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NEW CONSTRUCTIONS OF MODELS FOR LINK
INVARIANTS

FRANCOIS JAEGER

We study three types of statistical mechanical models for
link invariants (vertex, IRF and spin models) and some re-
lations between them when they exhibit certain symmetries
described by an Abelian group. In particular we show the
equivalence of three kinds of models: strongly conservative
vertex models on an Abelian group X, doubly translation in-
variant IRF models on the same group X, and translation
invariant spin models on the direct product X x X. Some ex-
amples of constructions of spin models from vertex models are
given (the associated link invariants are the generating func-
tion for the writhe of orientations, the Jones polynomial, and
the number of Fox colourings). Then we introduce a compo-
sition of link invariants related to the decomposition of a link
into its components, and we explore the above correspondence
between vertex, IRF and spin models in connection with this
operation. As a main consequence, we show that the link in-
variant associated with spin models recently constructed by
K. Nomura from Hadamard matrices is a composition of two
Jones polynomials.

1. Introduction.

Soon after the discovery of the Jones polynomial [Jol] it was realized that
some central concepts of statistical mechanics, namely those of model and
partition function (see [Bax]), can be applied to link diagrams to construct
invariants of links in 3-space (see for instance [Jo2], [Kl], [T]). Some basic
references on this topic are [Hi], [Jo3], [K2], [L], [WDA], [Wu2].

There are three main classes of models which can be used to construct
link invariants. The vertex models and the closely related IRF models are
in a sense the most general and have been widely studied in connection with
quantum groups [D]. Spin models are more exotic objects: very few link
invariants seem to admit a spin model description, and no clear connection
with quantum groups is known in general. However, recent progress on spin
models has involved strong relations with algebraic combinatorics and in
particular with association schemes (see for instance [BB1], [Ja3], [Ja7]).
These developments are surveyed in [Ban], [Ja4], [Ja6].
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The initial motivation for the present paper was the discovery by K. No-
mura of spin models associated with Hadamard matrices [Nl]. It was shown
in [Ja5] that the value of the associated link invariant depends only on the
order of the Hadamard matrix and not on its particular structure. Then we
were able to express this link invariant in terms of the Jones polynomials
of sublinks of the given link. It turned out that the most natural proof of
this result involved a reformulation in terms of vertex models, and it led us
to a wider exploration of some relations between the three classes of models
for link invariants. These relations occur when the models exhibit certain
symmetries described by an Abelian group.

This paper is organized as follows. Section 2 introduces the general set-
ting. Section 3 relates certain types of vertex models and IRF models ex-
hibiting Abelian group symmetry, and gives some examples (the generating
function for the writhe of orientations, Kauffman's bracket polynomial, and
Fox colourings) which will be used throughout the paper. Section 4 intro-
duces doubly translation invariant IRF models and a convenient algebraic
description of these objects. Section 5 deals with translation invariant spin
models and relates these models to doubly translation invariant IRF models.
This gives in particular a new derivation of the Potts model for the Jones
polynomial when the number of spins is a square, and of known spin models
based on the cycle of length four. We also obtain a new spin model for the
number of Fox colourings which we relate in a special case with a model
due to Goldschmidt and Jones [GJ]. This gives another proof of a topolog-
ical interpretation by Przytycki [Pr] of the number of Fox colourings. In
addition, we associate with every translation invariant spin model a dual
spin model which defines the same link invariant. In Section 6 we study a
composition of link invariants which is based on the decomposition of a link
into its components. This composition has a natural counterpart for vertex
models and we show that in some cases this extends to spin models. This
is the key for the undersdanding of the partition function of Nomura's spin
models. Section 7 concludes with some perspectives for further research.

2. Link invariants and models from statistical mechanics.

Following [Jo3], we shall consider here three ways of obtaining an invariant
of oriented links as the partition function of a suitable model defined on link
diagrams.

2.1. Link diagrams. For more details on this section the reader can refer
to [BZ], [CF], [K3].

Let us recall first that an oriented link consists of a finite collection of
disjoint simple closed curves smoothly embedded in R3 (these curves are
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the components of the link). Oriented links can be represented by oriented
link diagrams which are "generic" plane projections together with some ad-
ditional 3-dimensional information at crossing points. Considering oriented
links up to a natural topological equivalence called ambient isotopy amounts
to consider diagrams up to a combinatorial equivalence generated by ele-
mentary diagram deformations called Reidemeister moves. Thus, from the
combinatorial point of view, a link invariant is a valuation of diagrams which
is invariant under Reidemeister moves.

An oriented link diagram L will be considered as a directed graph em-
bedded in the plane M2, with sets of vertices, edges and faces denoted by
V(L),E(L),F(L) respectively. The vertices of L correspond to the cross-
ings, the edges are the connected components of L — V(L), and the faces are
the connected components of E2 — L. We must allow a special kind of edge
called a free loop which is embedded as a simple closed curve disjoint from
the remaining part of the graph.

The spatial structure of the link represented by the diagram is defined by a
sign function s : V(L) -» {+, —} whose interpretation is described in Figure
1. For any set A of vertices we write s(A) = \s~1(+) Π A\ — |5"1(—) Π A\.
In particular the Tait number (or writhe) of L is T(L) = s(V(L)). We shall
also need the following convention. For every vertex υ, the edges incident to
υ will be denoted by ei(v) (i = 1,... ,4) and the faces incident to v will be
denoted by fi(v) (i — 1,... ,4) as shown on Figure 2. Note that the edges
ei(v) need not be distinct, and similarly for the faces fi(v).

The following general terminology from statistical mechanics will be used.
A state on a diagram L will be an assignment of values taken from a given
finite set of spins to certain elements (edges or faces) of L. With each state
will be associated a local weight at each vertex, belonging to some commu-
tative ring. Then the weight of a state will be the product of local weights
over all vertices. Finally the partition function will be the sum of weights of
all states, multiplied by a suitable normalization factor.

In the sequel, the symbol Ω always stands for a commutative ring with
identity 1.

2.2. Vertex models. We shall only be concerned with a special case of
the models introduced in Definition 1.1 of [Jo3], namely those with no an-
gle dependence (called "zero-field models" in [HJ] and "modeles a vertex
sommaires" in [HI]). We shall also need a weaker version of the "type /
property" stated in Definition 1.13 of [Jo3].

Definition 1. A vertex model on X with modulus μ is a 5-tuple (X, w+, w_,
Ω, μ), where X is a finite non empty set, μ is an invertible element of Ω, and

- are mappings from X4 to Ω which satisfy the following identities
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(where δ is the Kronecker symbol):

(1) 7 w+io,.O,x*a) = 7 uu-ίo,α,β,x) =• ix d a .o ,
V / X y Jt \ 7 7 7 / / _j JU \ 7 7 7 / " \ 7 / 7

(2)

(3) 5Z ω + ( α ' 6> ί/' a ; ) u ; -( z > y> 6 > c ) = 5 ( ° ' c ) * ^ ' z)>

(4)

The partition function associated with the vertex model v — (X, w+, u>_, Ω,
μ) evaluated on the link diagram L is then defined as

«;.w(σ(e1(t;)),σ(e3(ϋ)),σ(e3(ϋ)),σ(e4(t;))).
σ:E(L)->X υ£V(L)

Here and later an empty product is equal to 1, and hence if L consists of
k free loops, ZU(L) = \X\k. Note also that if L has connected components
Zq,... ,Lk,Z

v(L) = Π ^ i , . . . , * ^ ^ ) - We shall describe this property by
saying that Z" is multiplicative.

Using (l)-(4) to analyze the behaviour of Zv under Reidemeister moves
it is not difficult to prove that μ~τ^Zu{L) defines an invariant of oriented
links (see [Jo3], Theorem 1.12 and Corollary 1.15).

2.3. IRF models. The following definition is essentially equivalent to Def-
inition 2.19 of [Jo3].

Definition 2. An IRF model on X with modulus μ is a 5-tuple (X, ιu+, u>_,
Ω, μ) where X is a finite non empty set, μ is an invertible element of Ω, and
w+,W- are mappings from X4 to Ω which satisfy the following identities:

(6) Yjw±(a,b,a,x) = ]Γ w±(α,z,α,&) = μ ± 1 ,
xex

(7) ] Γ w+{a, 6,x, d)w-(x, 6, e,d) = ί(α, e),

(8)

xex

^ 6, c, sc, a)w+ (α, a;, e, / ) ^ + (x, c, d, e).
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Remark. For reasons of coherence with Definition 1 (which will become
clear in the proof of Proposition 1) we have replaced the identity (2.22) of
[Jo3] by the equivalent identity (8).

The partition function associated with the IRF model % = (X, w+, W-, Ω, μ)
evaluated on L is

(10)

Z*(L) = \X\~1 £ Π ™s{vMh(v)),a(f2(v)),a(f3(v)),a(fA(v)))
σ:F(L)->X υ£V(L)

and again one can show that μ~ τ ( L )Z ι(L) defines an invariant of oriented
links (see [Jo3], Theorem 2.27). Note that if L consists of k free loops,
Z'(L) = \X\k.

2.4. Spin models. The initial definition of [Jo3] using two symmetric weight
functions was first generalized to non symmetric functions in [KMW] and
then further generalized with the use of four functions in [BB2]. We shall
work with this last generalization.

