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Abstract
The Goeritz matrix of a link is obtained from the Jacobian matrix of a modified Dehn pre-

sentation associated to a diagram using Fox’s free differential calculus. When the diagram is
special the Seifert matrix can also be determined from the presentation.

1. Introduction

1. Introduction
Lebrecht Goeritz introduced an integral matrix associated to knot diagrams in [7]. The

Goeritz matrix represents a class of quadratic forms of a link, a class that is invariant under
link isotopy. Goeritz showed that the pth Minkowski units of his matrix, for p an odd prime,
are invariant. So too is the absolute value of the determinant of the Goeritz matrix.

Herbert Seifert soon recognized the topological importance of the Goeritz matrix [13].
It is a relation matrix for the first homology group of the 2-fold cover of the 3-sphere S3

branched over each component of the link, and it determines a linking form on homology
classes.

During the succeeding half century, the definition of the Goeritz matrix was extended and
modified (see [8, 9, 12, 15]). However, unlike the Alexander matrix (see below), which can
be derived from a presentation of the link group, the Goeritz matrix has been defined by
combinatorial and topological means. Our purpose is to show how the Goeritz matrix arises
directly from a presentation of the link group that is closely related to the well-known Dehn
presentation, using the machinery of Fox’s free differential calculus.

The presentation that we give (Theorem 4.1) is obtained from a link diagram. When the
diagram is special and not split, the presentation yields a Seifert matrix for the link (Theorem
6.1). Consequently, link invariants that are obtainable from a Seifert matrix can also be found
from such a group presentation. For example, it is well known that the Blanchfield pairing
of a knot is such an invariant. (See [6] for a new proof of this fact and some of its history.)

The present paper was motivated by [14], in which the first and third authors showed that
a Seifert matrix of an oriented link arises as the Laplacian matrix of a directed checkerboard
graph with ±1-edge weights of a special diagram of the link.
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Fig.1. Goeritz index of crossing c

2. The Goeritz matrix

2. The Goeritz matrix
Consider a link L ⊂ S3 with diagram D in the plane. It is well known that the comple-

mentary regions of D can be shaded in checkerboard fashion so that each arc of the diagram
separates a shaded region from an unshaded one. We adopt the common convention that the
unbounded region is unshaded.

The reduced Goeritz matrix G = G(D) associated with the checkerboard diagram D is
an n × n integral matrix, where n is the number of bounded unshaded regions. Let U0 be
the unbounded region, let U1, . . . ,Un be the bounded unshaded regions, and, for i � j ∈
{0, . . . , n}, let Ci, j be the set of crossings of D at which both Ui and U j are incident. Let
η(c) = ±1 denote the Goeritz index of c, as in Figure 1. Then for 1 ≤ i, j ≤ n the i, jth entry
Gi, j is given by

(2.1) Gi, j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
− ∑

c∈Ci, j

η(c) if i � j

n∑
k=0
k�i

∑
c∈Ci,k

η(c) if i = j.

We will make frequent use of the checkerboard graph Γ = Γ(D) with vertices corre-
sponding to the shaded regions of D. Two vertices are joined by an edge whenever the
corresponding regions meet at a crossing. (If only one shaded region appears at a crossing,
the corresponding edge is a loop.) For notational convenience, we use the symbols of the
shaded regions of D also for the vertices of Γ. We label each edge of Γ with weight +1 or
−1 according to the Goeritz index of the corresponding crossing (Figure 1). The number of
connected components of Γ will be denoted by β = β(D).

The reduced Goeritz matrix G is a reduced version of the much-studied Laplacian matrix
associated with a checkerboard graph defined in the same way, but with a vertex for each
unshaded region of D instead.

3. Fox’s differential calculus

3. Fox’s differential calculus
The free differential calculus [2, 3, 4, 5] is a standard tool in both knot theory and combi-

natorial group theory. We briefly review the fundamental ideas.

Definition 3.1. Let w = wε11 · · ·wεnn be a word in symbols w1, . . . , wn with exponents εi ∈
{1,−1}. The symbols w1, . . . , wn need not be distinct. For each i, let Wi denote the initial
subword wε11 · · ·wεi−1

i−1. For w ∈ {w1, . . . , wn}, the partial derivative ∂W/∂w is the element of
the integral group ring of the free group on w1, . . . , wn:
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(3.1)
∂W
∂w
=
∑
wi=w

{
Wi if εi = 1
−Wiw

−1 if εi = −1.

