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Abstract
A generalization of the Einstein equations with the cosmological constant is considered for
complex line elements. Several second order semilinear partial differential equations are de-
rived from them as semilinear field equations in homogeneous and isotropic spaces. The non-
relativistic limits of the field equations are also considered. The properties of spatial expansion
and contraction are studied based on energy estimates of the field equations. Several dissipative
and anti-dissipative properties are remarked.

1. Introduction

The solutions of the Einstein gravitational equations describe the spacetimes which are
expanding or contracting. In this paper, we consider the derivation of several semilinear par-
tial differential equations in those spacetimes, and we put some remarks on the fundamental
effects of spatial variances for the energy estimates of the equations. We use complex line
elements to give a unified derivation of the equations. There is a long history of the study
of the Einstein equations in the complex coordinates, and the complex coordinates have
played important roles in the study of the general relativity (see e.g. [35, 37, 48]). However,
when we consider the semilinear terms which are power-type of fractional order in the field
equations, we are not able to use complex derivatives since the semilinear terms are not holo-
morphic functions. Instead, we use the following space. For any natural number n and any
fixed real numbers w = (W°, -+, ") € (-n/2,7/2]'™", we consider a (1 + n)-dimensional
space M!*" defined by

M1+n = {Z € C1+n Iza — xaeiw"’ X e R, 0<a< I’l},

where C denotes the set of complex numbers. We consider a generalization of the Ein-
stein equations for non-Hermitian complex line elements of the form g,(z)dz*dz’, where
{gap}o<ap<n are complex-valued functions for z = (2%, - -+ ,z") € M!'*". Under the cosmolog-
ical principle, we give the solution of the generalized Einstein equations as

k=r

2 2\=2 n
(1.1) Jopdz®d? = —*(d2°)* + a(2*)*¢* (1 + T) Z(dzj)z,
=1

where ¢ > 0 is the speed of light, g(# 0),k € C are constants, > = Y"_, (z%)?, and a(-)
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is a complex-valued function which denotes the scale-function of the space (see (3.10), be-
low). This solution is the well-known Friedmann-Lemaitre-Robertson-Walker metric when
z=(tx',---,¥") e R g =1and k* = 0, +1, where k? denotes the curvature of the space.
There is a large body of literature on the generalization of the Einstein equations for Hermit-
ian line elements and general dimensions (see e.g. [10, 11, 18, 19, 28, 29]). In this paper, we
consider the non-Hermitian line element on M!*", and we derive several semilinear partial
differential equations in a unified way as follows.
For any function f on M!*", we define the derivative 8, f(z) for z € M!*" by

0 v 7071 70 4 i s+l . amy
(12) buf() = tim LT T 2) 2 @)
h—0 heiw
heR\{0)
Since z = (2%, -+ ,2") € M'*" is parametrized by x = (x’,- -+, x") € RI*" by the relation
(13) = el

if we put f.(x) := f(z) with (1.3), then we have ,f(z) = e " 0f.(x)/0x*. We say that
f is a C'-function if f is differentiable in the sense (1.2) and d, f is continuous on M!*".
Let us consider the background spacetime M'*" with the line element (1.1). We put g = 1
and £k = 0 in (1.1). As the equation of motion of the massive scalar field described by a
complex-valued function ¢ = ¢(2°, - - - , z") with the mass m and a potential A|¢|"~'¢*/(p+1)
ford e Cand 1 < p < oo, we derive the second order differential equation

2.4

1 ndpa m-c

2
(1.4) - (ao F =0+ —

)¢ + %A@ +AllP'¢ =0
a

for z € M'*" as the Euler-Lagrange equation of a Lagrange density (see (4.1), below), where
h is the reduced Planck constant (the Dirac constant), 9y := 9/0z° and A, := Z;L ] 0% /(077)?.
We note that the term |¢|’~'¢ is not holomorphic, so that, the equation (1.4) could not be
defined on the whole space C!'*". We also show that the nonrelativistic limit of (1.4) yields
the equation

2 1
(1.5) +i 2" Gout + — At + Auw|’"u = 0
h a?
for z € M'*™" with a suitable transform from ¢ to u = u(z°,-- - ,z") (see (4.5), below), where

i = (=1)!/? and w is a weight function defined by w(z®) := by(a(0)/a(z"))"'? for a constant
b() e C.

By the transform (1.3), the equations (1.4) and (1.5) give typical second order partial
differential equations. For example, let us consider the simplest case that the scale-function
is given by a constant function a(-) = 1. From (1.4) and (1.5), we obtain the semilinear
Klein-Gordon equation

m26‘4
(1.6) 60— DD+ ¢ = CAHTY =0,
the semilinear Schrodinger equation
2
(1.7) ii%n@tu + A+ Al = 0,

the semilinear elliptic equation
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2.4

(1.8) Bo+ A + ";—f — AP =0,
and the semilinear parabolic equation

2
(1.9) 7’”0,14 — At — iAlu" =0

(see (5.2) and (5.3), below, for the case of general a(-)), where we denote the Laplacian by
Ay = Z;le 0%/(0x7)?. For the elliptic equation (1.8), the variable cf can be naturally regarded
as one of spatial variables (see the argument on (5.6), below). The terms A|¢|”~'¢ and
AlulP~'u are fundamental semilinear terms in nonlinear theory to describe the self-interaction
of the solution. For the last parabolic equation (1.9), we note that the dimension of 7/m in
the SI units is M*S™! (M: meter, S: second), which is equivalent to the dimension of the
thermal diffusivity K; of the heat equation d,u — K;A,u = 0, and also to the dimension of the
diffusion coeflicient K, of the diffusion equation d,u — K»A,u = 0. We are able to replace
A, with Zf.:l 02 /(0x7)? — ;f:[H 0% /(0x7)? for any 1 < ¢ <n-1whenn > 2 in the above
equations. For example, we obtain the semilinear ultrahyperbolic equation

4

2 n 2 2 .4
(1.10) Re-c| > 0 > 0 ¢+mh§ ¢— AP o =0

@) L (0w

=1
instead of the Klein-Gordon equation (1.6) (see e.g. [25] for the ultrahyperbolic equation).

It is well-known that the Schrédinger equation (1.7) is derived from the Klein-Gordon
equation (1.6) by the transform ¢(z, x) = u(z, x)e*™"/" and the nonrelativistic limit ¢ — oo.
We extend this fact to (1.4) and we obtain (1.5). There are other ways to derive the above
equations by the formal manner. For example, the equation (1.9) is obtained from (1.7) by
the Wick rotation ([48], the change from ¢ to i) formally. However, this rotation is not valid
for the nonrelativistic limit since the transform ¢(¢, x) = u(t, x)eimcz’/ " does not preserve
the gauge invariance in the semilinear term. The aim of this paper is to remark that the
generalization of the Einstein equations on M'*" (see (2.11), below) are useful to derive the
above semilinear partial differential equations in a unified way. As far as the author knows,
the derivation of the semilinear parabolic equation (1.9) (including the semilinear complex
Ginzburg-Landau equation (5.8), below) based on the nonrelativistic limit from the field
equation (1.4) is new.

