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Abstract
We study the asymptotic behavior of global solutions to the initial value problem for the gen-
eralized KdV-Burgers equation. One can expect that the solution to this equation converges to
a self-similar solution to the Burgers equation, due to earlier works related to this problem. Ac-
tually, we obtain the optimal asymptotic rate similar to those results and the second asymptotic
profile for the generalized KdV-Burgers equation.

1. Introduction

In this paper, we consider the asymptotic behavior of global solutions to the following
generalized Korteweg-de Vries-Burgers equation (we call it generalized KdV-Burgers equa-
tion for short):

(1.1) U+ (f(u))x + kit = Uyy, 1>0, XER,
u(x,0) = up(x), x€R,

where uy € L'(R), f(u) = (b/2)u* + (c/3)u’® and b, c,k € R. The subscripts ¢ and x denote
the partial derivatives with respect to r and x, respectively. The aim of our study is to obtain
an asymptotic profile of the solution u(x, f) and to examine the optimality of its asymptotic
rate.

First of all, we recall known results concerning this problem. When k = 0, (1.1) becomes
the generalized Burgers equation:
(1.2) u+ (f)e = thyy, >0, x€R,

u(x,0) = up(x), xeR.

It was shown in Matsumura and Nishihara [12] that the solution of (1.2) converges to a
nonlinear diffusion wave defined by

1 X
(1.3) X0 = ( ) >0, xeR,
Vi+tr Wi+t
where
1 b6/2 _ 1 —x2/4
(1.4) e P Gl L I f to()dx, b % 0.
b \m + (eb9/2 — 1) fx/z e ¥dy R
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Note that y(x, #) is a solution of the Burgers equation

b
(1.5) X+ (5)(2) = Xars

f x(x,0)dx =0.
R

Moreover, if ug € L} (R)NH'(R) and luo|| 11 +lluollg is sufficiently small, then the optimal
asymptotic rate to the nonlinear diffusion wave is obtained by Kato [9] by constructing the
second asymptotic profile Vi (x, f) which is the leading term of u — y. Here Lé(R) is a subset
of L'(R) whose elements satisfy |[uo]| 1= fR lug(X)|(1 + |x])Pdx < oo. Indeed, the following
decay estimate is established:

satisfying

(1.6) ) = (1) = Vi Dll < Cllluollys + ol )1+ 07 12 1,
where
(1.7) Vi) = ——2 ( )(1+z)‘1og(1+z) 120, xeR,
’ 12vr “\Vi+:
(1.8) V(%) = (by.(x) = )™ n.(x) = 2i(m(X)e’*2 14,
b X
(1.9) 1) = exp( 5 f X-)dy), f 0. (r- ) dy.

From (1.6), the triangle inequality and (1.7), we see that the original solution u(x, t) tends
to the nonlinear diffusion wave y(x, f) at the rate of ¢! log ¢, and in addition, if § # O and
¢ # 0, then this asymptotic rate is optimal with respect to the time decaying order. Also we
see that u — y tends to the second asymptotic profile V;(x, 1) at the rate of .

Next, we consider the case where b =k =1and ¢ =0in (1.1):

(1.10) Up + Uy + Usyy = Uyy, >0, X ER,
u(x,0) = up(x), x eR.

This equation is called the KdV-Burgers equation. It was shown in Kaikina and Ruiz-Paredes
[5] that if ug € LI(R) N H*(R) with s > —1/2, the following estimate

(1.11) lluC-, 1) = x Gt = 1) = Va(, Dl < Cr'ylog

holds for sufficiently large 7, where

_ -1
Vo(x,t) = 32\/_ (\/_) logt
with V.(x) being defined by (1.8). We see from this result that the solution of (1.10) also
tends to the nonlinear diffusion wave y(x, 1) at the rate of #~! log t and this rate is optimal. On
the other hand, the asymptotic rate given by (1.11) is rougher than (1.6) by \/lo?, although
they mentioned in [5] that the term +/log? in the estimate (1.11) could be removed by more
delicate consideration, without any proof.