(The empty subword W1 is identified with the identity element 1 of the group ring.)

Definition 3.2. Let 〈x1, . . . , xm | r1, . . . , rn〉 be a presentation of a group π. The Jacobian
matrix of the presentation is the n × m matrix J with i, j entry equal to ∂ri/∂x j.

Remark 3.3. When 〈x1, . . . , xm | r1, . . . , rn〉 is a presentation of the group π = πL of a link
L, the following specializations of the Jacobian matrix J will be used.

The abelianization π/π′ is a free abelian group of finite rank μ equal to the number of
components of the link. An abelianization homomorphism α : π → (t1) × · · · × (tμ) can be
defined sending an oriented meridian of the ith component of the link to ti, and we use α
to identify the integral group ring Z[π/π′] with the Laurent polynomial ring Z[t±1

1 , . . . , t
±1
μ ].

(The homomorphism α depends only on the order and orientation of link components. We
follow Fox’s convention [4, p. 122] that the meridian ti represents a loop whose linking
number with the ith component is −1.) By extension we have a group ring homomorphism
α : Z[F(x1, . . . , xm)] → Z[π/π′], where F(x1, . . . , xm) is the free group on x1, . . . , xm. The
specialization Jα is defined by replacing each entry of J with its image under α.

For any group presentation of π, the matrix Jα represents a homomorphism of free
Z[π/π′]-modules with cokernel isomorphic to the Alexander module of L; that is, the first
relative homology group of the universal abelian covering space of S3 \ L with respect to the
preimage of a point. The matrix Jα is also called an Alexander matrix of L.

Let τ be the composition of α with the homomorphism Z[π/π′]→ Z[t±1] sending each ti
to t. The specialization Jτ is defined by replacing each entry of J with its image under τ.

Finally, let ν be the composition of τ with the homomorphism Z[t±1] → Z, where t and
t−1 are mapped to −1. We refer to the specialization ν as 2-reduction. Define Jν by replacing
each entry of J with its image under ν.

4. Statement of main theorem

4. Statement of main theorem
In this section we state our primary result, which describes a link group presentation such

that the 2-reduced Alexander presentation is closely related to the Goeritz matrix. Before
stating the result we explain how the presentation is constructed from a non-split diagram
D. (The modification needed for a split diagram is not difficult, but we will discuss it later,
in the proof of the main theorem.) We recall that a link diagram is split if some embedded
circle separates it into two nonempty parts. Otherwise the diagram is non-split.

Select a shaded region adjacent to the unbounded region and label it S 0. It will corre-
spond to the generator xn+β = xn+1 in the statement of the theorem. Recall that the un-
bounded region is labeled U0. Denote the remaining unshaded regions by U1, . . . ,Un; they
will correspond to the generators x1, . . . , xn.

Bounded faces of the plane graph Γ are identified with the regions U1, . . . ,Un. We orient
the boundary ∂Ui of each Ui in the counterclockwise sense and join it to S 0 by a base path
in Γ. The homotopy classes of these based boundary loops freely generate the fundamental
group π1(Γ, S 0).

For each Ui we define a relator ri in the generators U1, . . . ,Un, S 0, as follows. Beginning
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at S 0, we follow the based loop associated to Ui. Each time we traverse an edge, we apply
the labeling convention illustrated in Figure 2 to label the next vertex along the based loop in
terms of S 0 and the unshaded generators of the regions that border the based loop. As this is
done inductively, when returning to S 0 we have a word Wi in U1, . . . ,Un, S 0, which we call
the return value of the based boundary loop. We define ri to be WiS 0, the boundary relator
of the region Ui. (Here and throughout we often denote the inverse of a group element g by
g.)

Fig.2. Computing boundary along an edge of Γ

Computation of the return values W is expedited by the following combinatorial process.
Travel in the preferred direction along a based boundary loop of Γ that contains ∂Ui and
determines the boundary relator ri. At each edge record a formal fraction a

b , where a, b are
labels of the regions to either side of each edge; if the edge is weighted +1 (resp. −1), then
a is the label of the region to the left (resp. right) while b is the label of the region to the
right (resp. left).