The solutions of the Klein-Gordon equation (1.6) and the Schrodinger equation (1.7) have
the properties of waves, while the solutions of the equation (1.9) as the diffusion equation
have the properties of particles. On M!'*", these equations are naturally unified in the forms
of (1.4) and (1.5) even for the semilinear equations. And the properties of the equations (1.4)
and (1.5) are dependent on the choice of M!'™ in C'*”, namely, dependent on the choice of
{w}_,. In this sense, we are able to regard (1.4) and (1.5) as the equations which describe
the energy including waves and particles. This fact reminds us of the wave-particle duality
in [12] and [14].

The equation (1.4) includes the semilinear wave equation and the semilinear Klein-
Gordon equation in the curved spacetimes. There are increasing number of papers which
consider those equations. As closely related results, the global solutions for small data
for the Klein-Gordon equation have been shown in asymptotically de Sitter spacetime in
[4]. The wave equation with quadratic nonlinear term in asymptotically de Sitter and Kerr-
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de Sitter spacetimes has been considered in [23]. The global solutions for semilinear wave
equations have been shown on the manifold with the time slices being real hyperbolic spaces
in [1, 2, 31, 32] (see also the references in Section 5).

The equation (1.5) includes the semilinear heat equation and the semilinear Schrédinger
equation. There is a large literature on the Cauchy problem for (1.7) and (1.9) (see e.g.
[7, 8, 9, 45, 52]). The properties of semilinear Schrodinger equations of the form (i9; +
Agu = |ulP~'u have been studied on a certain compact and noncompact Riemannian man-
ifold (M, g), where A, is the Laplace-Beltrami operator on (M, g). In the hyperbolic space
H", the dispersive effect on Schrodinger equations was considered in [3], and the global ex-
istence of solutions with finite energy has been shown in [24]. In the de Sitter spacetime, a
dissipative effect of the spatial expansion on Schrodinger equations was shown in [34].

This paper is organized as follows. In Section 2, we show a generalization of the Einstein
equations on the space M!*". Although the method is a slight modification of the classical
argument for the Einstein equations, or the restriction of the Einstein equations on C'*™" to
M+, we show the outline for the completeness of the paper since this part is essential to
derive our field equations in Section 3.

In Section 3, we consider the spatial variance (expansion and contraction) described by
the scale-function a(-), which satisfies the Einstein equations with the cosmological constant
in homogeneous and isotropic spaces. The studies of roles of the cosmological constant
and the spatial variance are important to describe the history of the universe, especially,
the inflation and the accelerating expansion of the universe (see e.g. [21], [27], [36], [38].
[42], [44]). One of the scale-functions (the second line in (3.10), below) follows from the
equation of state (see (3.8) with o = —1, below) when we regard the cosmological constant
as “the dark energy” in cosmology. There are a lot of studies by physical and geometrical
approaches on the dark energy (see e.g. [5, 47] for the cosmological constant, and [26, 41]
for the modified gravity). Several dissipative and anti-dissipative properties by the spatial
variances have been pointed out for the Klein-Gordon equation and the Schrédinger equation
in de Sitter spacetime (see [33] and [34] and the references therein). We study more general
equations (1.4) and (1.5) for spacetimes described by (1.1) with the flat spatial curvature
k = 0 in this paper. Further detailed analysis on the Cauchy problems of (1.4) and (1.5) will
appear in the forthcoming paper.

In Sections 4 and 5, we derive the above equations from (1.4) to (1.10).

In Section 6, we consider the energy estimates of the equations (1.4) and (1.5). We
show that the spatial variance described by the scale-function a(-) gives dissipative and anti-
dissipative properties for the energy estimates. Especially, we show that the spatial expan-
sion yields the dissipative properties, while the spatial contraction yields the anti-dissipative
properties in general.

We put two appendices as Section 7 and Section 8.

In Section 7, we give some remarks on Vilenkin’s model (see [46] and also [22]) of the
birth of the universe in M!*". In Vilenkin’s model, the purely imaginary time axis it for
t € R plays an important role to describe the birth of the universe from “nothing” through
the tunnel effect. This fact is one of our motivations to regard the axes of the spacetime as
the lines in the complex plane (see (1.3)).

In Section 8, we consider the geodesic curves defined by the complex line elements, and
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we show that the conservation law of the Hamiltonian is dependent on the scale-function in
local coordinates, while it is independent of the scale-function in proper time.

Remark 1.1. The complex coordinates have played an important role in the study of
the general relativity (see e.g. [35, 37, 48]). Our motivation to connect the complex line
element g,5dz"d7? to several partial differential equations is from the following elementary
observation for the unified derivation of the rotational transform and the Lorentz transform.
The Riemann metric (cdx®)? +(dx")?+- - - +(dx")? and the Lorentz metric —(cdx’)?+(dx")*+

st (dx)? for x = (%, x', -+, x") € R!*" are unified in a single form (cdz®)* + (dz')* +
<o+ (d7")? for z € C"*" since (22,7, --- ,2") = (X%, x!,- -+, x") gives the Riemann metric and
@,z 7" = (ixo, xh e gives the Lorentz metric. Let us consider two coordinates
2=, -, eC*and z, = (%2, ,7%) € C'*" which satisfy the invariance of

line elements
(cd®)® + Z(dzj)2 = (cd0)? + Z(dz!;)z.
J=1 J=1

Let us assume z/ = z/ for 2 < J < n for simplicity. For 8 € C, the transform
0 : 0
cz, cosf —sinéb)(cz
(1.11) =1 1
Z, sind cosf /\z

satisfies this invariance. For any fixed —7/2 < w < /2, let us consider the lines z° = it,

2t = x'e®, 0 = it, and 7! = x!¢™ in the complex plane C, where ¢, t,,x!,x! € R. Then

(1.11) is rewritten as
cti\ cosf ie'“ sin 6\ [ ct
x1) \ie@sing  cosO J\x')

3k

So that, if w = 7/2 and 6 € R, then we have the rotational transform
ct.\ [cosf —sinb) (ct
xL] " \sin@ cos6 J\x']
If o =0and 7 :=if € R (namely, 0 € iR), then we have the Lorentz transform

ct.\ _[cosht sinht)(ct
xL )] \sinht cosh7)\x!]
Therefore, the complex line element naturally unifies the rotational transform and the
Lorentz transform. This observation is useful when we replace Lorentzian problems with

elliptic problems vice versa. We extend this observation to the partial differential equations
focused on the semilinear terms in this paper.

2. A generalization of the Einstein equations

In this section, we show the generalization of the Einstein equations on M!*" for the
completeness of the paper (see e.g. [6] and [13] for the classical derivation of the Einstein
equations for three spatial dimensions and real line elements). In the following, Greek letters
a,f,7y,- - run from O to n, Latin letters j, k, £, -- run from 1 to n. We use the Einstein rule
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. . o .— n a j o— n .1 .
for the sum of indices of tensors, for example, 7%, := >,|_ T and T/; := =1 T/;.