In this paper, we consider (1.1) for all b, ¢,k € R with b # 0, and obtain the following
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result:

Theorem 1.1 (Main Theorem). Assume that ug € L'(R)NH3(R) and ||uo||.1 +||uol| g3 is suf-
ficiently small. Then (1.1) has a unique global solution u(x, t) satisfying u € C°([0, co); H?)
and O € L*(0, 00; HY). Moreover if uy € Li(R) N H3(R) and IIMOIIL{ + ||luoll g is sufficiently
small, then we have

(1.12) luC, 1) = xC, 1) = VC, Dlle < Cllluoll + lluoll3)(1 + Nt or>1,
where x(x,t) is defined by (1.3), while V(x,1) is defined by
d (bV’k ¢ X
(1.13) Vix,1) = ——(— 4 —)V*( )(1 + 0 og(1+1), 120, xeR,
AN Y A Wip

with V.(x) being defined by (1.8).

REMARK 1.2. From (1.12), the triangle inequality and (1.13), if § # 0 and (b’k)/8+¢/3 #
0, we see that the original solution u(x, r) tends to the nonlinear diffusion wave y(x, 7) at the
rate of ! log . Actually, we have

C1+0 " og(l + 1) < lu(-, 1) = x (-, Dl < C(1 + 1) log(1 + 1)

holds for sufficiently large ¢. Therefore, this asymptotic rate ~! log  is optimal with respect
to the time decaying order. On the other hand, if (b*k)/8 + ¢/3 = 0, then we find the
asymptotic rate to the nonlinear diffusion wave is 1!, because V(x, ) vanishes identically.

RemARk 1.3. It seems that our regularity assumption on the initial data is stronger than
previous works [5] and [9]. However, even if we assume the same regularity as those works,
since the solution of (1.1) becomes smooth u(x,?) € C*((0,c); H*(R)) by virtue of the
smoothing effect of the parabolic type equations, we may assume that the initial data u, €
L'(R) N H3(R) by changing the initial time. Taking this fact into account, we can say that
(1.11) is improved, and that the results due to Kato [9] and Kaikina and Ruiz-Paredes [5]
are unified.

This paper is organized as follows. In Section 2, we prove the L”-decay estimates of
solutions to (1.1). In Section 3, we prepare a couple of lemmas for an auxiliary problems.
Finally, we give the proof of our main theorem in Section 4. In the proof of the main
theorem, in order to estimate the dispersion term in the integral equation (4.11) below, we
rewrite this term by making the integration by parts. It is the main novelty of this paper since
we can not estimate this term in the same way as previous works.

2. Decay Estimates for Solutions to (1.1)

In this section, we shall derive decay estimates for solutions to (1.1). First, we introduce
the Green function associated with the linear part of the equation in (1.1). Here and later, for
f,g € L>*(R)n L'(R), we denote the Fourier transform of f and the inverse Fourier transform
of g as follows:

~ 1 .
=F = — X £(xX)dx,
&) =F[f1&) N fRe f(x)dx
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1 ,
300 =F gl = = fR ¢ g()de.

Then the Green function is defined by
S(x, 1) = F e ¥k (),

By a direct calculation, we can show the estimates of derivatives of S (x, 7). For the proof,
see Lemma A.1. and Lemma A.2. in [8].

Lemma 2.1. Let [ be a non-negative integer. Then, for p € [2, 0], we have

(2.1) 10°S G, Ol < Ce(1 + 7%, >0,
(2.2) ||(9i5(-, Dl < Ct_(l/2)(1_1/p)_l/2, t>0.

Moreover, for the convolution S (¢) = f, we obtain the following estimate:

Lemma 2.2. Let m be a positive integer. Suppose f € H"(R) N L'(R). Then the estimate
(2.3) 1S @) * iz < CA+ D72 fllp + e fllzz, 120
holds for any integer 0 < [ < m.

Proof. By using Plancherel’s theorem, we have

184S * PIZ, = lle ¥+ Gg)l fe)) 2, = fR e 28 \Gig)! f(&)Pdé

_ ( f + f )e*zf\f'ﬂ(if)’f(f»zdf
|€1>1 <1

=L+ 1.