If the based boundary loop containing ∂Ui has odd length 2l − 1, then we obtain a se-
quence:

(4.1)
a1

b1
,

a2

b2
, · · · , a2l−2

b2l−2
,

a2l−1

b2l−1

The return value Wi has the form W ′S 0W ′′, where W ′ is the zig-zag alternating product of
numerators and denominators in the sequence (4.1), working backward from the numerator
a2l−1 of the last term, and including the inverse of each denominator. W ′′ is a similar product,
working forward from the denominator b1 of the first term and including the inverse of each
numerator. Explicitly,

(4.2) Wi = a2l−1b2l−2 · · · b2a1S 0b1a2 · · · a2l−2b2l−1.

If the based boundary loop containing ∂Ui has even length 2l, then we obtain a sequence:

(4.3)
a1

b1
,

a2

b2
, · · · a2l−1

b2l−1
,

a2l

b2l

The return value Wi now has the form W ′S 0W ′′, where W ′ is the zig-zag alternating product
of numerators and denominators in the sequence (4.3), working backward from the numera-
tor a2l of the last term, and including the inverse of each denominator. W ′′ is again a similar
product, beginning with the inverse of the numerator a1 of the first term, and including the
inverse of each numerator. We have
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(4.4) Wi = a2lb2l−1 · · · a2b1S 0a1b2 · · · a2l−1b2l.

Example 5.3, involving the Borromean rings, provides an example of computing bound-
ary relators using formal fractions and zig-zag products described above.

Theorem 4.1. Assume that D is a checkerboard shaded diagram of a link L. Let n be the
number of bounded unshaded regions, and β = β(D) the number of connected components
of the checkerboard graph Γ = Γ(D). Then πL = π1(S3 \ L) has a presentation of the form

(4.5) 〈x1, . . . , xn+β | r1, . . . , rn〉
such that

• generators x1, . . . , xn correspond to the bounded unshaded regions of D;
• generators xn+1, . . . , xn+β correspond to certain shaded regions of D, one for each

component of Γ(D), with xn+β corresponding to a shaded region adjacent to the
unbounded region of D;
• when D is non-split the relators ri are the boundary relators WiS 0 of the unshaded

bounded regions Ui of D; and
• the 2-reduction Jν of J is equal to (G 0), where G is the reduced Goeritz matrix and

0 is the n × β zero matrix.

Remark 4.2. If the graph Γ(D) is connected, then β = 1 and xn+β = xn+1 in the statement
of the theorem.

Since any region of D can be regarded as the unbounded region via stereographic projec-
tion, the following is an immediate consequence of Theorem 4.1.

Corollary 4.3. Assume that D is a non-split diagram of a link L. The group πL is gener-
ated by m elements, where m is the minimum of the numbers of shaded and unshaded regions
of D.

The number m in Corollary 4.3 is often much smaller than the number of generators
required for a Wirtinger presentation. For instance, the Wirtinger presentation of the group
of the pretzel link K(p, q, r) has p + q + r generators; but, for any values of p, q and r, the
presentation of Theorem 4.1 requires only three generators.

5. Proof of Theorem 4.1

5. Proof of Theorem 4.1
We review the Dehn presentation of a link group πL (see [10] for further details). Begin

with a diagram D of L, a generic projection of L in the plane, using an artistic device to
indicate how arcs pass over each other. Let U0 denote the unbounded region. Choose two
basepoints, one above U0, the other below U0 and directly under the first. Each comple-
mentary region R of the diagram has an associated element of πL, denoted also by R, and
represented by a loop described as follows. Begin at the upper basepoint, and follow a hor-
izontal path to a point over the interior of R; then descend along a vertical path through R
until reaching the depth of the lower basepoint; travel along a horizontal path to the lower
basepoint; finally ascend through U0 to the upper basepoint. Notice that the element of πL

corresponding to U0 is the identity.
Defining relators are of the form R1R2R3R4 (see Figure 3), one for each crossing of D.
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Fig.3. Crossing with Dehn relator R1R2R3R4

By a Dehn relator we will mean any such relator. With these relators, the generators R
corresponding to all regions generate the free product π̂ � πL ∗ Z, where the infinite cyclic
factor is generated by U0. The Dehn presentation of πL is obtained by including the relator
U0 along with the Dehn relators.

Remark 5.1. We offer a few general comments about Dehn presentations.

(1) Dehn generators have infinite order in π̂, a fact that can be seen by mapping π̂ to the
infinite cyclic group Z, sending each generator to 1.

(2) Unlike the Wirtinger presentation, Dehn presentations do not require arcs of the link
diagram to be oriented.

