . . . , ΩjV).

Proposition 3.2.

That is, for V = (v 0,... , υ n -i) G X ( n )

(3.5) ||VΊ|X(n) ~ IKHχ(o) + ||(vi

The constants implicit in "~" in (3.5) can be selected to depend only on n.

Proof. Let W = (υ±J... ,υ n _i). We need to establish

(3.6) ||V|U<-, ~ \\υo\\χw + \\W - « ( n

We have, by direct inspection,

(3.7) V = ^.n-iW + Sn-ltl(W - rtn-»(vo)).

Hence

II v|| < HEi^iMiixw + | | s n M {w-a^Hυo^l
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An appeal to Proposition 3.1 (1) and (2) now establishes half of (3.6). To go
in the other direction first note that υ0 = J?x n_i (V) and hence by Proposition
3.1 (3)

Finally, using Proposition 3.1 (1) and then (3.7)

Finally, using Proposition 3.1 (1) and then (3.7)

-) + IN
<2\\V\\χ(n).

Thus the right hand side of (3.6) is dominated by three times the left hand
side and we are done. D

In order to unravel this description we introduce more notation. Given
(vo,..- ,vn_i) eX{n) we set

w0 = v0

Theorem 3.3.

TΛe constants of comparability depend only on n.

Proof. Proposition 3.2 and induction. D

For n — 1 this is the result from [RW]; namely

The next case is

(3.9) ||(α,b,c)\\χm ~ ||α|| + ||6 - Ω l O | | + \\c - Ωx(6 - Ωxα) - Ω2α||.
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There was another path we could have taken to study X^. We could
have written

Starting from this and using Proposition 3.2 we would have found

(3.10) ~ ||α|| + ||6 - Ωχα|| + \\c - Ω2f2( (α, b) )||.

This is less satisfactory than (3.9) because in the case of the classical function
spaces we know how to compute Ω2 = Ω2>1 but don't know how to compute
Ω2>2. In fact, comparing (3.9) and (3.10) gives us a first step toward a formula
for Ω2>2:

(3.11) Ω2>2( (α,δ)) = -Ωi(6 - Ωxα) - Ω2(α) + error

with
||error||<c||(o,6)|U(i,.

This type of error term is not bad as it looks at first glance. Neither side of
(3.11) is O(||(α,6)||χ(i)). Hence an error term which is O(||(α,6)||χ(i)) means
we have a partial answer to the problem of describing Ω2)2.

A similar, but more intricate, analysis is possible for X^ for j > 2.
We summarize the first few cases.

Corollary 3.4.

||(a,0,0,0)||X(3) ~ ||(a,0,0)||X(2) + IK-Ω^Ω? - Ω2) + Ω ^ - Ω3)a||.

4. Duality.

We denote the ordinary sesquilinear pairing on CN by juxtaposition; if α =
(αi,... ,aN) and 6 = (&i,... , bN) then ab — Σaϊbi.

Given the boundary data Xθ, 0 < θ < 2π, let X% be the vector space CN

normed to be the isometric dual of the space Xθ with respect to the pairing
just described. Let X*(n) be the spaces constructed from the spaces X$ by
the construction in §2. Let A*(n\Ω*jk and Ω* be the analogs for these spaces
of the J4'S and Ω's of (2.4). We denote the isometric dual of X^ by 1 ^ * .
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For V = (v0,... , vn-i) e X ( n ) and 17 = (n 0 , . . . ,un_i) E X* ( n ) we intro-
duce the bilinear pairing

k=0

This pairing lets us regard A E X* (n) as an element of the dual space X ( n K
Because all the spaces being considered are finite dimensional it is easy to
check that this map of X*^ into X<n)* is a bijection which allows identifica-
tion of the two vector spaces. We now want to compare the norms of these
two spaces.

Theorem 4.1.
χ*(n) ~ χ(n>.

That is, there are constants cn which depend only on n so that for any

AeX^n\Aφ0

(4.1) c-ι<\\A\\x.(n)/\\A\\χ(n). <cn.

Note: Although the results of the previous sections extend rather me-
chanically to infinite dimensional spaces, this result doesn't. In particular,
when n = 0 we have a (generalized version of) the classical duality theorem
for complex interpolation. That theorem is well known to require additional
hypotheses in the infinite dimensional case.

Proof. The case n = 0 is the duality theorem for complex interpolation and
is known. See [CCRSW1] or [CCRSW2].