For any function f on M'*", we put f.(x) := f(z) with (1.3). We define the integral
figen f(2)dz Y

2.1 f fR)dz := & a0 f fu(x)dx.
Ml+n R1+n
For any two points A = (aoeiwo, s ad"e"),B = (boei“’o, oL by € M with {a?, by,
C R, we put
B AN
22) [ = ez [ s
A J

where we have put J := (@, b%) x -+ x (a", b").
We collect some fundamental results as follows.

Lemma 2.1. For any C'-functions f,g on M*", put f.(x) = f(z), g.(x) := g(z) with
(1.3). Then the following results hold.
(1) For any two points A, B € M'*", the integration by parts

B eiZZZOwB B
23) fA Qg = o (FB) - (fg)) - fA Do f(D)g(2)dz
holds. Especially,
(2.4) f FDBug(2)dz = - f Do f (Dg(2)dz
Ml+n Ml+}’l

holds if f or g has the compact support.
(2) For any functions h = (h°,--- ") on M'"*" and any holomorphic function F, the
Euler-Lagrange equation of the action I := f F(h(z), 0h(z))dz is given by

25 )
© 02\ 0(9pn)
Proof. (1) Let A = (%", --- ,a"e®"), B = (%", - - - , b"ei") for real numbers @°, - - -

a’, b, b". Put J := (a°,b°) x - -- X (a", b"). By the definition (2.2), we have

B iy o
f F(D0ug@dz = S f ﬂ(x)jg; (D)dx.
A J X

el

By the integration by parts for f. and g., we have

ag. of.
fl F0 2 (dx = (f.g.)(B) = (fg.)(A) - f S (9.0,

7 0x“
where we have put A, = (@°,--- ,a") and B, := (b°,---,b"). By (f,9.)(B,) = (fg)(B) and
(feg)(AL) = (fg)(A), we obtain (2.3). When f or g has the compact support, (2.4) holds
since the boundary terms are vanished.

(2) Let {6n*} _, be any smooth functions on M+ with compact supports. The variation
ol is given by

51 = fM 4 (1 + 86h, 05 + om) | _ dz.
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We have

d OF .  OF
—F (h + 26h, dg(h + £6h)) = ——5h" +

Oh® P (8ﬁh"‘) Opoh”.

Since we have

oF

] oh%dz

oF o
ann a(aﬁha)aﬁéh dZ B II\;IHH a'B

9 (9phe)
by the result (1), we obtain

oF oF
o1 = f T gy | —— |} on"dz.
M+ 81/1 6 (6ﬁh(t)

So that, we have (2.5) as the Euler-Lagrange equation. |

We consider a bilinear symmetric complex-valued functional (:,-) on the vector space
spanned by the vectors {9, }o<a<n- We put gop(z) := (04,0s). We denote by (g.p(2)) the
(1+n)x(1+n)-matrix whose components are given by {g,s(2)}o<apg<n- Put g(z) := det(g,p(2)).
Let (9*(z)) be the inverse matrix of (gq(2)).

We consider a line element

(2.6) ~(cdt)* = (d0)? = gop(z)dz"dZP,

where 7 denotes the proper time and we take the square root of (cd7)? as —r < arg (cdt) < 7.
We define dz by

dz=d’ A---NdZ" = Z sgn(o) dz7@ - dz7™,

where o denotes the permutation of {0,---,n}. For the change of variables x to y =
@°, - ,y") € R"" by y = y(x), we consider the complex variables w = (w’,---,w") by
w® = " y®. Then we have det(9z%/duP) € R, (—g(2))"/? = |det(dw® /dzP)|(=g(w))"/?, and

(—gw))*dw = (sgn det(ai)) - (—g(z)?dz
0P

by direct calculations, where g(w) denotes the determinant of (ga,g(w)) with gep(w) :=
(0/0w®, 8/0uP), and we take the square root of —g as —r < arg(—g) < .
By direct calculations, we have the fundamental results
gaﬁaygaﬁ = _(8ygaﬁ)gaﬁ,
0yg” = —g™(Bygu)g”,
a9 = 9970,9up.

We call the function T“ﬁ“‘y(g... the tensor if it satisfies

for any change of variables z to w in M!'™. We call the tensor T the contravariant tensor,
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and the tensor T, the covariant tensor.

For any contravariant tensor 7%, we denote its parallel displacement from z to z + w by
T(z+w) :=T%2) — F“By(z)Tﬁ(z)wV, where "3, (z) denotes the proportional constant at z.
We assume the symmetry condition "5, = I'*, 3, and

(968T°T7) 2 + w) = (9upT"T%) @) + O ) @™)?)

0<a<n

for any 7% and w®. Then we have the Christoffel symbol
a 1 ad
2.7 [, = 59 (@agay +0ygps — 569/37)-
We define the covariant derivative Vg for T by

Tz + u—ﬁ) — Tz + u—)é)
wh

VpT(2) = ul)gglo = 0pT"(2) + I3, ()T (2),

%
where w® := (0,---,0,u”,0,---,0) whose [-component is w? and the other components are
0. In general, we define

VoT P e i= 05T s + T3 TP o + TP, T e 4
— %, TP . =T TP e =+

for any tensor 7% ... We note that V,g,s = 0 and V,g = 0 follow from (2.7). By direct
calculations, we have

(2.8) o = 0 (log-9)'"?),
1
(29) V(xTa = Waﬁ((—g)l/zTﬁ),
1
(2.10) VoV = W@g((—g)‘/zggyayw)

for any tensor 7% and any scalar .
We define the Riemann curvature tensor

Roupy i= 0pT°%0y — 0,105 + T0 5%, — 0, T

which is derived from R®,5,T% = (V5V, =V, V)T?. We define the Ricci tensor Rus := R 4,
and the scalar curvature R := g“ﬁRaﬁ. We define the Einstein tensor by G, := R.p— gapR/2.
The change of upper and lower indices is done by gos and g, for example, G%4 := g*7G,5.

Let A € C be a constant, which is called the cosmological constant. Let us consider the
variation by g, of the Einstein-Hilbert action fM”" (R +2A) (=¢)""? dz. When M!*" = R1*",
it is well-known that the Euler-Lagrange equation for the Einstein-Hilbert action is given by
the Einstein equations G5 — Ages = 0 in the vacuum. We have the following extension of
this result for M'*",

Proposition 2.2. The Euler-Lagrange equation of fMH"(R + 2A)(~9)"%dz is given by
Gaﬁ - Agaﬁ =0.
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Proof. By the definitions of the Ricci tensor and the covariant derivative, and by the
symmetry conditionI'”,,, =TIV, we have

Ry =V, (6T"00) = Va (6T,).

where 6T w- denotes the variation of T w-- DY gap. Since we have 6R = ((Sg“ﬁ)Raﬁ +
g“ﬁéRa,g and g“ﬁéR(,ﬁ = VﬁAﬁ , where we have put AP = gPoT 1 — g*oT P, we have

1
O(R +20) = (69" )Rop + 759y (=047

by (2.9). Since we have 6(—g)'/? = _(_g)l/zgaﬁ ((i(]“ﬁ) /2, we obtain

5 (R +2A)(—¢)'dz = f

Ml+n

(Gap — Agap) (—g)' 269" dz + f 0y ((-9)'?A7) dz.