(3) Re-indexing the regions Ri produces equivalent presentations of π̂L. (See [10] for
these and other facts about Dehn presentations.)

(4) If the overpassing arc in Figure 3 belongs to the jth component of the link and is
oriented upward, then α(R1R2) = t j = α(R4R3). Similarly, if the underpassing arc belongs to
the kth component and is oriented from left to right then α(R1R4) = tk = α(R2R3).

We prove Theorem 4.1 first for any non-split link diagram D. For such diagrams every
bounded region is homeomorphic to a disk.

According to the construction described in the previous section, each boundary relator ri

is a consequence of the Dehn relators that correspond to the edges of the associated based
boundary loop. It follows that adjoining r1, . . . , rn to the Dehn presentation does not change
the fact that we have a presentation of G.

Since the based boundaries of the regions U1, . . . ,Un generate the fundamental group of
Γ, it follows that WS 0 is in the normal closure of r1, . . . , rn for the boundary of any based
loop in Γ. In particular, the loop that borders the unbounded region U0 determines a relation
rout that is a consequence of r1, . . . , rn.

For any based boundary loop, we can replace the counterclockwise direction of ∂Ui with
the clockwise direction. The sequence of formal fractions that we obtain (see Section 4)
is a formal inverse: the order of terms is reversed while numerators and denominators are
interchanged. Replacing Wi by the new return value produces another word r∗ that we also
call a boundary relator. It is not difficult to check that r∗ is a cyclic permutation of r (resp.
r−1) if the loop has odd (resp. even) length.

Next we eliminate all shaded generators except S 0. For this it is convenient to use a
spanning tree T of Γ. Following branches of T from S 0, we rewrite each shaded generator
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(vertex) in terms of U1, . . . ,Un, S 0 (see Figure 2). At each step we eliminate via a Tietze
transformation both a shaded generator (vertex) and a Dehn relation (incident edge).

Each remaining Dehn relator r corresponds to an edge e of Γ not contained in the spanning
tree T . Consider the unique based loop in T ∪ e with arbitrary orientation. The boundary
relator of the loop is an element of the normal closure of the set of Dehn relators associated
to the edges of the loop. All but the relator corresponding to e are trivial when rewritten in
terms of U1 . . . ,Un, S 0. Since the boundary relator is a consequence of r1, . . . , rn, so is the
Dehn relator r corresponding to e. We discard r.

It follows now that the link group πL has a presentation with generators U1 . . . ,Un, S 0

and boundary relators of the based boundaries of the regions U1, . . . ,Un. As discussed
in Section 3, it follows that if J is the Jacobian matrix of this presentation, then Jα is an
Alexander matrix for L.

We proceed with a proof that the 2-reduced Jacobian matrix Jν coincides with (G 0),
where G is the reduced Goeritz matrix G = G(D) and 0 is a column of zeroes.

Recall that the rows and columns of G correspond to the bounded unshaded regions
U1, . . . ,Un. Each Ui corresponds to a bounded region of the graph Γ, and we can obtain
the entries of the ith row of the reduced Goeritz matrix by following the boundary of this
region in the counterclockwise direction. With respect to this counterclockwise orientation,
the region Ui will be on the left of each edge and an unshaded region U j will be on the right.
If i � j and the edge has positive weight, then we record +1 (resp. −1) in the ii (resp. ji)
entry. If i � j and the edge has negative weight, then we record −1 (resp. +1) in the ii (resp.
ji) entry.

Lemma 5.2. The homomorphism τ applied to any shaded generator yields an odd power
of t, while τ applied to any unshaded generator yields an even power of t. It follows that
every shaded generator S has 2-reduction ν(S ) = −1, while every unshaded generator Ui

has 2-reduction ν(Ui) = +1.

Proof. The lemma is verified recursively using part (4) of Remark 5.1, starting with
U0 = 1. �

Recall that the boundary relator ri = WiS 0 is constructed by following the based boundary
of Ui, taking into account the Dehn relation at each crossing. It follows that Wi consists
almost completely of unshaded generators; the only exception is a single appearance of
either S 0 or S 0. Regardless of whether it is S 0 or S 0 that appears in Wi, Definition 3.1 and
Lemma 5.2 imply that ν(∂ri/∂S 0) = 0.