Pick v e χ(n\u e x*in)

B(V,U) = fA^

Hence

|B(V,EOI<

Hence

(4-2) \B(V,U)\<\\V\\xω\\U\\x.M

which yields
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which is half of what we want.

We now use the notation of Theorem 3.3. Rewriting the equations relating
the Ϊ 'S and the w's gives

vx =

υ2 = Ω2Wo + ίίitϋi + w2

etc.

Hence

V = (woi^wo,... ,Ωn-it^o) + (0,ti;i,Ωiti;i,

Using the notation of Proposition 3.1 and setting

Sj = Snj, E = £J l jn_i, Rj =

we can rewrite our equation for V as

(4.3) V = E{w0) + R1SιE(w1) + • + ik-i

By Theorem 3.3

i=o

Suppose for now that

(4.4)

and

(4.5)

Pick a G X<°\ \\a\\x.m = 1 so that

(4.6) «>n_iα =

That we can do this is insured by the n = 0 case of the theorem which we

noted earlier is already known. (Including the fact that we can take CQ = 1

in (4.1).) Let
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Using (4.3)

B(V, A) = E(wo)A + . . . + Rn^Sn^Eiwn-JA.

The last term is

(0,... ,0,iι;n-i)(α,ΩΪ,... ,Ω*_xα) = wn_iα.

By (4.6) and (4.4) this is comparable to ||V||. For the other terms, using
(4.2), Proposition 3.1, and (4.5)

Combining these estimates we find

(4.7) B(V,A)~\\V\\

and, by Proposition 3.1,

(4.8) Pll = 1.

Next we note that we can obtain (4.7) and (4.8) without (4.4) and (4.5).
Let J be the smallest index such that

(4.9) ||VΊ| ~ \\wj\\

and

(4.10)

We had been looking at the extreme case J = n — 1 but a moment's thought

shows that there must be some such J, possibly J = 0. Pick a so that

IMU w = 1 a n d wjCί = ||wj||. Let

A = (0,0,... ,α,Ω!α,... ,Ωn_j).

When we go through the previous argument we find

if 3<J
if j = J

= 0 if j > J

and we finish as before.
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We have shown that the norm of V as a linear functional (on X*W)
dominates the norm of V as an element of the interpolation space X^n\ This
actually completes the demonstration that the norms of X^ and X*(n)* are
comparable. Applying this conclusion the family of spaces {X$} gives the
conclusion we want, the comparability of the norms of X*(n^ and X^*.
(The reason for this particular organization of the ideas was to let us use
the notation of Theorem 3.3.) The proof is complete. D

Question: How do the constants cn depend on n? This isn't even clear
when N = 1 in which case it becomes a question in classical function theory.

5. Interpolation and Commutator Theorems.

For T a linear map of C^ to C^ we donote by ||T||^ the operator norm of T

as a map of Xθ to itself. Let Γ ( n ) be the extension of T to (CN)n defined as

follows; for V = (v0,... , ϋn_i) set T^V = (Tυ0,... , T«n_i).

Theorem 5.1. Suppose T is a linear map of CN to itself and that
sup,? ||T||0 < 1. Then the operator norm of T^ as a map of X^ to it-
self is at most 1.

Proof. Pick V G X ( n ) . T (A^(V){z)) is a (CN)n valued holomorphic func-

tion and by the hypotheses on T

\xθ

Hence, by the definition of A^n\

Hence

\\(ττ T^y <\\v\\xin).

That is, | |T(n)F| | < ll^ll, which is the desired conclusion. D

Note: As in [RW] this result can be extended to take into account more
detailed information about ||T||^ as a function of θ and can be extended to
apply to families of linear maps T(z) which depend holomorphically on z.

When n = 0 this is the basic theorem of complex interpolation. When
n = 1 we obtain estimates of the form
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When this is combined with Theorem 3.3 we obtain

||Γα|| + \\Tb - Ω1Γα|| < c(||α|| + ||6 -

We now make the choice b = Ωiα. Making the left hand side smaller we
obtain

HTΩiα - ΩiTo|| < c\\a\\

or, more compactly,

This estimate is the main theme of [RW].
We now move on to n = 2. We know

\\(Ta,Tb,Tc)\\χm <\\(a,b,c)\\χm.