Definition 3. A spin model on X with modulus μ and loop variable D is
a 8-tuple (X, w\, w2, w3, w4, Ω,μ, D), where X is a finite non empty set, μ is
an invertible element of Ω,D is a square root of |X|, and Wι1w2^w3^w4 are
mappings from X2 to Ω which satisfy the following identities:

(11) wχ(a,a) = μ,
xex

(12) w3(a,a) = μ~\ ^ w2(a,x) = ] ^ w2(x,a) = Dμ~\
xex xex

(13) Wι(a,b)w3(b,a) = 1 = w2(a,b)w4(b,a),

(14) 5Z t^i(θ',x)w3(x,b) = \X\δ(a,b) = ]Γ w2(a,x)w4(x,b),
xex xex

(15) ^2 Wι(a,x)wι(x,b)w4(c^x) = Dw1(a^b)w4(c)a)w4(c^b),
xex

(16) ^2 wΛx->a)wi{b,x)w4(x,c) = Dwι(b,a)w4(a,c)w4(b,c).
xex

When wι = w2 = w+ and w3 = w4 = W- it can be shown that this reduces
to the definition of [KMW] (see [BB2]). If moreover w+{x,y) = w+(y,x)
for all x,y in X, the definition of [Jo3] is recovered.

To define the (normalized) partition function Z^(L) associated with the
spin model ζ = (X, Wι, w2, w$, w4, Ω, μ, D) evaluated on a connected diagram
L, we first color the faces of L with two colors, black and white, in such a
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way that adjacent faces receive different colors and the unbounded face is
colored white. Let B(L) be the set of faces of L colored black. For every
mapping σ : B(L) -+ X, define the interaction weight (v,σ) of a vertex υ
with σ as shown on Figure 3. Then

(17)
σ:B(L)-+X v€V(L)

For a non connected diagram L, Zζ(L) will be defined as the product of
values of Z** on its connected components. In other words, we want Z** to be
multiplicative. In particular if L consists of k free loops, Z^(L) — Dk. Now
one can show as before that μ~τ^Zζ(L) defines an invariant of oriented
links [BB2].

2.5. A remark on normalization. The modulus μ which appears in Def-
initions 1, 2, 3, is introduced for reasons of convenience, but the following
observations show that this parameter is redundant.

(i) If (X,u>+,u?_,Ω,μ) is a vertex model, (X,μ~1t/;+,μίx;_,Ω, 1) is also a
vertex model with the same associated link invariant.

(ii) If (X,u>+,?i;_,Ω,μ) is an IRF model, (X,μ~λw+,μw-,Ω, 1) is also an
IRF model with the same associated link invariant.

(iii) If (X,wι,W2,W3,W4,Ω,μ,D) is a spin model, (X,μ~1Wι,μw2,μw3,
μ^w^ίlj 1,2?) is also a spin model with the same associated link in-
variant.

3. Vertex and IRF models on Abelian groups.

In this section we assume that X is an Abelian group (considered as left
Z-module).

3.1. Conservative vertex models and translation invariant IRF mod-
els. Let L be an oriented link diagram and consider a mapping σ : F(L) ->
X. The derivative of σ is the mapping dσ : E(L) -> X defined as follows.
For any edge e, (dσ)(e) = σ(f') — σ(/), where / (respectively: /') is the face
lying on the left (respectively: right) of e (see Figure 4). Clearly, for every
vertex υ of L, φ = dσ satisfies

(18) ψ{eι(v)) + φ(e3(v)) = ψ(e2(v)) + φ(e4(v)).

Conversely it is well known (see for instance [O], Chapter 7) that if φ :
E(L) -» X satisfies (18) for every v (that is, in the terminology of graph
theory, if ψ is an X-valued flow on L), for any fixed value x in X there is a
unique mapping σ : F(L) -+ X such that φ = dσ and σ takes the value x
on the unbounded face. We shall denote this mapping by ωxφ.
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In order to extend this correspondence to a correspondence between vertex

models and IRF models, we introduce the following definitions.

Definition 4. A mapping w : X4 -» Ω is conservative if w(a, b, c, d) — 0

whenever a + cφb + d. A vertex model (X, u>+, w_, Ω, μ) is conservative if

u>+ and w_ are conservative.

Definition 5 A mapping w : X 4 —> Ω is translation invariant if
iϋ(α, 6, c, d) = w(a + x, b + rr, c + z, d + x) for every # in X. An IRF model
(X, w+,u;_,Ω,/i) is translation invariant if w + and w_ are translation in-
variant.

For a mapping w : X 4 —> Ω, we define the mappings d*w and ω*w from
X4 to Ω by the following identities.

(19) (d*w)(a, 6, c, d) = iϋ(α — d, b — c, 6 — α, c — d),

(20) (ω*tu)(α, 6, c, d) = δ{a + c, 6 + d)w(0, c, c - 6, - α ) .

Clearly d*u; is translation invariant and cj*tί; is conservative.
The proof of the following statement is an easy exercise.

(21) For a mapping w : X4 -> Ω, ω*(a*(^)) = it;

if and only if w is conservative, and

8*(ω*{w)) =w

if and only if w is translation invariant.

The following result is a version of a transformation which is well known in

statistical mechanics (see [Jo3], Proposition 4.3, and [FW], [Wul], [KWe]).

Proposition 1.
(i) Let v = (X, u>+, W-, Ω, μ) be a conservative vertex model Then d*(ιs) =

(X, 5*ty+,5*tί;_,Ω,μ) is a translation invariant IRF model.

(ii) Let i = (X,u?+,iϋ_,Ω,μ) be a translation invariant IRF model. Then
ω*^) = (X,ω*w+,ω*W-,Ω,μ) is a conservative vertex model.

(iii) For every conservative vertex model v and translation invariant IRF

model 2, ω*(d*(v)) = v and d*(ω*(ι)) — i.

(iv) For every conservative vertex model v and translation invariant IRF

model t, Zd*^ = Zv and Zω*^ = Z\

Proof. First note that (iii) is immediate from (21).

Let us assume for the moment that (i) and (ii) hold and let us prove (iv).
Consider a translation invariant IRF model % = (X,w\,wl_,Ω,μ) and an
oriented diagram L. Recall from (10) that

σ:F(L)->X v^V(L)
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Since % is translation invariant, for every vertex v,

<iυMfι(v)),σ(Mυ)),σ(f3(v)),σ(f4(υ)))

= w'Hυ)(O,σ(f2(v)) - σ(Mυ)),σ(f2(v)) - a(fx(v))

+ σ(f3(v))-σ(Mv)),σ(fΛv))-σ(f1(v)))

= wl(v)(0,(dσ)(e3(υ)),(dσ)(e3(υ))-(dσ)(e2(v)),-(dσ)(ei(v)))

(by (20) and the fact that φ = dσ satisfies (18)). On the other hand by (5),

φ:E(L)-+X veV(L)

If φ contributes to this sum it must satisfy (18) for every v and we may
associate with the term in Zω*^(L) corresponding to ψ the \X\ terms in
Zι(L) corresponding to the ωxφ, x e X. This shows that ZW*W = Z\

The other equality Zd*{v) = Zv then follows from (iii).
It is not difficult, but tedious, to check (i) and (ii) using the identities

(l)-(4) and (6)-(9). However, it is simpler to proceed as in the proof of (iv).
Indeed, each of the identities (l)-(4) and (6)-(9) is of the form

μ~τ(Lι)z((Lι) = μ~τ(Z/2)Z/(L2), where Lλ and L2 are two diagrams related
by a Reidemeister move and Z1 is a local version of the partition function
involving only the vertices concerned by this move. These local partition
functions are sums over mappings σ from E(L) (or F(L)) to X which have
fixed values for edges (or faces) preserved by the move. It is then easy to
see that the argument used above for the full partition function can be used
for these local partition functions as well. D

3.2. Examples.

3.2.1. The first binary Lipson model ([Li], see also [HJ]). Let X —
Z/2Z and Ω = Z[C, C"1]. Let

0 otherwise.

Then z/χ = (X,w+,W-,Ω)C~ι) is a vertex model which is clearly conser-
vative. The associated link invariant has a simple description in terms of
linking numbers of sublinks with their complements, or equivalently as a
generating function for the writhe of the reorientations of L [LM], and is a
special evaluation of the Kauffman polynomial of [K4].
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The corresponding IRF model %x = d*{yx) = {X,w\,wι_,n,C~ι) is de-
fined by wι

±(a, ί>, c, d) = (d*w±)(a, 6, c, d) = w±(α - d, 6 - c, 6 - α, c - d), so
that

(23) w±{a,b,c,d) =

0

ήb = d and cφa,

if a = c and b φ d,

otherwise.

3.2.2. The second binεiry Lipson model ([Li], see also [HJ]). Let X
Z/2Z and Ω = Q[C, C" 1]. Let now

(24)

0

Ίί a = c φ b = d,

if α = d Φ b = c,

if α = 6 = c = d,

if a = b φ c = d,

otherwise.

Then u2 = (X, w+, tυ_, Ω, C J) is a conservative vertex model. It is shown in
[Li] that Z"1 = Z"2 and we shall obtain soon a new explanation on this fact.
The corresponding IRF model ι2 = d*(v2) = (X, w%

+,wι_,ίl, C"1) is denned
by

(25) w±(a,b,c,d) = <

if b = d and cφ a,

if α = c and b φ d,

if α = c and b = d,

if a φ c and b Φ d.

3.2.3. A model for Kauffman's bracket polynomial.
The following vertex model is an oriented version of a model by Lipson

([Li], see also [HJ], [Wu3]) and actually coincides with it when X is an ele-
mentary Abelian 2-group. Like Lipson's model, it can easily be derived from
Kauffman's "bracket polynomial" model (see [PW] and [Jal], Proposition
12). Let a be a complex root of the equation a2 + a~2 + \X\ = 0. Let

(26) , c, d) =
a±ι

a + a

0

"1

if a + c = b + d = 0

Ίί b — c = d — a = 0

if a + c = b + d = b

otherwise.
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Then i/3 = (X,w+,w_,C, — a3) is a conservative vertex model. The corre-

sponding partition function gives the bracket polynomial of [Kl], with a

replacing Kauίfman's variable A and with normalization chosen so that a

free loop has value —a2 — a"2. Equivalently, the associated link invariant is

the Jones polynomial V(t) evaluated at t = aA (with the notations of [Jol]).

