
PACIFIC JOURNAL OF MATHEMATICS
Vol. 176, No. 1, 1996

DIMENSIONS OF NILPOTENT ALGEBRAS OVER FIELDS
OF PRIME CHARACTERISTIC

CORA STACK

In this short paper we consider the conjecture that for
a finite dimensional commutative nilpotent algebra M over
a perfect field of prime characteristic p, dimM > pdimM^
where Mp is the subalgebra of M generated by xp,x € M. We
prove that for any finite dimensional nilpotent algebra M (not
necessarily commutative) over any field of prime characteris-
tic p, dim M > p dim M ^ for dim M^ < 2.

1. Introduction,

It is generally accepted that the structure of nilpotent algebras is not well
understood. In this paper we discuss some questions which could lead to
significant further development of this structure theory.

Let M be an algebra over a field K. The algebra M is said to be nilpotent
if Mn = 0 for some n > 1. (Recall that for j > 1, Mj is the subalgebra
of M generated by all monomials of degree j in the elements of M.) If
n is the least such integer, then n is called the nilpotency index of M.
If Mj φ 0, then it follows from the nilpotency of M that Mj D Mj+\
Let di = dimjr(M /-W*+1), where diiaκV or dimV denotes of course the
dimension of V as a vector space over K. Then clearly dimM = Y^~ι di.

In [1] N. Eggert conjectures that for a finite commutative nilpotent algebra
over a field K of characteristic p,

(1.1) dim* M > p dim* M(ί>)

where M^ is the subalgebra of M generated by xp x G M. In [1] Eggert
proves (1.1) when dimM(p) < 2. His proof however does not appear to be
easy to generalise. In view of this we provide a simpler proof in Section
2. Since these proofs do not require the nilpotent algebra to be finite, it is
believed that all that is required in (1.1) is that M be finite dimensional.

Now (1.1) obviously holds when dimM ( p ) = 0. If dimM ( p ) = 1 then
it follows from the remarks above, that dimM > Σ£=i ^ ^ P > a n d s o (l l)
holds in this case. In the next section we prove that for any finite dimensional
nilpotent algebra M over any field of characteristic p, dim M >p dim M ( p )

if dimM(p) = 2. This yields a second proof of Eggert's theorem. Our proof
however does not require the field K to perfect, not indeed the algebra M
to be commutative, and in this sense will be a slight extension.
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2. The Two Dimensional Case.

Some Notation. Let V be a vectorspace over a field K of characteristic p.
If X C V by (X) we mean the linear span (over K) of X. If X is a singleton
say [x] we write Kx for (X). Let i\Γ(p) denote the subspace of M generated
by :rp, x e M. Of course if M is commutative, then M ( p ) = iV(p).

We now prove the following theorem, of which our main theorem will be
just a simple corollary.

Theorem 1. Let M be any nilpotent algebra over the field K of prime
characteristic, and let dk = 1 for some 1 < k < p — 1, then if N^ = (zp, z G
M), then i\Γ(p) = (ypi,i > 1) /or some y G M.

Proof If M p = 0, then i\Λp) = 0 and there is nothing to prove. Hence we
may assume that Mp φ 0. Since dk = 1, there exists m = m i m 2 . . . m f e for
which (m 4- M* + 1 ) = Mk/Mk+1. Write m = yσ where y = mλ G M and
σ = ra2 . . . mk G M * " 1 (if A; = 1, regard σ as an empty product). Now

(2.1) Mk = Kyσ + Mk+1,

and so using the algebra properties of M, yMk C Ky 2 σ + Mk+2. Conse-
quently since M f c + 1 = MkM we have that

(2.2) M* + 1

Assuming <4 = 1, choose now 1 < i < k maximal with Mk = Kyισ +
with σ = αiα2 . . . αfc_i a product of A; — i elements of M. Prom (2.1) it is
clear that such an i exists. We now show that i = k. If not, then σ is not an
empty product and by applying (2.2) to this formula we get that Mh+ι =
Kyi+ισ + Mk+2. But Mk+1 φ M*+ 2, since otherwise Mk+1 = 0 and jfc + 1 < p
would imply that Mp = 0 - a contradiction. Hence yi+ιδ 0 M*+ 2, and
therefore yi+1aλ... α^-i-i 0 Mk+ι. But then yi+ιaλ... α ^ - i eMk\ Mk+\
and so since dk = 1, M* = KylJtla\a2 . . . flfc-i-i 4- M Λ + 1 , contradicting the
maximality of i. Thus i = A; and Mk = iίy^ + M* + 1 .

Now equation (2.2) and induction imply that Mk+j = Kyk+j + Mk+j+ι

for all j > 0 and hence Mk+j = (j/Λ+J', j / Λ + J ' + 1 , . . . ) . Since A; < p — 1, we have
in particular that

(2.3) M p - 1 = (y p - 1 ,y p ,y p + 1 , . . . ) .

Now let y = (y,y 2 , . . .). If p = 2 then by (2.3), M = Y. Hence M is
commutative and N^ = {yp,y2p,...) as required. We may assume therefore
that p > 3. Let A = AnnihM(yp~2) The map m —> myp~2 (of additive
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groups) sends M into M p - 1 , has kernal A and by (2.3) maps Y onto M. It
is easy to verify that this forces Y + A = M.

We next claim that any product of the elements of Y and A which involves
p factors, with at least one from A must equal 0. For consider the first A term
in such a product yi.. . Vjarrii... mt where j +1 = p — 1, yι G Y and α̂  G A.
Notice that y2 . . . Vjarrii... my G M p - 1 . Sine y clearly centralises M ^ 1 , we

y

may slide the factor yλ above to the far right. Thus x = y2 . . . yjarrii... mtj/i,
and continuing in this manner we get that x = ami... mtyι... j/j G aMp~ι =
0. But then x = 0 proving our claim.

Finally, if z is an arbitrary element of M then since M = Y + A, we may
write z = 6 + α, (6 G y, α G A.) Then zp = &P+ a sum of terms involving
p factors of Ys and of As with at least one A factor occuring. Thus, by
the above this last sum is zero and so zp = If and so is a K—linear sum
of the ypi's,i > 1. Thus 7V(ί>) C (yp\i > 1) completing the proof of the
theorem. D

We now have our main theorem as a corollary of this:

Theorem 2 Let M be a finite dimensional nilpotent algebra over a fields
K of characteristic p, and let M^ be the subalgebra of M generated by the
pth powers of elements of M. If dim M^ = 2 then dimM > 2p.

Proof. Assume the theorem is false and let M be a counter example of least
dimension. Then dimM < 2p and so M2p = 0. In particular we have that
mpnp = 0 for every m,n G M and so M^ will just be the linear span of
elements of the form xp,x G M, i.e M ( p ) = N{p). Since dimM < 2p and
dimM*7 > 2, it follows that there exists A;, 1 < k < p — 1 for which dk = 1.
But then, by Theorem 1, M<*> = N{p) = (ypi,i > 1). But since M2p = 0,
we must have that M ^ = Kyp\ and so d i m M ^ < 1 a contradiction. This
completes the proof of the theorem. D

We remark that the nonnecessity of the assunptions of commutativity
and perfectness of the field in out previous theorem suggests perhaps (and
believed to be the case by the author) and (2.1) may hold for finite dimen-
sional noncommutative nilpotent algebras and perhaps also over fields of
prime characteristic.
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