We appeal to Theorem 3.3 to interpret the norms. This gives

(5.1) \\Ta\\ + \\Tb - ΩiΓαH + \\Tc - Ωx(Tb - ΩxΓα) - Ω2Tα||

< c(\\a\\ + ||6 - Ω i α | | + \\c - Ωi(6 - Ωiα) - Ω2α||).

We set b = Ωιa,c = Ω2α and, making the left hand side smaller we find

(5.2)

This is the result mentioned in the comments in the last section of [RW].
(There is a slight change of notation — here we work with the Taylor coef-
ficients rather than the derivatives.)

We will go on to derive a general pattern. However before doing this we
should note that even at this stage by making other choices (i.e. other than
b = Ωα and c = Ω2α) we could obtain other complicated looking and not
well understood interpolation results. For instance by restricting T^ to the
subspace of X^ consisting of vectors of the form (α, 0,0) (i.e. by setting
b = c = 0 in (5.1)), we find T is bounded on a space with norm comparable
to

| |(Ω2 - Ω?)α||.

This is equivalent to noting that T maps the subspace of X^ of elements
of the form (α, 0,0) boundedly to itself and then invoking Corollary 3.4.

The generalization of (5.2) can be written efficiently if we introduce some
notation. We set
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Kn~i = [T, Ωn_i] — ΩιKn-2 — — Ωn_2i£"i.

Corollary 5.2. With the hypotheses of Theorem 5.1, ifn-i maps X bound-
edly to itself. That is

\\Kn-l\\<C

with c depending only on n.

Proof. Let V = (v,ΩiV,... ,Ωn-iv) Hence T<n'7 = (Tv,TΩit/,... ,
TΩn_it;). By the previous theorem

By Proposition 3.1 (2) we obtain

We now want to use Theorem 3.3 to estimate the left hand side. Direct
computation using the definitions of the ifj's and Theorem 3.3 gives

Combining these estimates and dropping terms from the sum gives the re-
quired

as required. D

In the next section we will see how the Kj simplify in some cases.

6. Examples.

We will compute the Ωj 's for some of the basic examples of complex interpo-
lation spaces. We will obtain the simplest formulas if we work with complex
interpolation families on the strip S — {z £ C : |Re(z)| < 1} and then
restrict to Γ to get our boundary data. The reiteration theorem for complex
interpolation then insures that the space XQ ' will be the space at 0 from
the original family. We refer to [RW] as well as [CCRSW1], [CCRSW2],
and [K2] for justification of various interpolation theoretic claims, such as
explicit formulas for A^, which we make in this section.
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A. Weighted L2 spaces.

Suppose we have a measure space (Y,μ) and a function W on Y which is
positive α.e. — μ. To each point z E S we associate the Hubert space

L2{Y, W~2Re{z)μ) = {f [ \f\2W~2Re{z) dμ < 0 0 } .

Thus our boundary data on Γ is

Xθ = L2(Y,W-2cosθμ)

and

(If we want to insure that all the spaces are finite dimensional we would insist
that μ be supported on a finite set. However, as we noted, our results extend
mechanically to the infinite dimensional context.) Given v in L2(Y,μ) we
have

(logHT__n

n!-Σ
0

Hence

Let Mv = (logw)v. We have Ωn = Mnjn\. Thus all of the Ωn live in a
comnmuting family of linear operators. This lets us simplify the formula for
Kn. It is slightly more convenient to do the computations for operators T
which are given by integration against a kernel L(x,y). That is

{TΌ)(X)= I v{y)L{x,y)dμ{y).
JYIY

Set b = logw. The integration kernel for Kx = TM — MT is

(6.1) (b(y)-b(x))L(x,y).

We claim that the integration kernel for Kn is

(6.2,



HIGHER ORDER ESTIMATES IN COMPLEX INTERPOLATION THEORY 261

We will establish (6.2) by induction. (6.1) lets us start. Suppose we have
(6.2). We know

Kn+1 = [T, Ωn + 1] - Ωxtfn - Ω2ίfn_1 - ... - Ωnϋfx

Using the induction hypothesis and passing to the integration kernels we
find the integration kernel for (n + 1)! Kn+χ is

bn+1(y) - bn+1(χ) - έ y ( 1

= bn+1(y) - b^(x) - έ (n+ l\v{x){b{y) - b(x)

By the Binomial Theorem the sum equals

(b(x) + (b(y) - b(x)))n+1 - bn+1(x) - (b(y) - b(x))n+ι

= bn+1(x) - bn+1(y) - (b(y) - b(x))n+1.