Ml+n M+

Since the second term in the right hand side vanishes by the divergence theorem, the Euler-
Lagrange equation is given by Gz — Agqp = 0. |

For a stress-energy tensor 7“5, we define the (1 + n)-dimensional Einstein equations
(2.11) G —NAgs =k T%,

where « is a constant and we assume that « is written as k = ko/c* for some constant o
which is independent of c¢. For the case n = 3 and real line elements, the constant « is
called the Einstein gravitational constant which is given by k = 87G/c*, where G is the
Newton gravitational constant. For the case n > 3 and complex line elements, we are able
to generalize the constant « to

2(n — Hr"*G
K= ——————,
(n—=2)I'(n/2)c*
where I" denotes the gamma function (see Remark 2.3). We have obtained the generalized
Einstein equations (2.11) with (2.12) for the complex line elements on M'*",

2.12)

Remark 2.3. Let us show the derivation of (2.12). We denote the volume of the unit
. 1/2
ball in R” by Q, := 27"%/nl(n/2). We put 2 := (z'.---.2"), r(2) = {2, (@)} ” and

w' =--- = w"in (1.3). We define a function E(%) by
aN2-n
S ————— fn>3,
o, r(2) ifn>
E@®) = log r(2) ifn=2,

nSl).n

oy r(2) ifn=1.
Since E(%) for £ = (x!,---,x") € R" is the fundamental solution of the Laplacian, the
function E(Z) satisfies
(2.13) A:E(2) = 6(2),

where A; := Z?: 1 0%/(0z')* and & denotes the Dirac 6-function. We assume that (Gap) 18
sufficiently close to the Minkowski matrix (7qp) := diag(—cz, 1,---,1). Namely, we put
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hap := gop — Nap, and we assume that |h,g| is sufficiently small. For a potential ¢ = ¢(Z) and
the Lagrangian L(Z, dZ/d7) := Z;?:l(dzj /d7)?/2 — $(2), the Euler-Lagrange equation for the
action [ L(2,d2/d7)dr is given by

d’2
(2.14) e +V:p =0,
where we have put V; := (04, ,0,). We regard this equation as the Newton equation of

motion for the gravitational potential ¢ := nQ,Gp *; E, where p = p(Z) denotes the density
of the mass. We note that

(2.15) Az¢p = nQ,Gp

holds by (2.13). The Euler-Lagrange equation for the action

[[ronee "
Gos dr dr

yields the equation of the geodesic curve as

& s dzdP

_2 + B =

dr dr dr

Let us consider the weak gravity dygas = 0, g%0rgoo = 0, h"ﬁayh&8 = 0 and the slow particle
dz’/dz® = 0. Then we have Ty = —g%drgoo/2, T%0 = 0, [0 = —0,g00/2 and dt = dz° by
the definitions of %4, and d. So that, we have d°z//(dz")* + I'/oy = 0 which yields

(2.16)

2.17) aj(¢+g—§°):o

for 1 < j <mby (2.14) and (2.16). Let us consider the case A = 0in (2.11). We have
(2.18) (n—1)R = =2«T

and

(2.19) (1= DRag = k((n = DTop = Tgap)

when n > 1 by (2.11), where n is an arbitrary natural number. Under the assumption
Oohpy0she; = 0, we have

, 1
(2.20) Roo = =010 = EAzgoo = —Az¢p = —nQ,,Gp,
where we have used the definition of Ricci tensor, the above fact [y = —9 ig00/2, (2.17)
and (2.15). We now consider the stress-energy tensor 7% given by
8% o
T% = —p = =
P Jr ot
based on the analogy to the stress tensor of the perfect gas. We have
—p if(a,B) =(0,0),
221 7=y P
2.21) { 0 if(e,pB) #(0,0)

by 0z//0z° = 0. So that, we have
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(2.22) T = —pgoo

and

_ 2 _
(2.23) Top = { 0(goo)*  if (@, B) = (0,0),

0 if (. B) # (0, 0).

Therefore, we obtain
(2.24) n(n — DQ,Gp = (n — 2)kp(goo)

by (2.19) and (2.20). The required result (2.12) holds when n > 3 by ggo = —c? and (2.24).
When n = 2, we have T% = 0 since p = 0 by (2.24). When n = 1, we have k7% = 0 since
we have k = 0 or p = 0 by (2.24).

3. Homogeneous and isotropic spaces

Let us derive the line element (1.1) as the solution of the Einstein equations (2.11). We

172 . . .
put r := {Z’}zl(zf )2} . We assume that the space is homogeneous and isotropic, and we
consider the line element

n
3.1) Gopd2”d? = ~A(d") + "Dl (d]),
=1
where /1 and f are complex-valued functions. This line element is homogeneous in the sense
that for any two points P and Q in C", the ratio of the coefficients e e/ (P /@) o (1(Q) jg
independent of z°.
By direct calculations, we have G° i= Gy =0,

Gl = {Z(aohf —cte (f” vl nT_2<f’>2)},

2c2 r

and

N LR Y R 2
Gl =g, {W (8Oh +2(00h) )

n_z—h—f 77 f/ n—3 7\2
L1 ; 2 e (f// i (f’)z) 27

where f’ := df/dr. Since the space is isotropic, the coefficient of z/z* must vanish. So that,
f must satisfy f” — f"/r — (f")?/2 = 0, by which we obtain

2,2\72
(3.2) D=1+ k_r

4
for constants g(# 0), k € C. We define a function
(3.3) a@’) := N,

Let us consider the stress-energy tensor 7% of the perfect fluid
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T% := diag(oc?, =p, -+ ,—p)
for constant density p and pressure p. We put p := p + A/kc*> and p := p — A/«. Then (2.11)
is rewritten as G% = « - diag(pc?, —p, - -+ , —p). This equation shows that the cosmological

constant A > 0 is regarded as the energy which has positive density and negative pressure
in the vacuum p = p = 0 for k > 0, by which we regard the cosmological constant A as “the
dark energy.” The equation G%) = xpc?g’, is rewritten as

n—1|[doa 2 k? ker

3.4 Qa) | K |k &
4 2 {( ca ) q*a? n F
The equation G/; = —kpg’, is rewritten as

n-1( 2 a (8pa\" K K _
3.5 S ) T O T2
(3-5) 2 {n—Z c’a (ca) q*a? n—2 "
which is rewritten as the Raychaudhuri equation

da n-2 (pc? 12

3.6 Dt __nz2 (P
(36) ca n—1 K( n  n- 2)

by (3.4). Multiplying a” to the both sides in (3.4), taking the derivative by z° variable, and
using (3.5), we have the conservation of the mass

(3.7) do(pc*a™) + pdoa™ = 0.
For any number o, we assume the equation of state
(3.8) P = opc.