The corresponding IRF model ι3 = d*(v3) = (X,w\,wι_,C, —a3) is defined

by

{a~ι)±ι if b = d and cψ α,

. a±ι if a = c and b φ d,
(27) w±(α,6,c,d) = <

α + α 11 α = c and 0 = α,
0 otherwise.

Remark. The IRF models given by (23), (25), (27) already appear in
[Ja2].

3.2.4. Fox colouring with orientations.
Let

(28) w+(α, b, c, d) = δ(b, -a)δ(d, c + 2α),

w_(α,fe,c,d) =£(6,2c + α)5(d,-c).

It is not difficult to check that v± — (X, w+, W-, Z, 1) is a conservative vertex
model.

Remark. This model can be related to the model of [H J] for Fox colourings
(when X is an odd cyclic group) by the following trick. Color the Seifert
circles of L in two colors, say black and white, in such a way that two Seifert
circles meeting at some vertex have different colors. Then changing the
sign of edge values for all edges belonging to black circles defines a weight-
preserving bijection between the states of the model of de la Harpe-Jones
and the states of the present model. Hence the two models have the same
partition function.

It easy to verify that the corresponding IRF model z4 = d*(u4) = (X,w\,
W1_,ΊJ, 1) is defined by

(29) w\{a,b,c,d) =δ{b-d,c- α), wι_{a,b,c,d) =δ(b-d,a- c).

4. Doubly translation invariant IRF models.

4.1. Generalities. It is clear from (23), (25), (27), (29) that the IRF models

of the preceding section 3.2 share the following property:

(30) wι

±(a, 6, c, d) — wι

±(a + x, 6, c + x, d) = wι

±(a, b + y, c, d + y)
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for all rr, y in X. An IRF model satisfying (30) will be said doubly translation
invariant.

Define now a vertex model (X, w+, wv_, Ω,μ) to be strongly conservative if
it is conservative and also satisfies the following property.

(31) wv±{o> >b,c,d) — w±(a + x,b — x,c — x,d + x) for all x in X.

Proposition 2. A translation invariant IRF model % is doubly translation
invariant if and only ifω*(ί) is strongly conservative.

Proof. Immediate from (20) and the above definitions. D

4.2 A simpler presentation. Suppose that i = (X,w+,t/;_,Ω,μ) is a
doubly translation invariant IRF model. Let us define g± : X2 -> Ω
by g±(u,v) = w±(0>0,u,v) for all u,v in X. Then it follows from (30) that

(32) w±(a,b,c,d) = g±{c -a,d- b).

One easily checks that the identities (6)-(9) reduce to

(33)
x€X

(34) Σ 9+(x,b)g_(a - x,b) = 5(α,0),

(35)

(36) 5Z 5 + ^ ~ α> / "" 6)ff+(rf ~ 6 > x ~ c)3+(e -xj-d)
xex

^ - 6, α - c)#+(e - α, / - a;)5+(d - a:, e - c).

Thus any doubly translation invariant IRF model can be defined via (32)
from mappings g± satisfying (33)-(36).

4.3 Algebraic reformulation. Let Λ = Ω[X] be the group algebra with
natural basis {Ax, x G X} such that AxAy = Ax+y for all x,y in X. We
introduce also on Λ the Hadamard product o defined on the natural basis
by AxoAy = δ(x, y)Ax for all x, y in X. We write / for the identity AQ and J
for Σ a . € X Ax (which is the identity for the Hadamard product). We denote
by r the linear map defined on the natural basis by r(Ax) = A-x for x in X.

We now introduce for each urn X four elements H^, V^ of Λ defined as
follows.

(37) HΪ=
xex
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(38) V±=
xex

Proposition 3.
(i) Each of the following identities is equivalent to the identity (33) :

(39) JH±=μ±1J,

(40) Io
\u€X )

(ii) Each of the following identities is equivalent to the identity (34) :

(41) Vb
+Vb- = I,

(42)
xex

(iii) Each of the following identities is equivalent to the identity (35) :

(43) Hb

+τ(HZb) = I,

(44)
xex

(iv) The following identity is equivalent to the identity (36) :

(45) Vu

+(τ(HΪ) o (V+..A*)) = £ ΛHt) o (Vutx(τ(Htx) o A,)).
xex

Proof, (i) (39) reads J(Σxex9±(®iχ)Aχ) = V±lj' S i n c e JAχ = ^ t h i s i s

equivalent to (33).
Since I o Ax = Ao o Ax = J(rr,0)Ao, ί o l ^ = ΣxeXg±{x,u)I o Ax =

9±{^->u)I a n d (40) is clearly equivalent to (33).
(ii) (41) reads {Σxex9+(x,b)Ax){Σyex9-(υ,b)Ay) = Λ . The left hand

side can be expanded as

9+ (a?, % - (y, b)Ax+y = Σ 9+ (*, % - (a-x,b)Aa

and the equivalence of (41) with (34) follows immediately.
Since

bex / \bex

bex
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we see that

o H~_x = Σ[Σ9+(x, % - (a - x, b)) Ab

Jxex bex \χex

and the equivalence of (42) with (34) follows.
(iii) The proof is quite similar to that of (ii) and will be omitted.
(iv) We shall consider the following identity

(45')

Vfth(τ(HΪ_b) o (V;_dAc_e)) = £ τ(tf+_J o (Vftx(τ(Htx) o Ac_e))
xex

which is easily seen to be equivalent to (45) via the substitution / — b -»
u, d — b —> υ, c — e — M , x — b -+ x.

Let us expand the left hand side of (45'):

(x, / d)Ax+c_e,

(VftdAc-e)

r+(d - 6, x)A_x j o ί ^2 9+{χ, f ~ d)Ax+c_e j
Kxex I \χex /

^, ^ ί ^ / f MA '
— o, x — c)Ac_x I o I 2 ^ g+(e — x, j — a)Ac_x

\xex J \χex J

xex

Vftb(τ(Htb) o (v;_dAc_e))

J -b)Ay
\y€X

9+(y,f -b)g+(d-b,x-c)g+(e~xj -
x,yeX

(x-a,f-b)g+(d-b,x-c)g+{e-x,f-d)Ac_a.

Let us now expand the summand in the right hand side of (45'):

o Ac_e = g+{d - x,e -

Vf

+_x(τ(H+_x) o Λ - e ) = f Σ 9+(y, f ~ » ) Λ ) (9+(d -x,e- c )Λ β _ e )
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/, / - x)g+(d -x,e- c)Ay+c_e

vzx

(
\a€X /

x-b,a- c)g+(e - o , / - #)s+(d - x,e - c)Ac_a.
aex

Comparison of the coefficients of Ac_a in both sides of (45') now shows its
equivalence with (36). D

4.4. Examples. Let us review the mappings g± and the elements H^V^
of A corresponding to the examples of Section 3.2.

The first binary Lipson model (3.2.1):
0±(1,O) = 0 ^ , ^ ( 0 , 1 ) = (C-ψ\ and ^(1,1) = g±(0,0) = 0. Hence
flf = (C'^Au H± = C±ιAo, Vo

± = C±ιAu V? = ( C - 1 ) ^ ^ .
The second binary Lipson model (3.2.2):

\ )*1), <?±(o, l) = -\ (c ± 1 - (c-1)*1),

5±(0,0) = \{C + C-1), g±(l, 1) = - i ( C + C" 1).

Hence

Ht = \ {C±ι - (C-ψ1) Ao -
 1-{C + C- 1)^,

Vo

± = \(C + C-ι)Ao + \ (C*1 - ( C - 1 ) ^ ) ^ ,

V? = -5 (C*1 " (C-ψ1) Ao - \{C + C-^A.

Kauffman's bracket polynomial (3.2.3):
g±(u,Q) = (a-ψ1 ttuφ 0, s±(O,ti) = α ± x if u φ 0, 9 ±(0,0) = α + aτ\
and ρ±(u,v) = 0 if u φ 0 φ v. Consequently H$ = (α-1)^1 1/ + α ± x J,
^ = a

±xI + (α~ 1 ) ± 1 J, and H± = (α~ 1 ) ± 1 /, V^ = α* 1 / whenever u ̂  0.
For colourings with orientations (3.2.4):

g+(u,υ) = ί(u, -υ), g-(u,v) = ί(τx,τ;). Hence JT+ = V^ = A_u and jfiΓ" =
V-=AU.

In all these examples it is not difficult using Proposition 3 to check directly
that we have indeed an IRF model.
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5. Spin models and doubly translation invariant IRF models.

We assume now that Ω is the field of complex numbers (so that for instance
in the binary Lipson models, C will be considered as a non-zero complex
parameter). We shall identify A with the Bose-Mesner algebra of the associ-
ation scheme of X (see [BI] for definitions) by identifying each basis element
Ax with the X by X matrix whose (i, j) entry is Ax[i, j] = δ(j — i,x). Then
τ is identified with the transposition map.

5.1. Translation invariant spin models. A spin model (X, W\, w2, w3, w4,
C, μ, D) (see Definition 3) will be said translation invariant if W{(a + x, b +
x) = u;j(α, 6) for every x i n X and i = 1,... ,4. Then let

(46) Wi = Σ ™<(°> X ) A * f o r * = 1> , 4.
xex

Thus the (α, 6) entry of Wi is Wi(a,b).

Proposition 4.

(i) The identity (11) is equivalent to:

(47) J o WΊ = μj, JW4 = DμJ.

(ii) TΛe identity (12) is equivalent to:

(48) / o W3 = μ"1 J, JW2 = Dμ-1 J.