Now consider an edge e of the boundary ∂Ui, and give e the edge direction consistent
with the counterclockwise orientation of ∂Ui. Suppose e has positive weight. Then the
associated Dehn relation has the form S ′ = UiS U j, where S , S ′ are the initial and terminal
vertices, respectively. It follows that the relator ri will have either the form AUiBS 0CU jDS 0

or the form AU jBS 0CUiDS 0, where A, B,C,D include only unshaded generators. Either
way, Definition 3.1 and Lemma 5.2 tell us that the contribution of the indicated appearance
of Ui to the value of ν(∂ri/∂Ui) is +1, and the contribution of the indicated appearance of
U j to the value of ν(∂ri/∂U j) is −1. These contributions are the same as the contributions of
the edge e to entries of the ith row of the Goeritz matrix G.

Similarly, if e has negative weight then the relator ri will have either the form
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Fig.4. Diagram D of Borromean rings L (left) and its checkerboard graph Γ (right)

AU jBS 0CUiDS 0 or the form AUiBS 0CU jDS 0, where A, B,C,D include only unshaded
generators. Once again, the contributions of the indicated appearances of Ui and U j to
the ith row of Jν are equal to the contributions of e to the ith row of G.

This completes the proof of Theorem 4.1 for non-split diagrams.

Example 5.3. Consider the diagram D of the Borromean rings and associated checker-
board graph Γ = Γ(D) in Figure 4. All edges have weight +1. The based boundary loop of
U1 yields the sequence of formal fractions U1

U0
, U1

U3
, U1

U2
and the associated return value W1 is

the final element of the sequence:

U1S 0U0, U1U0S 0U1U3, U1U3U1S 0U0U1U2.

The relator r1 is U1U3U1S 0U0U1U2S 0. Similarly, r2 and r3 are, respectively,

U2U3U2S 0U1U2U0S 0

U1U2U3U1U2S 0U1U3U0U3U2S 0.

In order to get a presentation for πL we must delete the occurrences of U0.

πL �
〈
U1,U2,U3, S 0

∣∣∣∣∣∣ U1U3U1S 0U1U2S 0, U2U3U2S 0U1U2S 0,

U1U2U3U1U2S 0U1U3U3U2S 0

〉

The 2-reductions of the boundary relators of r1, r2, r3 can also be computed using above
sequences of fractions. For r1 we have:

U1 − U0, U1 − U0 + U1 − U3, U1 − U0 + U1 − U3 + U1 − U2 = 3U1 − U0 − U2 − U3.

Similarly, r2 and r3 yield, respectively, 3U2 − U1 − U3 − U0 and 3U3 − U1 − U0 − U2.
To construct the 2-reduction of the Jacobian matrix for the presentation of πL, we delete
occurrences of U0. The result is ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 −1 0
−1 3 −1 0
−1 −1 3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
with the last column corresponding to S 0. This is the same (G 0) matrix that results from
the definition of G (see Section 2).
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Finally, we consider a general diagram D of any link L. When D is split, the checkerboard
graph Γ = Γ(D) is combinatorially well defined but does not contain complete information
about L. (Consider, for example, unlink diagrams consisting of μ circles, some of which may
be concentric.) As before, label the unbounded unshaded region U0 and the remaining ones
U1, . . . ,Un. For each component Γλ of the graph Γ, λ = 0, . . . , β − 1, we choose a shaded
region S λ corresponding to a vertex of Γλ. We identify U0,U1, . . . ,Un, S 0, . . . , S β−1 and
remaining shaded regions of Σ with the generators of the Dehn presentation for π̂L arising
from the diagram D.

Consider the surface Σ in the plane consisting of the shaded regions of D together with
marked bands replacing the crossings between adjacent regions. Each marking is +1,−1 ac-
cording to the Goeritz index of the crossing, as in Figure 1. Each component Σλ corresponds
to a graph component Γλ. The group π1(Σλ, S λ) is free, generated by embedded loops based
at S λ that run counter-clockwise around the holes which correspond to the unshaded regions
Uλ,1, . . . ,Uλ,nλ exterior to the surface. Each loop determines a directed cycle graph with ver-
tices corresponding to S λ and other shaded regions, and edges corresponding to traversed
bands. As before, we label edges with weights +1,−1 according to the Goeritz index of the
crossing. We also label the left- and right-hand sides of each directed edge with symbols of
the unshaded regions U j,Uk that appear on the those sides of the band. Then using Figure 2
we define the return value Wλ,i of the based loop to be the word in U0, . . . ,Un, S λ obtained
by following the loop around. (If the loop avoids crossings then the return value is 1.) We
define the boundary relator rλ,i to be Wλ,iS λ. And as before, the boundary relator of any
based loop of Σλ is contained in the normal closure of the rλ,i.