Hence the entire expression is

as required.
Hence

Actually we have only established this for T which is given by integration
against a kernel. However the same combinatoric pattern works in general.

We noted in [RW] that the n = 0 case of this result can be applied to
classical singular integral operators. The same comment applies here and
we obtain the boundednes of the higher commutators which was noted in
[CRW].

Corollary 6.1. Suppose T is α Cαlderόn-Zygmund singular integral oper-
ator which is bounded on L2(Rn) and that b is in BMO(Rn). Let Mb be the
operator of multiplication by b. For each n the operator

n times
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is bounded on L2(Rn).

Proof. The theory of Calderόn-Zygmund operators insures that if T is boun-
ded on L2 it will also be bounded on L2(Rn,eebdx) for all ε with |ε| suffi-
ciently small. Hence Kn is bounded on L2. D

For n = 0 this corollary insures that for / G L2,Tbf - bTf will be in ZΛ
Let ( , •) be the inner product on L2. For g which is also in L2 we have

= \(fT*g-gTf,b)\.

This estimate is the basis for showing that the map from L2 x L2 which
takes (/, g) to fT*g — gTf in L1 actually maps into the Hardy space H1

which is the predual of BMO (see [CRW] for details). This result is closely
related to recent work on bilinear maps with cancellation ([CLMS], [CG],
[G]). Hence it is of some interest to write down the analog for n > 0. We
will do this for n = 1 but the general pattern will be clear. First we need an
extension of the previous corollary.

Corollary 6.2. Let T and b be the operator and function of the previous
corollary and suppose that d is in BM0(Rn). Let Md be the operator of
multiplication by d. It follows that

[Md,[Mb,T\]

is bounded on L2(

Proof. This doesn't quite follow from the previous result. One way to prove
it is to note that Calderόn-Zygmund theory insures that for small εi and
ε2 T is bounded on the space L2(Rn,exp(ε1b)exp(ε2d)dx). If we regard ε2

as fixed then we have T bounded on the family of weighted L2 spaces given by
letting εi vary. Then, as in the previous corollary, we have [M&,T] bounded
on all the spaces L2(Rn,exp(ε2d)dx). We now use the Corollary again to
obtain the boundedness of [M ,̂ [Mft,T]]. D

Once we have this corollary we also have the estimate

\(d[Mb,T}f - [Mb,T\4f,g)\ < c\\f\\\\g\\.

Hence

\(g[Mb,T]f-f[Mb,T}*g,d)\<c\\f\\\\g\\.

Because we have this for all d in BMO we can conclude that the left hand
side in the inner product is in H1. We have proved the following result.
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Corollary 6.3. Suppose b is in BMO and T is a Calderόn-Zygmund
operator which is bounded on L2. Consider the bilinear map B defined on
L2 x L2 by

, g) = gbTf - gTbf + fbT*g - fT*bg.

By Corollary 6.1 (with n = 0) B maps into Lι. In fact however B maps into

We should make a final comment on Corollary 6.1. There is nothing
particular about L2 in the analysis nor about the use of weight functions.
If we are given a general Banach space R and a positive linear operator W
defined on R then we can associate to z £ S the space Domain(M^~2) which
is the closure of {/ e R : W~zf € R} normed by ||/| | = \\W-*f\\R. We will
then have, for v G i?,

()(z) = W*υ

and

rύ

The previous analysis then gives a formula for Kn. (Of course we are over-
simplifying. We need enough context to insure that Όoma,in(W~z) is an
interpolation family and enough of a functional calculus to make sense of
logW. Although these are real restrictions, they allow a much broader
range of examples than multiplication by a positive function on L2.)

B. Lp, variable p.

We now look at the scale obtained in the strip S by interpolating between
L1 and L°°. We accept the formulas from Section 3D of [RW] and refer to
that paper to see the minor modifications needed to consider the slightly
more general situation of interpolation between LPl and LP2.

We start with a measure space (Y,μ) and to each z in S we associate
the Banach space Lp(Y,μ) with p = j ^ . If we regard these spaces as the
boundary spaces on Γ then they are also the interpolation spaces inside the
disk and, in particular

Prom Section 3D of [RW] we have, for υ e L2
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Thus

In contrast to the previous case, Ωn is not linear and the operators Ω1?

Ω2,... don't commute. When n = 1 we conclude that the operator Kλ is
bounded.