Then a(z°) must satisfy

é%a(zo) n-2+noc _,
=- - KpC
cta(z%) nin—1)
with
(3.9) _ n—=1 n (8a©)\ (a@©)\"*"
' S R a(0) a(z%)
by (3.6) and (3.7), which has the solution
n(1+a)dpa(0) \2/ M+ 3
(3.10) a) = { aO(1 + 55 ol
a(0) exp (243<) if o=-1.
By the above argument, we have derived the line element
k2r2 -2 n '
(3.11) Gapd2®d = —*(d") + a(°)Yq (1 + T) > @y
=1

with (3.10) for constants g(# 0), k € C as the solution of (2.11). This line element (3.11) is
the required line element (1.1). We note that we have k = 0 under the assumption (3.8) by
(3.4) and (3.9) since the scale-function a defined by (3.10) satisfies
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(8oa(z0))2 B (60a(0) )2 _ (a(O) )"““’)
ai®) )\ a0 ] \a@" '

Remark 3.1. The line element (3.11) is well-known as the Friedmann-Lemaitre-
Robertson-Walker metric for the case that a(-)(> 0) is real-valued, ¢ = 1 and k> = 0, +1.
Here, k*> denotes the curvature of the space. In this case, a(-) in (3.10) blows up [resp.
vanishes] in finite time when dpa(0) > 0 and o < —1 [resp. dpa(0) < 0 and o > —1],
which is called Big-Rip [resp. Big-Crunch] in cosmology. The case oo = —1 shows the
exponential expansion [resp. contraction] of a(-) when dpa(0) > O [resp. dpa(0) < 0]. The
case o > —1 [resp. o < —1] shows the polynomial expansion [resp. contraction] of a(-)
when 9pa(0) > 0 [resp. dpa(0) < 0]. We draw the graph of a(-) in Figure 1, below, where
ap := a(0), a; := dpa(0) and Ty := —2a(0)/n(1 + 0)dpa(0). These models are studied for
the expansion and the contraction of the universe. The line element (3.11) with (3.10) is a
natural extension of these models for general dimensions and complex line elements.

a a; >0, 0<-1 (Big-Rip) a; >0, o=-1

“o a; =0 (Minkowski space)

T\ a1<0, 6=-1
0

0
0 a,<0, 0>-1 (Big-Crunch)

Fig.1. Graph of the scale-function a(-) when z° € R

4. A field equation and the nonrelativistic limit
Let us derive the equations (1.4) and (1.5). For any 1 € C and any complex-valued C>
function ¢ on M!*", we define the Lagrangian

1 1 2 1
(“.1) L@ 1= 50" 050 5 (5] 6+ 100"

Proposition 4.1. For any ¢ € C2(M"*™") and 6¢ € Cé(M“") with the constraint condition
arg 0¢ = arg ¢, the Euler-Lagrange equation for the action j;wm L(¢)(—g)'/*dz is given by

42 ! 12 o me\? Pl =
(4.2) Wan((—g) g opp) — o ¢+ A" p=0

Proof. By the constraint condition, ¢ is written as 6¢ = ne’@2¢ for nonnegative real-
valued function n on M!*". For & € R, we put ¢, = ¢ + g6¢. We have 0,0, = 0,0¢ by
0as = 0,0 + £0,0¢. Since we have
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1 ( mc A

2
i i 2, " p—=142
3 (5) @2+ e e

1
L(¢:) = —ng’ﬁam g =5

and |§:1"~'¢7 = (1¢] + en)P ' e*ATE?, we have

af mc\2 2iarg ¢
o= 07050956~ (5F) 959 + Agirne e,

d
OL(¢) = —-L(¢)

Since we have A|¢|Pne* &% = A|¢|P~! pdp, we have

5 f L) (~g)'dz
M1+n

f SL(P)(~g)'dz
MH—n

1 2
fM {Waa“‘g)mg“ﬁ o) - (2 ) o+ A|¢|P-1¢} 59(~9)"2dz,

where we have used the divergence theorem. So that, the Euler-Lagrange equation is given
by (4.2) as required. |

We put ¢ = 1 and k = 0in (3.11). Since the line element (3.11) is rewritten as —c*(dz%)* +
a()? Di< js,,(dzj )2, the field equation (4.2) is rewritten as

noya m2c*

0
a 0+h2

which is the desired equation (1.4). For any constant by € C, we define a weight function
w(z”) and a function b(z°) by

(4.3) —iz (ag + )¢ + %Ang + g’ =0,
c a

0 a(0) "2 0 0 _.mc? 0
4.4) w(z”) := by — , D) =wi)exp|Fi—2z'],
a(z’) h
where we note b(0) = by. We transform ¢ to u by the relation
4.5) ¢, ) =u@, - 2bE).
We assume mz" /% € R. Putting (4.5) into (4.3), we have
0 2.4
(53 i naoaao + mhzc )¢ =b- ((9(2)14 + 200uA + uB),

where we have put

:@4_1’18()(1’ B:=@+n80a.(’)o_b+m2c4‘
b 2a b a b h?

By the definition of b(-), we have

2 2
PR B:_("@_oa) _ﬁao(ﬁo_a)_

A

h 2a 2 a

We also have

1 1
Db+ AP p=b- (—zAzu - /lluwl"“u),
a a
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where we have used the gauge invariance of A|¢|”~'¢ and the assumption mz°/h € R. So
that, (4.3) is rewritten as

1

2

2

2 1
(aéu Fi e Oout + MB) + —zAzu + AuwlP'u = 0.
a

The nonrelativistic limit (c — oo) of this equation yields
2 1
(4.6) +i 2 dou + — Au + Auwl” " = 0,
h a2
which is the desired equation (1.5).
5. A unified derivation of several PDEs

Let us derive the partial differential equations from (1.6) to (1.10). Let us consider the

equations (4.3) and (4.6) under the transform (1.3) with w' = --- = w". We put t = x° and
(5.1) $u(t,x', o x) = 92,
w(t,x' X =2,

a.(0) := az®), w.() = w).

We put 8 := arg a.. Then (4.3) is rewritten as

(52) -

1 Qi+ [82 N nata*a . (mcz o’
— : )
h

2
1 2i 1
O+w') p—1 —
2 eZin a J )¢* + |a*|2 Axﬁb* +e /l|¢*| ¢* 0,

and (4.6) is rewritten as

. zmeiwo eZin 1
(53) +1 7 O, + m w

o -
Aty + €O A w,|P lu*) =0.

The equation (5.2) and its nonrelativistic limit (5.3) give a unified derivation of the elliptic
equation, the Klein-Gordon equation, the Schrédinger equation, and the parabolic equation
as follows. For simplicity, we consider the simplest case a(-) = 1 which follows from
a(0) = 1 and dpa(0) = 0 in (3.10). So that, we have § = O and a. = 1. We put by = 1 in
(4.4), which yields w, = 1. When o° = -+ = " = 0, (5.2) and (5.3) are rewritten as the
Klein-Gordon equation

m*c*
(5.4) 0+ =56 = hsh. — EAPP 9. = 0,
and the Schrodinger equation
2
(5.5) £+ Ayt + A, = 0,
respectively. When «® = 0 and w' = --- = " = 7/2, (5.2) is rewritten as the elliptic
equation
m*c*
(5.6) Fp. + b, + A, — AP, =0,

72
where we should note that the line element (3.11) with ¢ = 1 and k = 0 becomes
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Gupd2"d = ~X(dr) = )" (dx'),
=1
by which the variable ct is naturally regarded as one of the spatial variables (namely, there
is no difference between cdr and {dxj};zl). When ° = 0 and w! = --- = " = 11/4, (5.3)
with the positive sign is rewritten as the parabolic equation

2
(5.7) Tmﬁ,u* — Autty — idlus P, = 0.
So that, we have obtained the equations (1.6), (1.7), (1.8) and (1.9). We obtain the equation
(1.10) when ° = --- = wf =0and W' = - = " = 71/2.