Each component Σλ has a combinatorially defined checkerboard graph Γλ with vertices
and edges corresponding to shaded regions and crossings. We select a spanning tree Tλ
for Γλ and use it and Tietze transformations to eliminate shaded generators other than S λ
as well as the Dehn relators corresponding to its edges. The same argument as in the
case of non-split diagrams shows that the remaining Dehn relators, rewritten in terms of
U1, . . . ,Un, S 0, . . . , S β−1, are consequences of the boundary relators rλ,1, . . . , rλ,nλ . We delete
them from the presentation.

We have shown that π̂L has a presentation with generators U0,U1, . . . ,Un, S 0, . . . , S β−1

and relators r0,1, . . . , r0,n0 , . . . , rβ−1,1, . . . , rβ−1,nλ−1 . Adjoining the relator U0 yields a presen-
tation for πL.

The unshaded regions of D that are non-simply connected border different components of
the surface S , and hence the 2-reduced Jacobian of the presentation for πL that we have de-
scribed can differ from the reduced Goeritz matrix G in the corresponding rows and columns.

We rectify the problem by adjusting our presentation of πL. Consider a bounded non-
simply connected unshaded region. It is a simply-connected region for some component
S λ0 , and it contains one or more components S λ1 , . . . , S λs . Replace the boundary relator
rλ0 in the presentation just obtained with rλ0 r̃

∗
λ1
· · · r̃∗λs

. (The order of the relations will not
matter. Recall that r̃ is the boundary relation of the outermost loop of the component, and ∗

indicates that the loop in traversed in the clockwise direction.) We repeat the procedure for
each bounded non-simply connected unshaded region of D.

That the new presentation is equivalent to the one with which we began can easily be seen
by considering the relations from innermost components of Σ and working outward. Any
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Fig.5. Split diagram D of link L (left) and surfaces Σ0,Σ1,Σ2 (right)

relation that we append is a consequence of a previous relator.
It is straightforward to see that the trailing principal minor of Jν of the new presentation

coincides with the reduced Goeritz matrix.

Example 5.4. Consider the split diagram D of the 6-component link L in Figure 5. The
surface Σ has three components Σ0,Σ1 and Σ2 containing shaded regions S 0, S 1 and S 2,
respectively. The fundamental group π1(Σ0, S 0) is freely generated by two based loops, one
running around the left-hand side and the other along the right. Their return values are
easily computed using cycle graphs, each of length two and edges with weight −1. The first
boundary is U3U1S 0U3U1. The second is U1U3S 0U1U3. The surface Σ1 has an infinite
cyclic fundamental group, and the boundary of a based loop generator is U1U2S 1U1U2. The
surface Σ2 is simply connected, and we do not need to compute any boundary for it. Putting
all of this together, we have:

πL � 〈U1,U2,U3, S 0, S 1, S 2 | U3U1S 0U3U1S 0, U1U3S 0U1U3S 0, U1U2S 1U1U2S 1〉.
The unshaded region U1 is non-simply connected. We modify its assocated relator in order
to produce a presentation that will yield the reduced Goeritz matrix.

The unshaded region U3 is also non-simply connected. However, its associated relator
needs no modification since the inner boundary of the region has trivial boundary.

The modified presentation of πL is:

πL �
〈
U1,U2,U3, S 0, S 1, S 2

∣∣∣∣∣∣ U3U1S 0U3U1S 0U2U1S 1U2U1S 1, U1U3S 0U1U3S 0,

U1U2S 1U1U2S 1

〉
.

Direct computation using the free differential calculus shows that the 2-reduced version
of the Jacobian matrix of the last presentation is

Jν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−4 2 2 0 0 0
2 0 −2 0 0 0
2 −2 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The submatrix consisting of the first three columns is the reduced Goeritz matrix G asso-

ciated to the shaded diagram D.
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6. Special diagrams

6. Special diagrams
Consider an oriented link L with diagram D. As before, we checkerboard shade the

diagram so that the unbounded region remains unshaded. In this section we assume that the
diagram is special, that is, its shaded regions form an oriented spanning surface F for the
link. (Every link has a special diagram. See, for example, [1].) Using arc orientations and
the right-hand rule, we label each shaded region by + or −, regarding regions labeled + as
one side of the surface, regions labeled − as the other.