(iii) TΛe identity (13) is equivalent to:

(49) WΊ o r(W3) = J = W2 o r(W4).

(iv) The identity (14) is equivalent to:

(50) W^Ws = |X|/ = W2W4.

(v) £JαcΛ o/ the identities (15), (16) is equivalent to:

(51)

/or every A in A, Wi(τ(W4) o (W^)) = ^r(W 4) o (^i(τ(W4) o A)).

Proof, (i)-(iv) are immediate.
Let us prove (v). The left hand side of (51) when A = A{ is computed as

follows.

\χex J xex
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r(W4) o (W^) = (j2 ^4(0, -x)Ax) o (j2 tι>i(0,s - i)Ax

x€X

W1(r(W4) o (W1Ai)) = \Σ,vΛ0,v)Ay) (53 ti;4(0,

i ( ° ^ ~ x)w4(0,-x)w1 (O,x-i)Az.

The right hand side when A = Aι is computed similarly:

τ(W4) o Λ = ( Σ ^ ( 0 , -x)Ax ) o Ai = to4(0, - t )Λ,

V

(1(0,x)Ax) (w4{0,-i)Ai)= Y/w1(0,x)w4(0,-i)Ax+i,
\x€X I x€X

τ(W4) o(W1(τ(W4)o At))

A(0,-z)Az) o [
\z€X ) \zeX

Thus (51) is equivalent to the identity
(51a)

53 Wi(0,2 — x)w4(0, —x)wι(0,x — i) = .0^4(0, —^)tϋi(0,^ — i)^4(0, —i).
xex

On the other hand, using translation invariance, the identity (15) becomes

53 wι (0?x — a)wi (0? b — x)w4 (0, x — c) = Dtϋx (0, b — α)w4 (0, α — c)w4 (0,6 — c)

which is equivalent to (51a) via the substitution x - > c — rr, 6->c — i, α->
c — z.

Finally comparing (15) and (16) we see that interchanging the two vari-
ables in each occurence of W\ or w4 in (16) yields (15). This interchange
corresponds via (46) to the transposition of matrices. Hence (16) is equiva-
lent to
(51b)

for every A in Λ, τ{Wx){WA o (τ(W1)A)) = DW4 o {τ(W1)(W4 o A)).
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This is equivalent to (51) via transposition since τ(AB) = τ(A)r(B) and
τ(A oB) = τ(A) o r(B) for all A, B in A. D

Prom now on we shall also represent translation invariant spin models
as 7-tuples (X,Wι^W2^W^^W4^μ^D)^ where the modulus μ is a non-zero
complex number, D2 = |X|, and Wu W2, W3, W4 are elements of A satisfying
equations (47), (48), (49), (50), (51).

Remark. One can show (see [BB2]) that assuming (49), (50), (51), the
four equations in (47), (48) hold for some non-zero complex number μ (so
that we can define μ from any one of them).

5.2. Spin models for graphs and spin models for links. Let us consider
a finite directed graph G (loops and multiple edges will be allowed) with
vertex-set V(G) and edge-set E(G). The initial (respectively: terminal)
end of an edge e of G will be denoted by i(e) (respectively: t(e)). Let w be
a mapping from E(G) to A. Then the partition function of the spin model
defined on the graph G by the system of weights w is

(52) Z(G,w)= Σ Π w(e)[σ(i(e)),σ(t(e))}
σ:V(G)->X

(this is the definition given in [Ja5]).
Let now ζ = (X, Wi, W2? W3, W4^μ,D) be a spin model as defined in

Section 5.1 and consider a connected oriented link diagram L. Let us color
the faces of L as in Section 2.4. Let G(L) be the connected plane graph
consisting of one vertex inside each black face and, for each crossing of L,
one edge joining the two black faces incident with that crossing. Let us
orient the edges of G(L) and label them with matrices Wi, W2i W3, W4 as
shown on Figure 5. By comparing Figures 3 and 5, it is clear that

(53) Zζ(L) = D-\yWL^Z(G{L), w),

where w is the mapping from E(G(L)) to A which assigns to every edge its
label.

Suppose now that in the definition of the partition function given in Sec-
tion 2.4 we modify our convention for the coloring of faces of L and require
that the unbounded face be colored black, every other convention remaining
unchanged. Denote by Z*^(L) the resulting partition function.

Then we can show exactly as in the proof of Proposition 2.14 of [Jo3] that

(54) Z<{L) = ZHL).

To obtain another version of (53), we now stick to our original convention
that the unbounded face should be colored white, and we define G'(L), its
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orientation, and its labeling wf exactly as for (?(L), except that black faces
are replaced by white faces (see Figure 6). Then, by (54),

(55) Zζ{L) = £Hv<σ'W)IZ(G'(L),t/;').

5.3. Spin models and duality. A duality of Λ is a linear map Φ from A
to itself satisfying

(56) Φ2 = \X\r,

(57) Φ(AB) = Φ(Λ) o φ(S) for all A, 5 in A,

(58) Φ(Λ o 5) = |X|- ιΦ(Λ)Φ(S) for all A, B in A

(given (56), the properties (57) and (58) are easily seen to be equivalent).
It is well known that such dualities exist and may be defined on the natural
basis of A by relations of the form

(59)

where χ i ? t 6 X, are the characters of X, with indices chosen such that
XiU) = Xj(i) for all ij in X.

For a connected directed plane (?, we shall denote by G* the plane dual
graph of G, with edges directed as shown on Figure 7, where e and e* rep-
resent dual edges. We shall identify each mapping w from E(G) to A with
the mapping from E(G*) to A which for every edge e of G assigns the value
w(e) to the edge e* dual to e.

The following result is proved in [Jaδ], Proposition 11 (see also [Bi2]).

Proposition 5. For every connected directed plane graph G, and for every
mapping w from E(G) to A, Z(G,w) =

Then Proposition 5 applied to (55) gives

Z<{L) = D

Comparing Figures 5, 6 and 7 it is easy to see that G'{L)* is identical to
G(L) as an undirected graph, the orientations being different exactly on the
edges labeled Ws and W\ in G'(L). Also it is clear that a partition function
of the form (52) is not modified if we reverse the orientation of one edge
while transposing the corresponding matrix. Hence we obtain
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where w" is obtained from Φit;' by transposing the matrices corresponding
to edges labeled W3 and W4 in G'(L).

In other words, if wf takes the value W4 (respectively: W3, W2, Wx) on an
edge of G'{L) then tu" takes the value τΦ(W4) (respectively: τΦ(W3), Φ(W2),
Φ(VKi)) on the corresponding edge of G(L). Also, recall that by Euler's
formula, \V(G'(L))\ = |F(G(L))| = |#(G(L))| - \V(G(L))\ + 2 . Since |X| =
D 2 , we obtain

It is clear from (52) that the factor D-lβ(G(L))l can be distributed on the
edges of G(L) to give

(60) Zζ(L) = D~^G{L))]Z(G(L), ZT V ) .

This motivates the following definition. Given a translation invariant spin
model C = (X, Wu W2, W3, W4, μ, D), let

(6i) w; = D-ιτV(W4,), w; = D-1T^/(W3),

w; = D~1^{W2), w* = D ^

and

ζ* = (x,w*,w;,w;,w:,μ,D).

Proposition 6. For every translation invariant spin model ζ,ζ* is also a
translation invariant spin model and Zζ* = Zζ.

Proof. The equality Zζ* (L) = Zζ(L) for any link diagram L follows imme-
diately from (60), (53) and comparison of the definition of w" with (61).

We now complete the proof by checking properties (47)-(51) for £*. Prom
(61), these properties are:

(47') / o rΦ(W4) = Dμl, JΦ(Wχ) = \X\μJ,

(48') J o Φ(W2) = Dμ-χI, JτV(W3) = l^lμ" 1 J,

(49') rΦ(W4) o τΨ(W2) = \X\J = rΨ(W3) o

(50') τΦ(W4)Φ(^2) = \X\2I =

(5Γ)

The equation (47;) (respectively: (48'), (49'), (50')) follows by applying Φ
to (47) (respectively: (48), (50), (49)), using (57), (58), and the easily es-
tablished formulas

(62)
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(63) Φr = rΦ.

By applying Φ and using (56), (57), (58), equation (51') becomes succes-
sively:

\X\W4 o Φ(τΦ(Wi) o

DW4 o IXl-WXlWiVirViWJA)) = Wi(|-Y|W4 ° Φ(τΦ(Wί) o A)),

W4 o {WX(\X\WA

Upon replacement of the generic element Φ(A) of Λ by A, this becomes

(51") DW4 o (Wι(W4 o A)) = WΊ

Note that by exchanging α, 6 in (16) we get

(16')

xex

which can also be obtained from (15) by exchanging the two variables in each
occurrence of w4. Hence the same argument used in the proof of Proposition
4(v) to reformulate (15) as

(51) Wi(τ(W4) o (WλA)) = Dτ(W4) o (Wx{τ{WA) o A))

also shows the equivalence of (16') with (51"). D

It is easily checked using (56) that (£*)* = ζ.
We shall call ζ* the spin model dual to ζ.

5.4. Squares of spin models as IRF models. By (54) a partition func-
tion of a spin model on X can be computed by defining states either on
black faces or on white faces. This allows us to compute the square of such
a partition function as the partition function of an IRF model on X. This
idea appears for instance in [Jo3], Proposition 4.1 and in [KWa] Theorem
6.1. The proof of the following similar result will be omitted.

Proposition 7. Let ζ = (X, Wχ9 W2, W$, W4>μ,D) be a translation invari-

ant spin model with W% = Y^xeχ W{(x)Ax for i = 1,... ,4.