We are also able to derive the complex Ginzburg-Landau equation
(5.8) Oty — yAU, — i, + Aoluslu, =0,

where y € C with Rey > 0, 4; > 0, 4, € C with Re A, > 0, as the sum of the potentials
with p = 1 and p = 3 in (5.3) when y = +il/2me*®", Fh(sin2w")/2m > 0, = w° = 0 and
a. = 1. We refer to [20], [30], [39, (2.1)], [40], [43, (II.1) and the footnote in p.304] for the
complex Ginzburg-Landau equation.

We note that (5.2) yields the semilinear Klein-Gordon equation

mZ C4 2

(5.9) ¢, + nHO . + 7P ﬁAﬂp* — AN = 0

in the de Sitter spacetime when w° = --- = w" = 0 and a.(¢) = e’ with the Hubble constant
H € R. The Klein-Gordon equation in de Sitter spacetime has been considered in [15]
for the tachyonic field, in [51] for the Huygens’ principle, and in [50] for the Higgs scalar
field. The Cauchy problem of the semilinear Klein-Gordon equations has been considered
in [17, 33, 49] in the de Sitter spacetime, and in [16] in the Friedmann-Lemaitre-Robertson-
Walker spacetime. From the term nHd,¢.. in (5.9), we know that the spatial expansion H > 0
yields the effect of dissipation, while the spatial contraction H < 0 yields the effect of anti-
dissipation. In [34], we have considered the Cauchy problem of the semilinear Schrodinger
equation in the de Sitter spacetime which is derived from (5.9). Our equations (5.2) and
(5.3) involve the equations in [33] and [34] as a part. The Cauchy problem of (5.2) and (5.3)
will be studied in the forthcoming paper.

6. Energy estimates

We have derived the equations (4.3) and (4.6). The properties of the equations depend
on the local coordinate (¢, x) defined by ¢ := x° and (1.3). In this section, we show that the
equations have dissipative and anti-dissipative properties on energy estimates dependently
onw, -+, w"in (1.3).

We assume that there exist two functions Vo and V| on C which satisfy

©.1) Vo) = Re (0 V()

for any complex-valued function ¢ = y(t, x). We put w' = --- = ", t = x". We assume that
0 := arga, is a constant. We put V' := —e~2@*)y7 et us consider energy estimates for
the equations
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1 nopa m*c* 1 ,
6.2) —C—z(ag —an )¢+ A+ V' (p)=0
and
2 1 1
6.3) +i " Gout + — At + — V' (uw) = 0
fi a? w

which are extensions of (4.3) and (4.6) for general nonlinear terms V’. When V'(¢) =
¢’ ¢, we have (4.3) and (4.6). For example,

_ AolyP*! o el
(6.4) Vo) := 1 Vo) := "y, g eR
satisfies (6.1). We use (5.1). The equations (6.2) and (6.3) are rewritten as
. 1 - 0\2

1 QZit+w) , noa, mcZe'® ,
(65) —zele [6, + - at + 7 ¢* | *|2 x(b* VO(¢*) =0
and

2me'” i 1 I,

(66) +1 7 a,u* + m (WAXU* — w—*VO(u*w*)) =0

We put Cy := 2me'’ /. We have the energy estimate for (6.5) as follows.
P gy

Proposition 6.1 (Energy estimates). Let us consider (6.5). Assume Cy € R, ¢%@+@") j g2’
€ Rand (6.1). Then we have

!
(6.7) f (t, x)dx + f f e (s, xX)dxds = f ¢%(0, x)dx,
n 0 Rn n

where we have put

2i(0+w") C2c4
o._¢ 2 o
== (|at¢*| + =l )

o7 Z 0.6 + 2Vo(.)
and
2i(6+w")

e no,a 1 z
e"+1::+2Re( t*)ﬁ *2—6(—) 0.1
czezlwo a | t¢ | t Ia*lz ;l x1¢ I

*

Proof. We put

ej = 2|2Re (at(b* x/¢*)

a.

for 1 < j < n. Multiplying 9,6, to the both sides in (6.5) and taking their real parts, we have

1 Q20+ nd,a. me2ei e\
2T[6tlat¢*|22Re( - )|61¢*|2+( ]af|¢*|2

c . n
n

n |a1|2 Z {002Re (0:6.0.6.) = 9109} = 20,Vo(@.) = 0

where we have used Cy € R, 20+ /02" ¢ R (6.1),
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2Re(0,0.0%¢.) = 8,10,0.1>,  2Re(d,p.0.) = 8i|p.I*
and

Re (0,6-V5(@.)) = 8,Vo(8.).

Since we have

1 < L
W Zl {aszRe (at¢*axl¢*) - 6t|6xj¢*|2}

]:

C 1 1 1 1 n

- Z axjej - at [la |2 Z |axj¢*|2] + (af |Cl |2) Z |ax1¢*|2,

Jj=1 | . =

we obtain
9,6 + Z del + e = 0.
j=1
The required result follows from the integration for ¢ and x. -

Let us consider the case 6 = w” = w' = 0 in Proposition 6.1. Since we have e2@*+«") /g2
= 1, the equation (6.5) becomes the nonlinear Klein-Gordon equation

212 2
2. + %M* A7) 5, = A+ V60 = 0.
a. 7] ||

When the space is invariant, namely, when a.(-) is a constant, we have ¢"*! = 0. Thus, the

strict energy conservation
0 _ 0
f e (t,x)dx = f e (0, x)dx

holds by (6.7). When the space is expanding, namely, when d,a.(-) > 0, we have ¢"*! > 0,
which yields the dissipative property on the energy estimate (6.7). Contrarily, when the
space is contracting, namely, when d,a.(-) < 0, we have & < 0, which yields the anti-
dissipative property.

Next, we consider charge and energy estimates for the equation (6.6) as follows.
Proposition 6.2. Let us consider (6.6). Assume Co € R. Let V| satisfy
(6.8) Im{zV((z)} =0

for any z € C and its complex conjugate Z.
(1) (Charge estimates.) We have

!
(6.9) + | &, x)dx + (s, x)dxds = = | €2(0, x)dx,
c c c
R 0 Jre R

where we have put
0 . 2
€c = C0|I/t*|

and
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. eZi(9+wl) 1 n 5 1
n+ ’
e =2Im | —— || — E |0 u.]” + —uw, Vi(u.w,) | .
C ( e21w0 ] |Cl*|2 “ X |w*|2 0

(2) (Energy estimates.) Assume (6.1). Then we have

t
(6.10) f e (t, x)dx + f f el (s, x)dxds = f (0, x)dx,
]Rn 0 n n

where we have put

- 2)a.|*
e% = Z |c’9x,~u*|2 + —Vo(u.w,)
=1

|w. |2
and
' 2i(6+w") 5 5
n+l -
e = iZCOIm ( eZiu)O )la*l |81M*|
n , 2(n+2)
+ m (8t|a*|2) . (u*w* VO(M*LU*) - VO(M*w*)) .