We assume also that D is a non-split diagram. As in Section 5, we consider the plane
checkerboard graph Γ, identifying its vertices with shaded regions of D and its bounded
faces with the bounded unshaded regions U1, . . . ,Un of D.

Let S 0 be a shaded vertex labeled +. For each Ui we select a base path from S 0 to a vertex
labeled + on the boundary ∂Ui. By Theorem 4.1 the link group πL has a presentation of the
form

(6.1) 〈S 0,U1, . . . ,Un | W1S 0, . . . ,WnS 0〉.
Since D is special, the length of every boundary ∂Ui is even. The return value Wi has

the form AiS 0Bi, where Ai, Bi are words in U1, . . . ,Un, each having even length, and the
presentation (6.1) can be rewritten as:

(6.2) 〈S 0,U1, . . . ,Un | S 0A1S 0 = B1, . . . , S 0AnS 0 = Bn〉.
As in Section 5 the words Ai, Bi can be read from the sequence of formal fractions

recorded as we travel along the based boundary of Ui. Regard the Ai, Bi as words in the
free group Fn on the generating set {U1, . . . ,Un}, and let Uai,1

1 · · ·Uai,n
n be the image of Ai in

the abelianization Fn/F′n. Define A to be the integral n × n matrix (ai. j). Define B similarly
as (bi, j).

Consider the Seifert matrix H+ with i, j-entry equal to the linking number Lk(∂Ui, ∂U+j ).
Here we regard Ui,U j as oriented curves in the surface F, and ∂U+j as a copy of ∂U j pushed
off the surface in the direction of the positive normal vector. Contributions to linking num-
bers by base paths cancel and so we ignore base paths. We consider also the Seifert matrix
H− similarly defined but with i, j-entry Lk(∂Ui, ∂U−j ), where ∂U−j is obtained by pushing off
in the negative normal direction.

Theorem 6.1. Let D be a non-split, special diagram of a link L. Then πL has a presen-
tation of the form 〈S 0,U1, . . . ,Un | S 0A1S 0 = B1, . . . , S 0AnS 0 = Bn〉, where the matrix B
(resp. A) is equal to the Seifert matrix H+ (resp. H−) of the diagram D. If additionally D is
alternating, then the presentation describes πL as an HNN extension with stable letter S 0.

Proof. The Seifert matrix H+ can be computed directly from the diagram D. Begin by
placing a dot in the corners of unshaded regions if they appear on the left of an under-
crossing arc with respect to its preferred orientation, as illustrated in Figure 6. At each
crossing c of the diagram a dot will appear in exactly one unshaded region. Define εi(c) = 1
if the dot appears in Ui, zero otherwise. We write c ∈ ∂U if the crossing is incident to the
region U. Then
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Fig.6. Unshaded region Ui of special alternating diagram

(6.3) H+i,i =
∑

c∈∂Ui

η(c)εi(c), H+i, j = −
∑

c∈∂Ui∩∂U j

η(c)ε j(c), (i � j).

(See page 231 of [1]. The reader is warned that the second summation there is missing the
negative sign. The proof, however, is correct.)

We can use formulas (6.3) to find the ith row of the Seifert matrix H+ by imagining that
we are standing in the center of Ui. The diagonal term H+i,i is the number of dotted corners
that we see, each weighted by the Goeritz index η(c) = ±1 of the nearby crossing. Each
undotted corner, diagonally across from some region U j, contributes η(c) to the jth column.
In Figure 6, for example, where all Goeritz indices are 1, we have H+i,i = 3 and H+i, jk = −1 if
k = 2, 4, 6; other entries H+i, j are zero.

Now consider the based boundary loop of Ui. First assume that all Goeritz indices are
1. Beginning at a + vertex and traveling around the loop, we record a sequence of formal
fractions

(6.4)
U̇i

U j1

Ui

U̇ j2
· · · U̇i

U j2l−1

Ui

U̇ j2l

,

where l is the length of ∂Ui and · indicates that a dot is found in that region of the corner.
The word Ai is the zig-zag alternating product of numerators and denominators, beginning
with the numerator of the last term:

Ai = UiU j2l−1UiU j2l−3 · · ·UiU j1 .