Let g+(u,υ) = D~ιWι(u)w4(—υ) and g-(u,v) = D~1w3(u)w2{v) for all

u, v in X. Then these mappings define via (32) a doubly translation invariant

IRF model % with Z% = (Z<)2 .
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5.5. Spin models from IRF models. Clearly not every doubly transla-
tion invariant IRF model can be associated with a spin model as in Proposi-
tion 7. However we still can decompose each state of such an IRF model as
a product of a state on black faces with a state on white faces. Then we may
decompose the partition function accordingly and use duality (Proposition
5) to convert an evaluation on white faces into an evaluation on black faces.
This will reformulate the IRF partition function as a spin model partition
function.

Let us formalize this idea. Consider a doubly translation invariant IRF
model % defined via (32) by mappings g±. It follows from (10) that its par-
tition function is given by

σ:F{L)->XveV{L)

In the sequel we assume that the diagram L is connected. Let us color
its faces black or white as in Section 2.4. We also introduce the directed
graph G(L) as in Section 5.2, and its directed dual plane graph G(L)*. So
the vertices of G(L) are the black faces of L and the vertices of G(L)* are
the white faces of L. We identify each mapping σ : F(L) -* X with the
pair {σb,σw), where σb : V(G(L)) -> X and σw : V(G(L)*) -> X are the
restrictions of σ to the sets of black faces and white faces. Each vertex υ of
L corresponds to a pair of dual edges e and e* in G(L) and G(L)*. Given
σ : F(L) —» X, we now express in terms of e and e* the corresponding

contribution gs{v)(σ(f3(v)) - σihWMMv)) ~ σ(/2(t>))) o f v t o Z%(L)
We distinguish two cases (see Figures 5, 7).

If fι(v) and fβiv) are black, this contribution is

9s{υ)(σb(t(e)) -σ»{i{e)),σw{i{e*)) -σw{t{e*))).

If fι(v) and fs(v) are white, this contribution is

g-(σw{t(eη) -σ™(i(e*)Ub(t(e)) -σ»(i(e))) if s(v) = - ,

and

5 +(σ"(ί(e*)) -σw(t(e*)),σ»(i(e)) -σb(t(e))) if s(v) = +.

We introduce a mapping qυ from X x X to C defined as follows.

(64) If fi(v) and f3(v) are black , qυ{x,y) = gs(v)(x, ~y)

If fλ{v) and f3(υ) are white , qv{x,y) = g~{y,x) if s(υ) = - ,

and qυ(x,y) =g+(-y,-x) if s{υ) =+.
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We shall also write qe or qe+ for qv when v G V(L) corresponds to e G
E(G(L)) and e* G E(G(L)*).

With this definition we see that for σ = (σ6, σw) = (p, π) the contribution
ΛW(σ(/8(«)) -σ(/i(v)),<τ(/4(t;)) - σ(/a(t;))) of v to Z (L) is

) - p(t(e)), π(t(e )) - π(

Hence

π:V(G(L)*)->X

) - p(t(β)), π(t(e )) - π(t(e*))).

With every mapping p from V(G(L)) to X we associate a mapping qp

E(G(L)*) -> ̂ l denned by 9p(β*) = Σ , e χ 9β(p(ί(e)) - p(*(e)),y)Av. Then

Σ Π
p:V{G(L))-+X π:V(G(L)*)-+X e*eE(G(L)*)

or equivalently, using the definition (52):

p:V(G(L))->X

Note that (G(L)*)* is G(L) with all edge orientations reversed, and that
in the evaluation (52) the reversal of an edge can be compensated by the
transposition of the corresponding matrix. Thus applying Proposition 5 we
obtain:

Z\V)

|v(β(L))| J2 Z(G(L),τ*qp)

Σ Π
p-.V(G(L))-+X π:V(G(L))->X e€E(G(L))

In the sequel we identify A® A with the Bose-Mesner algebra of the as-
sociation scheme of the direct product X x X, the matrix Ax ® Λ^ being
identified with the matrix A(XtVy Thus for every A,B in 4̂, A ® J5 is the
Kronecker product of A and β, i.e. (A ® B)[(i, j), (Λ,/)] = ^.[^^^b^] f°r

all i,j, fc,Z in X.
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We define the mapping w from E(G(L)) to A ® A by

(65) w(e) = Σ Qe(x,y)Ax ® τΦ(Ay) for every e in E(G(L)).
χ,yex

Note that (τΦgp)(e) = Σ ^ x Qe(p(t(e)) -p(t(e)),y)rΦ(i4y). Then one easily
checks that

(τΦgp)(e)[π(t(β))>π(t(e))]=u;(e)[(p(t(β)),π(t(e))),(p(t(β)),π(t(e)))]

Hence

JJ w{e)[σ{i{e))Mt(e))}
σ:V(G(L))-+XxX e£E(G(L))

which, using the definition (52), becomes

(66) Z\L) =

Thus we have expressed the partition function of the doubly translation
invariant IRF model % on the diagram L as a partition function of a spin
model on the graph G(L). This leads us to the following result.

Proposition 8. Let i be a doubly translation invariant IRF model on
X with modulus μ defined via (32) by mappings g±. For each u in X let
H t = Σχex9±fax)Ax and V± = Σ,xex9±fau)Ax be the elements of A
introduced in (37), (38). Define four elements Wu i = 1,2,3,4 of A® A by

(67) W1 =
uex

(68) W 2 = Σ
uex

(69) W3=

(70) W4=
uex

Then ζ = (X x X, W^ W2, W3, W±,μ, \X\) is a translation invariant spin
model and Z^ — Z%. Any translation invariant spin model on X x X is
associated in this way with a doubly translation invariant IRF model on X.

Proof. We first establish, assuming ζ is a spin model, that Z% = Zζ. In view
of (53) and (66), this amounts to check that the mapping w defined by (65)
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coincides via the definitions (67)-(70) with the mapping described on Figure
5. Note that (65) can be written as

(65') w(e) = ]Γ Ax ® ] Γ Qefa y)τΦ{Ay) for every e in E{G(L)).
xex yex

Then (64) gives the following identities (where v is the vertex of L corre-
sponding to e).

(i) If fι(v) and f3(v) are black,

w (e) = Σ Aχ Θ Σ &(«)(*' -y

= Σ ^ ® Σ J wfe -y)^(Λ) (by (63))

Σ

= Σ ^ ® Σ ffS(,)(^,y)Φ(Λ) = Σ ^ ®
xex yex xex

Thus tu(e) = W1 if θ(v) = + and w(e) = W3 if s(υ) = - .

(ii) If /i(υ) and /a(v) are white, and if s(υ) — —,

* ® Σ ff-(y,a?

(iii) If fι(υ) and /3(v) are white, and if s(v) = +,

u (e) = Σ ^ ® Σ 9+(-y, -x)τ*(Ay)
xex yex

= Σ A* ® Σ »+(-»' -a')Φ'-(Λ) (by (63))

( )
xex \yex J xex

These identities together with Figure 5 complete the proof of the equality
Z% — Zζ. It remains to prove that ζ is indeed a spin model of modulus μ. We
shall check the equations (47)-(51) of Proposition 4. Recall that for every
A,5, A1, B' in Λ (A ® B){A' ® B1) = AA ® BB1 and (A ® β) o {A' ® B;) =
(A o A') ® (5 o B'). We still denote by / and J the identities for the ordinary
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and Hadamard product in A Thus the corresponding elements of Λ ® Λ are
I ® I and J ® J.

In what follows we use the equalities (57), (58), (62), (63).
The first equalities of (47) and (48) become

or equivalently

uex

Since IoAu = δ(u,0)I = δ(u,0)Ao this reduces to / o φ (fl^) = μ*1/, which

follows by applying Φ to (39).

The second equalities of (47) and (48) become

Since JAW = J this reduces to

which follow by applying Φ or rΦ to (40).

Since τ(Ws) = Σuex A-u ® rΦ(if") = Σ. G χAχ ® Φτ(fΓΓtt) the first
equality of (49) becomes

o C £ Λ ® Φr(fΓlJ ) = J ® J,
\ueX J

or equivalently

~~ ,)) = J®J.

uex

Now by (43) Φ(fl"ί) o Φτ(Hlu) = Φ(fr+r(fΓltt)) = Φ(/) = J and we are
done.
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Similarly the second equality of (49) becomes

\
= J ®J_ )

\ueX

or equivalently

[C)orΦ(yu

+)) = J ® J

which follows by applying rΦ to (41).
The first equality of (50) reads

\u€X / \veX

The left-hand side is

= Σ Σ

which by (42) is equal to

\X\ V i f l » Φ(ί(α, 0) J) = \X\A0 ® Φ( J) = |X|2/ ® J

as required.
Similarly the second equality of (50) reads

The left-hand side is, using (44),

a£X



MODELS FOR LINK INVARIANTS 97

aex
and the result follows as before.

Finally let us consider (51). It will be enough to check this identity on
the basis {A{ ® Ψ(A,), i € X, j € X} of Λ ® Λ.

First we compute the left-hand side.

= \X\ (Σ A_U ® rΦ(F_+)) o

= \X\

u€X ) \u€X

Σ
Σ

Let us now compute the right-hand side of (51).

τ(W4) o (Ai

+ ) o Φ(Λ,)) = ^ ® Φ(τ(V;+)Λ, ).
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(τ(V?)As)).
u€X

\X\τ(W4) o ( ^

By comparing the expressions for the two sides of (51) we see that this
identity reduces to the identity

H+ o (τ{Vytυ+i)(H+_u o As)) = T(Vy

+

+i)(Hf o (τ(V+)Aj)).
vex

This is equivalent to

(45) 53 τ(#+) o (V+_x(τ(Htx) o A,)) = F

via the application of the substitution x -* υ, u —> y 4- i, υ -> y, i —̂  — j
followed by the application of r.