First, we evaluate /;. By Plancherel’s theorem, we have

R

2.4) L<e™ L . @) fE)Pdé < e f 0L P dg = 10 fII.
Next, we evaluate /. Siﬂce If(f)l < C||fllp for all ¢ € R, we have
ey b= [ eaRers < clwpifo) [ ot
lg1=<1 lg1<1 €11
< CIIfIG, fo el < O+ A
From (2.4) and (2.5) we obtain (2.3). O
Now we turn back to (1.1). Local existence and uniqueness of the solution to (1.1) can

be shown by the standard argument (see e.g. [8], [10], [12]). Moreover, one can obtain the
global solution satisfying

!
(2.6) G-, DIl +f 8, $)ll3sds < Cllugllzys, > 0.
0

Furthermore, the solution satisfies the following decay estimates:
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Lemma 2.3. Assume that ug € L'(R) N H3(R) and |luo|lp1 + |luollgs is sufficiently small.
Then the solution u(x, t) to (1.1) satisfies

2.7) 105 uC-, Oll <Cllluollr + lluolly )™ (1 + 714, >0,
(2.8) 10 uC-, Ollz <Cllluollr + lluolly)(1 + 412 1> 0
forl=0,1,2,3.

Proof. We consider the following integral equation associated with the initial value prob-
lem (1.1):

(2.9) u(t) =S (1) * uo - fo S(1 =) * (fu))(s)ds
=§(1) * up - fo (0.8 (1 = 8)) * (f(w)(s)ds

=S *ug - 2 f (08 (1 = 5)) % 1P(s)ds — = f (0xS (t = 5)) = u’(s)ds
2 Jo 3 Jo
=L +5L + 1.

First, we shall prove (2.8). If we set

3

(2.10) M(T) = sup > (1+ 0" "2 u(, ).z,
0<i<T 425

then from the Sobolev inequality

Ifll= < V2IAR2NF L2, f e H(R),

12 12
we have

(2.11) 16 u(-, Ol < M(TYA + 07112 1=0,1,2.

Here and later, M(T') are assumed to be small. Before evaluating /; , I, and I35 , we prepare
the following estimates for / = 0, 1, 2, 3:

(2.12) 0%, Ol <C(L+ V212 M(T)?,
(2.13) 0% G, )l <C(L+ 2 M(TY.
Let/=0,1,2,3and 0 <t < T. We have from (2.10) and (2.11)

!
102 )l <C ) I7uC, Dl 105", D2

m=0

<C(1+ 07 > PM(TY,
and

10506 G, D)l <CNO -, Ollg2llua, Ol g2 lleeC, D]l
-1 I-m

+C UG, Ol 19, Dl 10w, Dl

m=0 n=0



888 1. Fukupa

<C(1+ )+ 121 + 7 *A + 72 M(T)?

-1 [-m
+C Z Z(l " t)71/27m/2(1 " t)71/47n/2(1 " t)71/47(lfm7n)/2M(T)3
m=0 n=0

<C(1 + 0 "2 M(T)>.

Thus we get (2.12) and (2.13).
By Lemma 2.2, we get

(2.14) 10501 G, B)ll2 < A+ ) 412 (lugll 1 + ol £ > 0.

From Young’s inequality, Lemma 2.1 and (2.12), we have

(2.15)

1/2 t
1041, 1)l 2 <C f 101S (= 5)) = (s)ll2ds + C | [0S (£ = 5)) * 0~ W?)(s)l|2ds
0 t/2

1/2 !
<c f 101 (¢ = G, s)lnds +C f 10,5 (¢ = N0 @2 sl ds
0 t/2
1/2
<C f (t — )"V EDR 4 712 M(T)ds
0

!
+C | (=970 + 97 V2 M(TYds
t/2

<CA+07"PMTY, 1> 1
Similarly, we have from Young’s inequality, Lemma 2.1 and (2.13)

(2.16)

1/2 !
1015, Dz <C fo 1St = ) * 16 (llizds + C f/ 0,8t = )+ )0l

t

1/2
<C f 10518 (t = 2 G, llpds +C | 11058 (2 = )| 2l10-@ ¢, ) pds
0

t/2
/2
<C f (t—s) VDR 4 o M(TY ds
0
!
+C | =90+ MY ds
t/2
<C(1 + )3 /* 1 og(1 + HM(T)?, 1> 1.
Therefore, from (2.9), (2.14) through (2.16), we have
(2.17) 10, Dl < CA+ 0P (lluglly + lluolls + M(T)), 1<1<T.