Proof. (1) We put

. e2uu
i —

e, =2Im| ——u.0,u
c |a. [2e2i@+w) # ol

for 1 < j < n. Multiplying u. to the both sides in (6.6) and taking their imaginary parts, we
have

2iw°

e 1 e - _
=+ 21Im (iCoit:0,u) + 2Im [WW > {ow @) - |ax,u*|2})
* ]:1

1 e21w0
- _
— |w*|2 (2Im62i(6+w1))M*w*VO(u*w*) = 07

where we have used (6.8). Since we have Cy € R,

2Im (iCoitz0,us) = Codylul?

and
1 eZin n . 5
2Im WW Z {6x_i (u*ax_fu*) - |(9x_fu*| }
a.l” e ‘=
n i n
. 1 e
_ ) 12
- Z dxie |a. (2Imezi(e+wl) ) Z 10wl
j=1 j=1
we obtain

+0,e% + Z 6x,-eé +eft = 0.
=1
The required result follows from the integration for 7 and x.
(2) We rewrite (6.6) as
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21(0+w ) | |2
o p— Sl a,u*+Zaﬂ .
j=1

w,) =0

Multiplying 0,u; to the both sides in this equation and taking their real parts, we have

2i(0+w") n ) n
6.11) FCo2Im P10 = > el =8, ) |dwu.l? = 2Re I =0,
where we have put eé := —2Re (0,u,0,u.) for 1 < j < nand
2
I := Ia*l 6tu | 744 o(u.w,).
Since we have
2 0w,
||:(l)*|| (ﬁt(u* W) Vi(uaw,) — i —uw, V) (u, w*))
by
oW,
o, = — (al(u*w*) -2 u*w*),
we obtain
2 LT
2Rel = |'Z)*'|2 (28,Vo(u*w*) - (2Re & ) T Vé(u*w*))

by (6.1) and (6.8). Since we have

1 ow, 1
0 = —-2Re e
t(lw*lz) ( w, ) Iw*|2
la.|? n+2 5
0, = ——9,(la.l?),
(|w*|2) g O (lF)
1 n
2 2
| a(w) = Sl -0y (ja.?)

by the definition of w,, we obtain

a. 0r(la. 2(n +2
612) 2Rel =28,(" i Voluaw,)| + "2re-D) sV (usw,) — + 2Dy w).
Jw.]? 2w, [?
So that, we have
9,€% + Z dyel + el =
by (6.11) and (6.12). We obtain the required result by the integration for ¢ and x. ]

The example (6.4) satisfies the assumption (6.8), and we have
2 2 A 4
(n+ ) 0 (p_ 1 _ _)lu*w*|p+l
n

Vo(u.w,) =
o(usw,) PPN
in the definition of e”’rl in Proposition 6.2, where we note that p = 1 + 4/n is known as the

(613) u*w*v(l)(u*w*) -
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pseudo-conformal number. Let us focus on the following two cases (i) and (ii).

(i) Let us consider the case § = w” = w' = 0 and Cy > 0 (namely, m/#% > 0) in Proposition
6.2. Since we have ¢*¢' /¢%(+@) = 1 the equation (6.6) becomes the nonlinear Schrodinger
equation

2m 1 1,
iz76tu* + WAXM* - w—*VO(u*w*) =0.

We have the strict charge conservation

feg(t,x)dx:f eg(O,x)dx

by (6.9) and e’é“ = 0. It is remarkable to see that the spatial variance does not affect
the conservation of the charge. In other words, the total probability fRn eOC(-, x)dx does not

change even if the space is expanding or contracting. When the space is invariant, namely,

n+1
E

f e%(t,x)dx: f eOE(O,x)dx

by (6.10). When the space is expanding (d;a.(-) > 0) or contracting (J;a.(-) < 0), we have

when a.(+) is a constant, we have ¢."" = 0 and the strict energy conservation

the dissipative property (egrl > 0) or the anti-dissipative property (egrl < 0) depending on
the structure of Vy and V. For example, let us consider the example (6.4). By (6.13), we

. . . 1
have the dissipative property e%"" > 0 when

(6.14) 01a.()A (p -1- %) >0,

while we have the anti-dissipative property e%” < 0 when
4

0,a.() Ay (p -1- —) <0.
n

We note that we do not have the dissipative and anti-dissipative properties, namely, e’[’;' =0,
for the conformal power p = 1 + 4/n even if the space is expanding or contracting.
(i) Let us consider the case § = w” = 0, w' = n/4 and Cy > 0 in Proposition 6.2. We

have ¢%¢’ ¢20+") = _i The equation (6.6) with the positive sign is the parabolic equation

2m 1 1 _,

78,1/!* — WAXM* + w—*VO(u*w*) =0.
Even if the space is invariant, namely, a.(-) is a constant, we have the dissipative properties
(.e’(“g+1 > 0) when w,w,Vj(u.w.) > 0. When the space is variant, the dissipative property
(egrl > 0) and the anti-dissipative property (e'l’;r' < 0) depend on the spatial expansion
(0:a. > 0), the spatial contraction (d,a. < 0) and the structure of V, and V(. For example,
let us consider the example (6.4). By (6.13), we have the dissipative property e%“ > 0 for

the case (6.14). Moreover, we also have the dissipative property e%“ > (0 even if

dra-() (p . ‘—‘) -0
n

n+1

7+1 contains the positive term 2Co|a.|*|d,u.|*.

since e
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Therefore, by the above arguments in (i) and (ii), the dissipative and anti-dissipative prop-
erties of the equations (1.4) and (1.5) are dependent on the local coordinates (1.3), the scale-
function a(-) and the structure of the nonlinear terms.

7. Appendix: Remarks on Vilenkin’s model

Let us consider the model of the birth of the universe by Vilenkin and extend it on M!*".
We have derived the line element (3.11), which is from (3.1) with (3.2), (3.3) and (3.10). We
put f(z) = h(z°) + f(r) for the functions 4 and f in (3.1). By direct calculations, we have
g =—c2e", 8u(~9)'"* = n(~9)'?0,f/2 and

1 - Di?
R:_C”—Zagh—”(“) 2 _ - DI

By the integration by parts and dy(—g)'/? = n(—g)'/?0ph/2, we have

f Ooh(=g)"*dz = ~ f dohdo(~9)'*dz = _g f (@oh)* (~9)'dz.
i M+

MHn
By these results, we have

n—1 n 2nk?
f R(=9)"Pdz = —— f {—2 5(0oh)* — —-e ”}(—g>”2dz.
Ml+n M+n C q

So that, we have

— Dxc3
f (R +2A)(=g) 2z = L2 DK f L(a, doa)e" dz,
MHn 2 MHn

where we have defined L(a, dpa) by

2n (dpa 2 onk? N 4A
a’qg? n-1|"

a’
L(a, Hoa) = E C_2 4

We regard L(a, dpa) as the Lagrangian for the variation of a(-). We define the momentum
p = 0L/0(0pa) and the Hamiltonian H := pdpa — L. By the definition of L(a, dypa), we have