Corollary 6.4. If T is a linear operator bounded on L1 and L°° then for

Note: It was pointed out in [RW] that this result implies the slightly
cleaner conclusion

||T(vlogH) -Tt;log|Tt;|||2 < c|H|2.

We now move on to n = 2. We have, for any v G L2, and writing || || for

II U2

1 / Id

Corollary 5.2 insures.

Corollary 6.5. IfT is bounded on L1 and L°° then

(6.3) [Tifl2]^Ω1[TM

is bounded on L2.

When we write this out in full it is a bit hard to interpret. However we can
gain some additional insight into what is going on by restricting to special
cases. Suppose that T is unitary on L2. For instance we could work witlrthe
Hubert Transform of L2(R). (This would require that we work on a subscale
of (L1,!/00) but that isn't a problem.) If we aply the operator in (6.3) to a
function / with | |/| | = 1 then, using the fact that | |T/| | = 1 also, we obtain

(6.4) \τ (/(log I/I)2) - Tf (log |Γ/ |) 2 - ΩX(T(/ log |/|) - Tf log \Tf\).
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If / is the characteristic function of a set E then / = χ# is always 0 or 1
and hence

/ log |/ | = /(log I/I)2 = 0 .

In that case (6.4) simplifies to

= - l τ / ( l o g | T / | ) 2 +T/log|Γ/| log( |T/log|T/| |/ | |T/log|T/| | | ) .

Set

(6.5) α = -log| |Γ/log|Γ/| | |

SO

log(|T/ log \Tf\\l\\Tf log IT/HI) = log \Tf\ + log I log |Γ/| | + a

and hence we have the following.

Corollary 6.6. Suppose T is bounded on Lp for pλ < p < p2 where
Pi < 2 < p2- Suppose T is unitary on L2. Let f = χE for some set E of
measure 1. With a given by (6.5) we have

| τ / (log |Γ/ |) 2 + Tf log \Tf\ (log I log |T/ | | + a)

We could continue in this way. It is clear that the dominant term of Kn

would involve Γ/(log|T/|)n. However it is not clear how to organize the
rest of the terms effectively.

C. Lattices

In the previous two subsections we saw that for Lp spaces and weighted L2

we had relatively simple formulas for the Ω '̂s. In fact that is true whenever
we work with a scale generated by two Banach lattices (which satisfy certain
additional technical restrictions). We will summarize that here. Before
doing that it is worth noting that many common function spaces which are
not ordinarily presented as lattices can be realized as lattice sequence spaces
by passage to wavelet coefficients.

We refer to [K2] for the technical background and will assume the spaces
we consider are admissible in the sense of that paper. That paper also
presents a version of complex interpolation which can be used as a context
in which to extend our earlier results to infinite dimensional spaces.
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Suppose we are given two admissible lattices Yo and Y\ on a common
measure space. The complex interpolation spaces in the sense of Calderόn
are the lattices {Yt}o<t<i on the same measure space with norm

(6.6) ||y||t = inf{max(||tι||yoϊ \\v\\Yl : \y\ = u W , u,v > 0)}.

We construct our spaces on Γ from this family;

Xeiθ =

In this case Xo = Yi/2. Furthermore the u and v which solve the extremal
problem in (6.6) allow us to construct A^(y)(z). The infimum in (6.6) is
attained and if we also suppose that the norms on Yo and YΊ are strictly
convex and that u = v = 0 off the support of y then u and υ will be unique
and independent of t. We then set

JO off the support of y

\ I (log v — log u) on the support of y.

In this case

A^(z)=uexp(A(y)z).

Hence

Ωn(y) = 1 (A(y))»u.
Ίυ

It is interesting to note that we can recover all of the Ωn(y) once we know
y, Ωχ(y), and Ω2(y).

Finally we point out that the examples of the previous subsections are
covered by this analysis. We don't know if the fact that all of the Ωn(y) can
be recaptured from the first two remains true if the interpolation family is
not generated by a pair of lattices.

7. Questions.

There are a number of natural questions related to this work. Here are two
that seem central. What, if anything, are the analogs in real interpolation of
these results? For n = 1 there are analogs of Ωx and there is a commutator
theorem. For n > 1 nothing is known.

The estimates on Kn clearly contain subtle information about operators.
However the information is packaged in a complicated way. Is there a way
to extract that information effectively?
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