Finally if ζ = (X x X, W ,̂ W2> IV3, W^̂ M, |-X"|) is a translation invariant
spin model, we may clearly use formulas (67)-(70) to define for each u in
X the elements H^ and Iζf of A The same arguments as above will show
that equations (39)-(45) are satisfied. Then we may use (37), (38) to define
mappings g± which, by Proposition 3, will give via (32) the required doubly
translation invariant IRF model on X. D

Remarks.
(i) A slight variation in the above construction would yield a spin model

where each matrix Wι is replaced by its image under the "flip" auto-

morphism of Λ ® Λ which for every A, B in Λ sends A ® B to B <g) A.
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A more significant variation consists in applying the same ideas to
express the IRF partition function as a spin model partition function
evaluated on the white faces. Then it is not difficult to check that the
resulting spin model is the dual of the previous one with respect to
the duality Φ ® Φ of A ® Λ which for every A, B in Λ sends A ® B to

(ii) It follows from (50) that when W\ = W2 we have also W3 = W4 and
then setting W+ = WX = W2, W- = W3 = W4, we obtain a spin model
in the sense of [KMW]. By (67), (68), this is the case if and only if
H* = τ(V~) for every u in X.

5.6. Examples. We now apply Proposition 8 to the examples of Section
4.4. It is easy to see that in all cases H+ = r{V~) for every u in X, and thus
by the above remark we shall obtain a spin model in the sense of [KMW],
for which we shall only compute the matrix W+ = Wλ = Σ u € χ Au ® Φ(iϊ+).
Note also that when X is an elementary 2-group, the corresponding spin
model is symmetric.

The first binary Lipson model (3.2.1):
Recall that ίf0

+ = C~ιAu H+ = CA0. Also, Φ(A>) = Φ(J) = J = Ao + Ax

and Φ(J4I) = Φ(J - /) = 2/ - J = Ao - Aλ. Hence

W+ = Ao

= Ao

= C-'Ao ® (Ao - Ax) + CAλ ® (Ao + Aλ).

This is the well-known one-parameter family of spin models belonging to
the Bose-Mesner algebra of the cycle of length 4 (see [Jo3], [Ja3], [H2]).
Thus we have a direct proof that the partition function of this spin model
gives the special evaluation of the Kauffman polynomial corresponding to
Lipson's model.

The second binary Lipson model (3.2.2):
Setting EQ = \(AQ + Aι), Eλ = \(AQ - Aλ), we may write

H+ = C-λE0 + CEU Ht = -C^Eo + CE1.

Since Φ(£o) = ̂ o and Φ(.Ei) = Au we obtain

W+ = Ao ® Φ(F0

+) + Ax ® Φ ( ^ + )

= Ao ® Φ ί C - ^ o + C#i) + ̂ i ® Φ ί - C ' ^ o + CEλ)

= A0® {C~ιA0 + CAλ) +Aλ® (-C-'Ao + CAλ).

Clearly this matrix is obtained from the previous one by application of
the flip automorphism. Thus we have a direct proof that the two binary
Lipson models give the same partition function.
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Kauffman's bracket polynomial (3.2.3):

We have found HQ = a'1! + aJ and H+ = a~ιI whenever u φ 0. Also
recall that \X\ = -a2 - a'2.

Hence

uex-{o}

= J ® Φ(α-χ7 + αJ) +

= / ® (α" 1 J + α ( - α 2 - α"2)/) + (J - /) ® a~ι J

= - α 3 / ® / + α" 1 (/ ® (J - /) + (J - /) ® J)

= - α 3 / ® J + α ' ^ J ® J - J ® / ) .

This is the well-known "Potts" model for the Jones polynomial (see [Jo3],
[Ja3], [H2], [HJ]). Thus we have a new construction of this model when the
number of spins is a square.

Fox colourings with orientations (3.2.4):
We have £Γ+ = A_u. Thus

We may assume that the duality Φ is given by

(59)

where χ i ? i G X, are the characters of X, with indices chosen such that

XiU) = XjW f°r a^l *» i i n -X"- Then the corresponding spin model matrix is

Remark. It is easy to check that this spin model belongs to the class
described in Proposition 23 of [Ja5] (this class generalizes the one discovered
in [BB3] and is related as shown in [BBJ] to the models of [KWa]).

Assume now that X = Z/nZ with n odd. Let Xi(j) = ωij, where ω is a
primitive n-th root of unity.

Thus
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Consider a link diagram L. Using (52), (53), we write the partition function
as

Z(L) = \X\~\V(G(LW \^ TT w(e)\σ(i(e)) σ(t(eΫ\\
σ:V(G(L))-+XxX eeE(G(L))

where w is a suitable mapping from E(G(L)) to A® A which takes the values

Let π be an automorphism of X x X. Then

Z[L) = \X\-WWm Σ Π »(e)W (e)),*σ(t(e))],
σ:V(G(L))->XxX e£E(G(L))

and hence in the evaluation of Z we may replace W+, W- by

Let us define π by π(i,j) = (j — i,i + j) for every i, j in X. Then

Thus setting

< a ^ i w - = Σ

we have

W[ = W^®W!l a n d Wi = ^ / ®W! 7 .

It is known (see [BB3], [GJ], [Jo3]) that W|', W^ define a spin model on X
(in the sense of [Jo3]). It easily follows that, denoting by Z" the partition
function of this model,

When n is prime, it follows from [GJ], Section 7, that for every link diagram
L, \Z"(L)\ = (y/n) l , where d(L) is the dimension of the first homology
with coefficients modulo n of the 2-fold cyclic cover of S3 branched over the
link represented by L. Then Z(L) = n d ( L ) + 1 .

This expression for the number of Fox colourings of L is established by a
different method in [Pr].
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6. Composition of link invariants and Nomura's Hadamard spin
models.

6.1. Composition of link invariants and vertex models. Let / i , . . . , fp

be p invariants of oriented links which take their values in the same com-
mutative ring Ω, and let λ be an invertible element of Ω. Let £ be a link
with set of components K. For any subset S of K we denote by Cs the link
consisting of the components of C belonging to S (each of these components
retaining the previous embedding in 3-space). We shall allow the empty link
C0 with no components and assume that the invariants fc are defined on
the empty link. Let lk(CΊ, C2) denote the linking number of the components
d , C2 of C. For any mapping 7 : K —> {1,... ,p} we denote by Ik7(£) the
sum of linking numbers lk(Ci, C2) over all ordered pairs (CΊ, C2) of compo-
nents such that 7(CΊ) φ j(C2). Recall that if L is any diagram representing
C with sign function 5, lk(CΊ, C2) = \s(Vι2), where Vϊ2 is the set of vertices
corresponding to crossings of CΊ with C2. Thus Ik7(£) = ^(V^), where VΊ is
the set of vertices corresponding to crossings of components with different
values of 7. Then we assign to C the value

(7i) ( / I , . . . , Λ > :

Clearly this defines an invariant (/1,... ,/p)λ of oriented links with values
in Ω which we call the λ-composition of / 1 ? . . . , fp.

Remark.
(i) Related notions appear in remark 4.1 of [PT] and in [Y].

(ii) It is easy to check that the λ-composition of link invariants is associa-
tive, that is, (/i,(/2,/3)λ)λ = ((/i,/2)λ,/3)λ = (/i,/2,/3)λ. Thus we
could restrict our attention to the case p = 2. The λ-composition is
also clearly commutative.

Consider now p vertex models i/< = (X, w\., wl, Ω, μ) with associated link
invariants /<, i = 1,... ,p. Let Xp = {1,... , p } x l and define the mappings
w± from X* to Ω as follows:

(72)
For every z,j, fc, / in {1,... ,p} and α, 6, c, d in X,

w±((i, α), (j, & M ^ ) , (Z, d))
A)tt4(α, 6, c, d) + (1 - ί( ± 1

Proposition 9. 1/ = (Xp,tί;+,iί;_,Ω,μ) is a vertex model with associated
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link invariant (fu . . . , fp)Xμ-i.

Proof. It is not difficult to check directly that v satisfies the identities (l)-(4),
although a simpler argument will be given below.

Consider a diagram L. Let us represent every mapping σ : E(L) ->- Xp

as a pair (7,7?), where 7 : E(L) —>• {1,... ,p) and η : E(L) -> X are such
that σ(e) = (y(e),η(e)) for every e in E(L). Then, by (72), if σ = (7,7/)
contributes to the sum

= Σ Π ^(V)(σ(e1(v)),σ(e2(υ)),σ(e3(v)),σ(e4(υ)))

we must have ^{e^v)) = j(e2(v)) and η(e%{v)) = 7(^4(1^)) for every vertex
i>. This means that we may identify 7 with a mapping from i ί to {1,... ,p},
where if is the set of components of the link C represented by L. Indeed
each such component C can be identified with a cycle of L, and 7 takes only
one value on the edges of this cycle (see Figure 2). We shall call η(C) this
value. Thus

Σ

Π
v£V(L)

where wΊ

s^(a,b,c,d) equals wl^(a,6,c,d) if 7 assigns the same value i
to the two (possibly identical) components crossing at υ, and equals
δ(a, b)δ(c, d)Xs^ if 7 assigns different values to these components.

Let us now consider 7 as fixed and study the corresponding summand

7̂= Σ Π
η:E(L)->X

in the above expression for ZU(L).
For each i in {1,... ,p} the edges e such that η(e) = i together with

the incident vertices form a subgraph L7-i(<) of L. All vertices of Zf7-i(<)
are of degree 4 or 2, and if we erase each vertex of degree 2 (merging the
two incident edges) we obtain (with the obvious sign function) a diagram V
representing the link CΊ-i^).