For 0 <t < 1, from (2.6), we see that (2.17) is also valid. Thus, we get
M(T) < Cllluolls + lluolls + M(T)?).
Since ||ugll;r + ||uolle 1s small, we obtain the desired estimate

(2.18) M(T) < Clluollr + lluolls)-
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This completes the proof of (2.8).
Next, we shall prove (2.7). By Young’s inequality and Lemma 2.1, we have

(2.19) 1081 G o)l < CEPA + ) gl > 0.
Moreover, we have from Young’s inequality and Lemma 2.1, (2.8), (2.12), (2.13) and (2.18)
(2.20)

/2 t
19,12, D)ll <C f @S = ) % 2 ()lpds + C | .S (1 = 9) * 0, (u) () ds
0 t/2

1/2 t
<C f 10518 (t = )il $)lipds + C f 10,8 (¢ = | 0%, sl ds
0 t/2
1/2
<C f (t =) 22+ (= 7 HA + )2 luollr + lluoll ) ds
0

!
+C | =P+ =) + )R (uglly + uollys ) ds
/2

—1/2-1/2 —1/4N\,.1/2
<Cr VA + YN 2wl + Nluollgs)
—-1/2-1/2,,1/2 1/4
+ C+ 1) 22 4 (gl + Nluoll )
-1/2 —-1/4
<C(lluollzr + lluollg)™ (1 + 7%, 1> 0,

and

/2 f
164 15C-, )|l <C fo (0LS (1 = ) * 0, () (s)l|ds + C f/ 2||<axS(t—s))*a;(u%(s)nyds

1/2
@2 <C [0S @ o olds
0

t

+C | 0.8 = plldh @, ))lipds
t/2
1/2

<C | (=20 + -5+ (uollp + lluollz=)ds
0
!
+C | =P+ —= )N + 5wl + lluollgs) ds
/2
<Cr "1+ 7 (luollpr + lluoll )
+CA+ 0 2E 4+ MY luollr + Nluoll )

<C(lluollp + lluollg)e™ (1 + 1%, > 0.

Therefore, summing up (2.9) and (2.19) through (2.21), we get (2.7). O

3. Basic Lemmas and Auxiliary Problem

In order to show basic estimates for auxiliary problems, we prepare a couple of lemmas.
First, we treat the nonlinear diffusion wave y(x, r) defined by (1.3), and the heat kernel

1
G()C, l) — \/?te_XZMI-
/4
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A direct calculation yields

3.1) (x,0)] < CIS|(1 + ) 2™ /4040 4 > 0 x e R.
(

Moreover, we can estimate derivatives of y(x, ) and G(x, f) (for the proof, see e.g. Lemma
4.1 of [12]).

Lemma 3.1. Let @ and B be non-negative integers. Then, for p € [1, o], we have

(32) 10337 X . Dl < Clo|(1 + 1y~ VPA=Pmal26 >
(3.3) 1% G (-, )|y < CrV2A=UP=al2=6 4 (),
Next, for the latter sake, we define
(3.4) (x.1) ( o ) exp(bfx ( t)d)
. mx,0n=n|—|= Py X\y,1)ay |,
VI +1 2 )
(3.5) m(x 1) = (m(x,0)7"
For these functions, we can easily show
(3.6) min{1, ¢”/?} < n,(x, 1) < max{1, ¢"/?},
(3.7) min{1, e?/?} < ny(x, 1) < max{l, e /%)

Moreover, we have the following estimates by using Lemma 3.1 (for the proof, see Corollary
2.3 of [9]).