4na"20ya H- 2na" { 1 ((S‘O_a)z K 2A }

p = —— —_ _—
ket k2 |2\ a g*a® n(n-1)

by which we also have

H=2na"( c )2{K2pzc4+V(4a)}’

kc? \4na™! c
where we have put a potential

_ K a4
V(a) := (4na"?)? (? - 5—2)
and ¢ := (n(n — 1)/2A)"/2. So that, the solution of the equation of motion H = 0 is given by
the scale-function

i%cosh(% + C) if k#0,

0y —
7.1 az) = { a(0)et if k=0
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for some constant C € C. This is a natural extension of Vilenkin’s model on M!*". Let us
consider the case +k/g=1,C =0,{ >0,k € R, A(# 0) € R and 72" =t € R. Then we have
a(t) = Ccosh(ct/). And a(-), L, p, H are real-valued. We need a(-) > ¢ for the equation
H =0since V > 0and H > 0if a(-) < ¢. This means that the universe grows up as the de
Sitter spacetime a(f) = £ cosh(ct/¢) for t > 0 in real time z° = ¢. To consider the excluded
case a(+) < ¢, let us use the imaginary time 7% =it for r < 0. Then we have a(t) = € cos(ct/¢)
for t < 0. We need —nf/2c¢ < t for a(t) > 0. Since V(a) > 0 for —nf/2c < t < 0, we obtain
the model that the universe passes through the mountain of the potential V(a) > 0 by the
tunnel effect in imaginary time z° = it for —7f/2c < t < 0, then it grows up as the de Sitter
spacetime in real time z° =  for 7 > 0. On the other hand, the solution a(z°) = a(0)e* /¢ in
(7.1) for k = 0 and real time z° = ¢ does not need the tunnel effect.

8. Appendix: Remarks on the geodesic curves

Let us consider the geodesic curves and their Hamiltonians derived from the complex line
element (2.6). We consider the generalized line element of (3.1) given by

—X(dr)? = —A(dZ") + gpdldZ

for arbitrary complex-valued functions {g}i<;jk<, Which satisfy the symmetry conditions
gix = gkj for 1 < j k < n. We consider the non-relativistic velocity and the relativistic
velocity, respectively.

(1) Let us consider the non-relativistic velocity v/ := dz//dz° for 1 < j < n. Let (¢/*) be
the inverse matrix of (¢ #). The change of upper and lower indices is done by g and g/*. We
putJ :=1-vv j/cz, and we consider an arbitrary potential U = U(Z°,--- ,z"). We denote
the mass by m. We define the Lagrangian L, the momenta {p /}?:1’ and the Hamiltonian H
by
(8.1) L:=-mc?J'? - U, pj = %, H := vjpj—L.

We put K := m2c? + pjpj. By direct calculations, we have dt = J12d70, 0000 = —ZU]'/CZ,
d0J/0gjx = —vivk/e?, p! = mlJ7V?, L]0z = —0U/ 77, OL/0g jx = J'2pip*/2m. So that,
the Euler-Lagrange equation for L is given by

OL  d L _ OL dgun

8.2 0 = ————+ .
8.2 077 d®Ovi  Ogen 07
_0U  dgp dp* +J1/2 ¢ mOGem
T Tod T a0 TR0 T o, 0z
We have
(8.3) K'"? =mecJ™ V2, H=cK"*+U

by p/p; = m*c*(J™' = 1). Since we have dK/dp’ = 2p; and 0K/dgy = p’p*, we have
OH/dp’ = v;, 0H[dg s = cp’p*/2K"? and OH/8z® = HU/0z°. Therefore, we have
‘ 2
ai _oU ¢ 095k o, < ¢ mO9um
dz0 970 2K'V2T 90 2K 07/
by (8.2), where we have put the right hand side as —Hpg. So that, the Hamiltonian H satisfies

=. —HR
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the conservation
ZO
(8.4) HZ) + f Hg(w)dw = H(0).
0

Now, we consider the transform (1.3) with w' = --- = w". We consider the case (g k) =
a(z%)*diag(1,--- , 1), namely, the case ¢ = 1 and k = 0 in (3.11). Then we have

J=1 2i(w1—w0)a(eiwox0)2 i dx/ ?
= —e " -
c? = dx0

by the definition of J. We also have

n 2
Wy 2w -w) Ma da dx’\"  oU
¢ Hr=e JU2 dx0 Z dx? 0x0

by p/ = me @ " 124xi|dx°, (8.3) and Ogsm/dz' = 0. Especially, let us consider the
casem > 0, W =0, w' = 0,+7/2,7. Let U and a(-)(> 0) be real-valued functions. Let
us consider the small velocity such that / > 0. Then K, H, Hg are real-valued functions.
Moreover, if —0U/dx° > 0 and

da { >0 forw'=0,n,

dx® | <0 forw! = +7,

then Hy > 0. So that, the spatial variance da/dx" # 0 has a dissipative effect on the
conservation (8.4), while the spatial invariance da/dx" = 0 yields the strict conservation
H(x%) = H(0) for x° € R when the potential U is stationary, namely, U/0x° = 0. Therefore,
the conservation of the Hamiltonian depends on the spatial variance a(-).

(2) Let us consider the above argument for the relativistic velocity v* := dz%/dt for
0 < a < n for the general line element (2.6). We put J := —v"gaﬂvﬂ, and the potential
U= U@ ,7%). We denote the mass by m. We define the Lagrangian L, the momenta
{Po},_,> and the Hamiltonian H by

oL
(8.5) L:=-mcJV*-U, p,:= R H:=v"p, - L.
v(}’
We have
oL _ oU __mc dJ oL _ mc O
g~ oz DT TR a0 ges 202 Ggup
The Euler-Lagrange equation for L is given by

oL d (8L)+ oL 8g04;

8.6 — -\
86) 0z dr\ovr ag(,ﬁ 0z

Since dJ/0v’ = —2v, and 0J/0g.p = —%%, we have v, = J'?p,/mc and OL/0g.p =
mcv®1?/2J'/2. The equation (8.6) is rewritten as

ou d (mc me  dgys s mc dv‘S mc 8gaﬁ .
8D 55~ e (Fim) o= im0 g g e V=0

Multiplying v” to the both sides in (8.7) and using the elementary facts
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a _,ou

— =0 J=-0"
dr a7’ "

d’ 1(d dgys 0gap dgap
Y R I Y7 _ o Y —
vgyédr_2(dr(vvy) Y ) BZVU Codr’
we have
dUu
— =0.
dr

Since we have H = U by v”v, = —J and the definitions of H and L, the Hamiltonian H is a
constant function independent of the proper time 7. Namely, we have

(8.8) H(t) = H(0).

Comparing the conservation laws (8.4) and (8.8), we know that the Hamiltonian H is
strictly conserved with respect to the proper time 7 independently of the scale-function a(-),
while the Hamiltonian is dependent on the scale-function with respect to the local time z°.
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