Then if 77 contributes to the sum 5 7 , for each i in {1,. . . ,p} its restriction
τ]i to the edges of LΊ-\^ takes the same value on any two edges meeting at
a vertex of degree 2. Hence ηι can be identified with a mapping from E(Lι)
to X. In this case the summand

Π wl(
υeV(L)
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of SΊ can be written

Π Π wUv)(vi

Hence

«r= Σ ••• Σ

Π K(υ

Π <(v)(
7/i(eiW)

It follows that

V,) JJ

This means that the link invariant associated with v is the λ//~1-composition
of the link invariants associated with i/1?... , i/p.

A local version of the above argument can also be used to show that v
satisfies the identities (l)-(4). D

6.2. Application to IRP models. We keep the notations of the preceding
section and we now assume that X is an Abelian group. We also endow
Y — {1,... ,p} with an Abelian group structure. Thus Xp = Y x X is now
an Abelian group. It is clear from (72) that if each of the p vertex models
Vi is conservative, the vertex model v is also conservative.

By (19) and (72),

= δ(ί — l,j — k)δ(j — ΐ,fc — l)(δ(i — i, j — i)wι±ι(a — d, b — c, b — α, c — d)

+ (1 - δ(i -l,j- i))X±ιδ(a - d, b - c)δ(b -a,c- d))
±δ{a + c,b + d)).
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Consider now p translation invariant IRF models %i — (Jf,^,!/;!_, Ω,μ)
with associated link invariants /j, i G F. Define the mappings w± from (Y x
X) 4 to Ω as follows:

(73) For every i, j , fc, I in Y and α, 6, c, d in X,

w±((ί,α)>(j\&)>(&5c),(M))
= ί (i + fc, j + Z) (ί (i, Λ)tϋ^"' (α, 6, c, d)

The following result is now an immediate consequence of Propositions 1, 9.

Proposition 10. With the notations of (73), i = (Y x X, w+, w_,Ω,μ)
is α translation invariant IRF model whose associated link invariant is the
\μ~λ -composition of the /,, i £Y.

6.3. Application to spin models. We are now interested in the case where
the IRF model i of Proposition 10 is doubly translation invariant. It is clear
from (73) that this will be true if both X and Y are elementary Abelian
2-groups and all IRF models î are equal to the same doubly translation in-
variant IRF model. We assume these properties now and we define mappings
g± : X2 -» Ω by g±(u,υ) — tϋ^(0,0,ti,υ) for all u,v in X and i in Y.

Then it follows from (32) and (73) that for every i, j , A;, / in Y and α, 6, c, d
in-Y,

= δ(i + fc, j + /)(ί(ί,k)g±(c - a,d - b) + (1 - ί(

Thus the IRF model i is defined via (32) by the mappings g^ : (Y x Xf -> Ω
such that

for all i, j in Y and ti,υ in X.
We now take Ω = C. Let Λ be the Bose-Mesner algebra of X with natural

basis {Ax, x G X} and let B be the Bose-Mesner algebra of Y with natural
basis {By, y G Y*}. We consider again for each u in X the elements i?J =
Σx€χ9±(u,x)Ax and V? = Σβ 6x5±(^,w)Λβ of A introduced in (37), (38).
The corresponding elements of B ® A for the mappings g± are (for i in Y
and t£ in X)

Htu) = Σ Σ £((<»«). (*.
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= Σ Σ δ(i,k)(δ(i,O)g±(u,x) + (1 - 5(i,O))λ±1<5(1i,α;))βfc <g> A

(«, x) + (1 - *(», 0))λ±1 ί(«, x))B, ® A

xex

and

= Σ Σ <*(M
(ar,«) + (1 - ί(i, 0))λ±1<5(:r,

Hence J5Γ(̂  u) = Iγ®H±, V^u) = Iγ®V± (where Iγ = Bo is the identity of B
for the ordinary matrix product), and for i φ 0, H^^ = V^ = λ^jBi® Att.
Let now Φ x be a duality of Λ and Ψy be a duality of #, so that Φy ®Φχ is a
duality Φ of 5 ® A Note that the transposition map of 2? ® A is the identity.
Applying Proposition 8 to the doubly translation invariant IRF model«, we
obtain a translation invariant spin model

ζ=((Yx X)χ(Y x X), ^ y , W2

y, W3

y, Wj, μ, |F|χ |X|) with Z c - Z .

The matrices W^, i = 1,... , 4, are the following elements oίB®Λ®B®Λ.

= J ^ Jy ® i4tt ® Φ (
uβX

= 53 Jy ® i4tt ® Jy

+ λ

where Jy is the identity for the Hadamard product in B.
Similarly

uex
+ λ"1 53 Bi®Au® Φy(S<)
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iγ ® A U <s> j y ® Φ χ ( i r - )

A"1

and

4

y = Σ
uex

We now consider the images H^ y , i = 1,... ,4, of these matrices under the
isomorphism from B®Λ®B®ΛtoB®B®Λ®Λ which exchanges the second
and third factor of the tensor product. We denote by W^ i = 1,... , 4, the
matrices associated by Proposition 8 with the doubly translation IRF model
corresponding to the mappings g±. In other words,

w, =

a n d w* = Σ

Then

wίy = Σ

Let

(74) Mγ = ΣBi® ΦyίSί). M x = Σ

Then

(75) W[γ = Iγ®Jγ®W1 + X(MY - (Iγ ® Jγ)) ® Mx

and similarly

(76) W'2
Y = Iγ®Jγ®W2 + \-ι{Mγ - (Iγ ® Jγ))

(77) W'/ = Iγ®Jγ®W3 + \-\MY - (Jy ® Jγ))
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and

(78) W'4
Y = IY®JY®W4 + X(MY - (Iγ ® Jγ)) ® Mx.

Thus using Proposition 8 and 10 we obtain the following result.

Proposition 11. Let X,Y be elementary Abelian 2-groups and

be a translation invariant spin model with associated link invariant f. Then,
with the notations of (74) — (78),

C = (y x Y x x x x,w[γ,w?,Wsγ, w'J,μ, \Y\X\X\)

is also a translation invariant spin model whose associated link invariant is
the Xμ~ι -composition of \Y\ link invariants /.

We first observe that

(79) Mx and MY are Hadamard matrices.

Indeed let us consider for instance Mx = Σ u 6 χ Au ® ΨX(AU). By applying
Φx to the equation A2

U = Ix we see that ΦX(AU) has entries ±1. Then
clearly the same holds for Mx and for M'x = ΣueX ΦX(AU) ® Au. Applying
Φx ® Φx to the equation M'x o M'x = Jx ® Jx gives

|X|" 2((Φχ ® Φχ)(M^)) 2 = \X\2IX ® Ix.

Since ( Φ x ® ΦX)(M^) = \X\MX and M x is symmetric, (79) is proved.

Remark. It is easy to show that Mx and Mγ are equivalent (up to

permutations of rows and columns) to Sylvester matrices.

Let us now take a closer look at the simplest case Y = Z/2Z.
Note first that by (74),

Mγ = Bo® Φy(β0) + Bλ ® Φy(Bi) = Iγ ® Jγ + {Jγ - Iγ) ® (2/y - Jγ).

Then, with the notations of (74)-(78),

(80)

XεH -XεH
-\εH \εH

\εH -XεH
-XεH XεH

for i = 1,... ,4, where H — Mx is a Hadamard matrix and ε equals 1 if

i = 1,4 and - 1 if i = 2,3.
Related constructions are considered in [N2].
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6.4. Nomura's Hadamard spin models and the Jones polynomial.
A Hadamard graph is a distance-regular graph of diameter 4 on a set of
n = 16m vertices (m a positive integer) with intersection array {4m, 4m —
1,2m, 1; 1,2m, 4m - 1,4m} (see [Bil], [BI], [BCN] for definitions). K. No-
mura [Nl] has recently associated with every Hadamard graph Γ on the
vertex-set V(Γ) of size 16m some spin models (V^Γ),^,?^,w 3 ,w 4 ,C,t 0 ,
Ay/m) which are defined as follows.

Let tOi t 1 ? s be complex numbers satisfying s2 + 2(2m — l)s + 1 = 0, £Q =

— ——-, t\ = 1. For x,y in V(Γ),Wι(x,y) equals t0 (respectively
(4m — 1J5 + 1
£i,s£0,— ti,t0) if the distance of x and y in Γ is 0 (respectively 1, 2, 3,
4), w2{x,y) = wι{x,y) and w3(x,y) = w4(x,y) = (w^x^y))'1.

Let a be a complex number such that α 2 + or2 + 2t\y/m = 0. Then
s2 + (α 4 + α~4)s + 1 = 0, so that we can take without loss of generality s =
—α~ 4 . Now we find tl = a6t\ and we may choose without loss of generality
t 0 = -a3tx.

We shall need the following result.

Proposition 12. Let ζ = (X,wx, w2, w 3 ,w 4 ,C,μ,i)) be a spin model and
ω be a complex Ath root of unity. Then ζ' = (X,ωwι,ωw2,ω~~ιW3,ω~~1W4,C,
ωμ,ω2D) is also a spin model, and replacing ζ by ζf amounts to multiply
the corresponding link invariant by a factor (ω2)c^L\ where c(L) denotes the
number of components of the link L.

Proof. It is easy to check that ζ' satisfies the identities (11)—(16). By (17), the
corresponding invariant of oriented links is defined (for connected diagrams
L) by (ωμ)-τMZ<'(L) = ω-nL)-2\B{L)\+κ{L)μ-τ{L)Zς(L^ w h e r e κ ^ =

Vι(L) + v2{L) — v3(L) — v4(L) and, for i = 1,... ,4, Vi(L) is the number
of vertices for which the evaluation of interaction weights given in Figure 3
makes use of the mapping Wi.