Lemma 3.2. Let [ be a positive integer and p € [1,00]. Fori = 1,2, if |0| < 1, then we
have

(3.8) 3, Dl < CIBICL + 1y VAP, > 0,

In order to prove the main theorem, we introduce an auxiliary problem. We set y/(x, t) =
u(x,t) — xy(x, 1), where u(x, 1) is the original solution to (1.1) and y(x,?) is the nonlinear
diffusion wave defined by (1.3). Then, y/(x, t) satisfies the following equation:

b c
wt + (bX'vb)x + (5'702) +(§(¢ +X)3) +k¢xxx + k)(xxx - 'ﬁxx =0.
Based on the observation given in the paper [5] and [9], one may guess that the main term of
asymptotic expansion of i at t — oo is governed by the solution to the following equation:
v + (byv)y + (§X3) +kX yxx — Uxx = 0.
X
This observation leads to the following auxiliary problem:
(3'9) 2t + (bXZ)x —xx = ax/l(x7 t), r> O’ X € Ry
2%, 0) = zo(x), x€R,

where A(x,t) is a given regular function decaying fast enough at spatial infinity. The ex-
plicit representation formula (3.11) below plays an important roles in the proof of the main
theorem, especially in the proofs of Proposition 4.2 and Proposition 4.3 below. If we set



GENERALIZED KDV-BURGERS EqQuaTioN 891
(3.10)
Ui = [ 0G0yt = smeeom. o [
R

—00

Y
h(g)dg)dy, O<s<i xeR,

then we have:
Lemma 3.3. The solution of (3.9) is given by
f
(3.11) z(x, 1) = Ulzol(x,1,0) + f Ul0,A($)](x,t, s)ds, t>0, xeR.
0
Proof. We set

r(x, 1) = f 2(y, Hdy,

[s+]

and integrate both sides of the equation (3.9). Then, we get
(3.12) re+byry —ry =4, t>0, x€R,

5.0 = [y
Multiplying 1, (x, f) both sides of (3.12), we have

(3.13) Mt = 20:m)rx — marxx = M4,

since 0,12(x, 1) = —(b/2)x(x, )n2(x, 1). Now, we put E(x,t) = na(x, H)r(x,t). Since 0,1 —
0’y = 0, (3.13) leads to

Et - Exx = 772/l
Therefore, we obtain
!
E(x,1) = f G(x—y,DE(y,0)dy + f f G(x =y, 1= )y, $)Ay, s)dyds,
R 0 JR

or
m(x, r(x, 1) = L G(x =y, m(y, O)r(y, 0)dy + j; fR G(x —y,t = )My, $)Ay, $)dyds.

Since n; = 17,', we have

X Y
| 2ty =) [ Go=pomet 0 [zl

(se] —00

+ m (-xa t) f fG(x -y, [ 3)772(!/’ s)/l(y’ S)dyds
0 JR

Thus we get (3.11). O
Now we set
W) = {1+ )| Wflhens = 3 10711 < o).
n=0

Then, for the first term and the second term of (3.11), the following estimates are established
(for the proof, see Corollary 3.4 and Lemma 3.5 in [9]).
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Lemma 3.4. Let m be a positive integer. Assume that 6| < 1, zo € H"(R) N L{(R) and
fR z0(x)dx = 0. Then the estimate

(3.14) 18 Ulz01C, 2, 0)ll> < Clllzollzr + lIzollL)(L + HR >0
holds for any integer 0 <[ < m.

Lemma 3.5. Let m be a positive integer. Assume that |6] < 1 and A € C%0, co; H™) N
C%0, co; W™, Then the estimate

(3.15)

1/2
<C f (141 =) *12)2¢, )|l ds
L? 0

/ f
O A=A+ s RYGIAC, $)lpds
n=0 Y112 ’

1 1 1
iC Z( f e 0-9(1 4 5y A s>||izds)
n=0 0

9 f U0 A()](-, 1, 8)ds
0

/2

holds for any integer 0 < [ < m.

4. Proof of the Main Theorem

In this section, we shall prove our main theorem. First, we consider

4.1) v + (byv)x + (§X3)x+k)(xxx —0 =0, t>0, xeR,
v(x,0) =0, xeR.
The solution of this problem satisfies the following estimates.
Lemma 4.1. Let [ be a non-negative integer. Assume that |6| < 1. Then we have
(4.2) 16L0(, Dll2 < CI8I(1 + 3 /* 2 1og(2 +1), 120,
where v(x, t) is the solution to (4.1). In particular, we get
(4.3) 16 0C-, Dl < ClIA + 7 log(2 + 1), 2> 0.