Likewise, Bi is the zig-zag alternating product of numerators and denominators, beginning
with the inverse of the denominator of the last term:

Bi = U j2lUiU j2l−2Ui · · ·U2Ui.

When we construct Bi from the based boundary of Ui, each crossing from the base path is
encountered twice, once before the based boundary loop traverses ∂Ui and once after. The
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two encounters are in opposite directions, so according to formula (4.4), the two encounters
contribute opposite powers of the same U j to the word Bi. It follows that the contributions
from the base path to Bi cancel in the abelianization of the free group Fn, and we see im-
mediately that the contributions to the ith row of H+ agree with those given by formulas
(6.3).

We have considered only diagrams with crossings having Goeritz index 1. Changing a
crossing flips the corresponding numerator and denominator (but leaves the dot in place). It
is easy to see that the two methods of computation continue to agree. Hence B is equal to
the Seifert matrix H+.

If we reverse the orientation of the diagram D, then the new Seifert matrix that we obtain
is H−. It is equal to transpose of H+. The effect on the sequence of formal fractions arising
from the checkerboard graph is to move each dot, from numerator to denominator or vice
versa. We see that A is equal to H−.

This completes the proof of the first statement of Theorem 6.1. For a proof of the second
statement assume that D is a special alternating diagram. (A special diagram is alternating if
and only if all Goeritz indices have the same value.) The sets {A1, . . . , An} and {B1, . . . , Bn}
generate subgroups gp(A1, . . . , An) and gp(B1, . . . , Bn) of the free group Fn, respectively.
In order to prove that the presentation (5.3) expresses πL as an HNN extension with stable
letter S 0, we must show that the homomorphism φ taking Ai to Bi, for each i, is an isomor-
phism. It suffices to show that A1, . . . , An and B1, . . . , Bn freely generate gp(A1, . . . , An) and
gp(B1, . . . , Bn), respectively.

Since D is a special alternating diagram, the determinants of H+ and H− are nonzero
(see Prop. 13.24 of [1]). Hence A1, . . . , An generate a subgroup of Fn/F′n � Zn with finite
index (equal to the absolute value of the determinant). It follows that A1, . . . , An must freely
generate gp(A1, . . . , An). The same argument applies to B1, . . . , Bn. �

Here is a direct consequence of Theorem 6.1, analogous to the last assertion of Theorem
4.1.

Corollary 6.2. Let D be a non-split, special diagram of a link L, let H+,H− be the
corresponding Seifert matrices defined above, and let H̃ = H− − tH+. If τ is the map defined
in Remark 3 then L has an Alexander matrix J such that Jτ = (H̃ 0), where 0 is a column of
zeroes.

Proof. Theorem 6.1 tells us that πL has a presentation 〈U1, . . . ,Un, S 0 | r1, . . . , rn〉, where
ri = AiS 0BiS 0. Since D is special and U0 = 1, part (4) of Remark 5.1 tells us that every Dehn
generator U corresponding to an unshaded region has τ(U) = 1. Also, the Dehn generator
S corresponding to a shaded region labeled + (resp. −) has τ(S ) = t (resp. τ(S ) = t−1). In
particular, τ(S 0) = t.

Now, let J be the Alexander matrix obtained from the presentation 〈U1, . . . ,Un, S 0 |
r1, . . . , rn〉 using the free differential calculus, as in Section 3. For 1 ≤ i ≤ n the image
under τ of the ith entry of the last column (the column corresponding to S 0) is τ(Ai) −
τ(AiS 0BiS 0) = 1 − tt−1 = 0. The fact that the first n columns of Jτ are the same as the
columns of H̃ follows from the equalities A = H−, B = H+ of Theorem 6.1. �
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Remark 6.3. More can be said about a link with special non-split alternating diagram.
It is known that the Seifert surface F formed by its shaded regions has minimal genus, and
splitting S3 along F produces a handlebody  of genus n [11]. The boundary of  contains
two copies F+, F− of F with F+ ∩ F− = L. The infinite cyclic cover of S3 \ L corresponding
to the homomorphism τ : π1(S3 \ L) → Z � 〈t |〉 sending each oriented meridian of L to
t can be constructed by gluing countably many copies ν of the handlebody end-to-end,
matching F+ ⊂ ν with F− ⊂ ν+1. With appropriate choice of basepoint and base paths
the gluing map induces a monomorphism of fundamental groups that corresponds to the
HNN amalgamation map φ in the proof of Theorem 6.1.
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