Note that T(L) = Vχ{L) — v2{L) — υ3(L) + v4(L). Hence replacing ζ
by ζ* amounts to multiply the corresponding link invariant by a factor
ζω2y2(L)-υ4(L)-\B(L)i. Thus if we assign to every connected diagram L the
value (cj2)υ2(L)-V4(L)-lB(Z/)l this defines a unique multiplicative invariant of
oriented links. Clearly this value is not modified if we change the spatial
structure of any crossing. Performing such changes until we obtain a trivial
link, we see that the value of this invariant is (ω 2 ) c ( L ) , where c(L) is the
number of components of the link represented by L. D

Using Proposition 12 we shall now restrict our attention to the spin model

C(Γ,α) = 2
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Note that t^λt0 = —a3 and 4ίf2

v/m = 2(—α2 — α~2). Moreover tϊ1w1(x1 y)
equals — a3 (respectively 1, α""1, —1, —α3) if the distance of x and y in Γ is 0
(respectively 1, 2, 3, 4).

It is shown in [Ja5], Proposition 22, that Z^TiOc^ is not modified if the
Hadamard graph Γ is replaced by another one with the same number of
vertices. We shall need the following more precise result.

Proposition 13. With every diagram L is associated a one variable rational
function QL such that Z^Γ^(L) = QL{&) for every Hadamard graph Γ on
16m = 4(—a2 — a~2)2 vertices.

Sketch of proof. Let us present briefly the "matrix-free" approach intro-
duced in [Ja5] for the computation of Z^τ'a\L). Let % be the Bose-Mesner
algebra of the Hadamard graph Γ, with basis of Hadamard idempotents
{Ai5 i E {0,... ,4}}, labeled so that for any two vertices x,y of Γ at dis-
tance d(x,y), Ai[x,y] = 5(d(x,y),i). For every graph G and mapping w :
E(G) -+ U, let

(81) Z(G»= £ Π w(e)[σ(i(e)),σ(t(e))}.
σ:V(G)->V(Γ) e(EE(G)

We consider a connected diagram L and the connected plane graph G(L)
defined in Section 5.2 (but orientations of edges are not significant). We
write

(82) Z«τ<a\L) = (2(-α2 - c*-2))

where WL is a mapping from E(G(L)) to % which can take only two values

W+ = -a3A0 + Aλ+ a~xA2 - A3 - a3A4,

W- = -αΓ3A) + Aλ + aA2 - A3 - a~3A4.

The map ZQ ' w —> Z(G,w) given by (81) is multilinear in the components
w(e) of w. This leads us to introduce a vector space %G which is a tensor
product of copies of Ή, one copy for each edge of G. Then each mapping
w from E(G) = {ei,... ,en} to H is represented by the element w(βi) ®
• ® w(en) of Ή,G, and ZG is identified with a linear form on HG. The vector
space %G has a natural basis {Ah ® ® Ain/iι,... , in G {0,... ,4}}, and
the coordinates of WL with respect to this basis are clearly powers of α up
to sign. Thus it will be enough to show that the values of the linear form
ZQ(L) o n elements of the same basis are given by rational functions of α.

It is known that every connected plane graph can be reduced to the trivial
graph with one vertex and no edge by a finite number of elementary local
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transformations of the following kind: deletion of a loop, contraction of a
pendant edge, deletion of an edge parallel to another edge, contraction of
an edge in series with another edge, and star-triangle transformations, that
is, replacement of a triangle by a "star" (one vertex incident with three
edges) or replacement of a star by a triangle. It is shown in [Ja5] that
when two graphs G, G' are related by such an elementary transformation,
the corresponding linear forms ZG, ZG* are also related in a simple way. For
instance when eλ,e2 are two parallel edges in G, we may compute Z(G,w)
by first deleting βi, thus obtaining the graph G', and then replacing w(e2) by
the Hadamard product w(eι) o w(e2), thus obtaining the mapping w1. The
equality of Z(G,w) and Z(G',w') for arbitrary w is conveniently expressed
by the equation ZG = ZG>(μ* ® Id), where the map μ* ® Id from ΉG to
HG> acts as the Hadamard product μ* : H ® H -> H on the factors of WG

corresponding to ei,e2, and acts as the identity on the other factors. The
fact that a similar procedure also works for star-triangle transformations is
a special property of Ή, which is established in [Ja5] using some results of
[Nl].

In this way we obtain (see [Ja5], Proposition 6) that for every connected
plane graph G, the linear form ZG on Ή,G is a composition popi Pk-> where
Po is scalar multiplication by |ΐ^(Γ)| = 16ra, and each of pi,.. . , p* corre-
sponds to the action of one of the maps 0,0*,μ,μ*,ft, ft* on some factors
of a tensor product of copies of H. Here θ,θ* are linear forms which give
the (constant) diagonal element and the (constant) row sum of a matrix in
Ή, μ, μ* are linear maps from 1-1®% to % which correspond to the ordinary
matrix product and Hadamard product, and ft, ft* are certain linear maps
from H ® Ή. ® % to itself associated with star-triangle transformations. It
is easily checked (see for instance [Nl]) that the matrices of 0,0*,μ,μ* with
respect to the bases {1}, {Au i G {0,... ,4}}, {A; ® Aj, i,j G {0,... ,4}}
of C, Ή, Ή. ® lί, have entries given by polynomials in m (these polyno-
mials are of degree 0 for 0,μ* and of degree 1 for θ*,μ). The matrix of
the map ft, as defined in equation (47) of [Ja5], with respect to the ba-
sis {Ai ® Aj ® Ak, i,j, k G {0,... , 4}} 01%®%®%, has non-zero entries
of the form K(ijk/uυw), or Pijk(u,υ,w) in the notations of [Nl], where
these parameters are expressed as polynomials of degree 1 in m. Finally, to
deal with the map ft* defined in equation (53) of [Ja5], we shall show that
ft* = (16m)"4(Φ ® Φ ® Φ)ft(Φ ® Φ ® Φ),where Φ is some duality map on
%. This follows from Proposition 18 of [Ja5] and the fact that % satisfies
the planar duality property, which means that Proposition 5 of the present
paper holds with Λ replaced by H. The simplest way to establish this last
fact when m > 1 is to use Proposition 12 of [Ja5]. Indeed in this case it is
easy to see that the coefficients of W+ with respect to Aγ, A2, A3, A± are all
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distinct and the spin model defined by W+, W- strongly generates %. On the
other hand, when m = 1, the Hadamard graph Γ is isomorphic to the 4-cube
and we may apply Proposition 11 of [Ja5] or equivalently Proposition 5 of
the present paper. It is easy to check (see [Ja5], Section 7.3) that the matrix
of Φ in the basis {Aΐ5 i E {0,... , 4}} of % has entries given by polynomials
of degree at most 2 in the variable \/ra. Hence the entries of the matrix of
K* with respect to the basis {A{® Aj ®A k, i, j , k G {0,... ,4}} of'H®'H<8)Ή
are also given by rational functions of a. D

We are now ready to prove

Proposition 14. For every Hadamard graph Γ on 16m = 4(—α2 — α~2)2

vertices, the link invariant associated with ζ(Γ,α) is the (—α~3)-composition
of two Jones polynomials evaluated at t = α 4.

Proof. Let X be an elementary Abelian 2-group, and let ζ = (X x X, Wu W2,
PV3, Ŵ 4, ̂ A, |-X"|) be the spin model for the Jones polynomial described in
Section 5.6. Thus \X\ = - α 2 - α" 2 , μ = - α 3 ,

Wλ = W2 = -a3lx ®IX + a~ι{Jx ® Jx - Iχ ® Ix),

W3 = W4 = -a~3Ix ®IX + a(Jx ® Jx - Ix ® / x ) ,

and the associated link invariant is the Jones polynomial evaluated at t — α4.
It is easy to see that when the Hadamard graph Γ comes from the Hada-

mard matrix H = Mx as explained in Theorem 1.8.1 of [BCN], using the
above matrices W{(i = 1,... ,4) and λ = 1 in the matrices (80), the spin
model

C = ((Z/2Z) x (Z/2Z) x X x X, W[γ, W'2
Y, W?, W'4

Y, - α 3 ,

of Proposition 11 can be identified with ζ(Γ, α). Hence in this case Proposi-
tion 14 follows from Proposition 11. In view of Proposition 13 this implies
that for any link represented by a diagram L and for every number a such
that — a2 — oΓ2 is a power of 2, the (—αΓ3)-composition of two Jones poly-
nomials evaluated at t = a4 equals (—a3)~ τ^QL(a). The equality of the
corresponding rational functions follows. D

7. Conclusion.

The classification problem for spin models seems to be hopelessly difficult in
general (see [BJS], [N3] for some recent contributions). Even for transla-
tion invariant spin models, the problem is solved only for a restricted class
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of spin models in the sense of [KMW] satisfying a so-called modular in-
variance property [BBJ]. We have proposed new operations on the class of
translation invariant spin models: dualization (Proposition 6) and compo-
sition (Proposition 11). These operations should be taken into account as
well as the tensor product construction of [H2] and the twisted extension
construction of [N2] in the study of the classification problem. They should
also provide new examples of four-weight spin models in the sense of [BB2].

For groups of the form X x X, we have shown that translation invariant
spin models are essentially equivalent to doubly translation invariant IRF
models on X, or to strongly conservative vertex models on X (Propositions
8, 2). As shown in Proposition 14 this can lead to a better understanding of
the corresponding link invariants. Moreover one may hope that this could
establish some relations between the study of spin models and the theory of
quantum groups since these algebraic structures are closely connected with
vertex models.

β,(v)

e2ίv) β4ίv)

Figure 1. Figure 2.
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v, σ>

Figure 3.
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