Proof. Applying Lemma 3.3, the solution v(x, ) to (4.1) is given by

v(x,t) = ftU
0

By Lemma 3.5, we have

(05 )Hraae )9 e 2.

t/2
4.4) (10%0C, 1)l < C fo A+t =) 12U DN+ s lIds

+Czl:

m=0

!
(L4197 A+ 7RI C Dl + 107 2K, 9)ll)ds
/2
[ ' [ 3 2 2 2 12
+C Z( f eI+ )BT OCCL I + 197 s>||Lz>ds)
0

m=0
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=h+5L+1

For p € [1, o], we obtain

(45) 10703 Dl <C D19 el =107 )l

n=0 i

3
3

Il
(e}

m m-n

SC|5|3 Z Z(l + s)—1/2—n/2(1 " S)—l/2—i/2(1 + s)—l/2+1/2p—(m—n—i)/2
n=0 i=0
<CIBP (1 + ) 7P,

where we used Lemma 3.1. Thus we get

t/2
(4.6) I, <C f (41— 20530 + 97" +161(1 + s) Hds
0
<CI8|(1 + 073412 10g(2 + 1).

Moreover, we have from (4.5) and Lemma 3.1

l ¢
47 b scz (1+1— 9741+ 972083 + )72 £ 18|11 + )7 17")ds
— t/2
!

<Cl5| | (1 +1=97*1+ 9 ds
t/2

<CIo|(1 + £)3/4712

and

1 ! 1/2
48 L <C Z( f e A+ )7 + )7 4 6P+ s)—5/2—m)ds)
m=0 0

t 1/2
SCI(SI( f e 91 + s)—5/2—lds)
0
<C|8|(1 + r)~>/42,

Summing up (4.4), (4.6), (4.7) and (4.8), we obtain (4.2). O

Our first step to prove the main theorem is to show the following proposition.

Proposition 4.2. If uy € Li(R) N H3(R) and || L+ lluoll g is sufficiently small, then the
estimate

49) 10y, 1) = x () = v, Dz < Clluolly + lollzs )+ 0742, 120

holds for | = 0,1, where y(x,1) is defined by (1.3), while v(x,t) is the solution to (4.1). In
particular, we get

(4.10) lluC-, 1) = x (. 1) = v(:, Dl < Cllluollzy + lluollpe)(1 + N7, t>0.
Proof. We set

w(x, 1) = u(x,t) — xy(x,t) — v(x,1).
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Then w(x, t) satisfies the following equation:
w + (b/\/w)x — Wyxx = g(w’/\/a v)x - kwxxx - kvxxm > O’ X € Ra
w(x, 0) = wo,

where we have set

g(w, y,v) = —g(w + 0)2 - %(w3 +00 + 3w+ v)(w + )y + v)),

wo(x) = up(x) — x(x,0).

By the assumption on the initial data, (1.4) and (3.2), we get wy € L}(R) N H3(R) and
fR wo(x)dx = 0. From Lemma 3.3, we obtain

4.11)
ww&=wmkmﬁﬂlfUWMMme&%ﬂw—kflemﬂmmmumﬂw
0 0
=L +L+ 1.
Now, we define N(T') by
1
(4.12) N(T) = sup > (1 + 0¥ 2w, D).

0I<T 4=

Then, from the Sobolev inequality, we have

(4.13) lw(, Oll= < N(TY(A + 17",

Before evaluating /,, I and I35, we prepare the following estimates for [ = 0, 1:
(4.14) 18gC, Dl < C(1+ 177261 log(2 + 1)* + N(T)?),
(4.15) 16L9C., Dll2 < C(1 + 07 *12((16]10g(2 + 1)* + N(T)?).

We shall prove only (4.14), since we can prove (4.15) in the same way. Here and later, |9]
and N(T) are assumed to be small. We put i (x, 1) = w(x, t)+v(x, 1), ha(x, 1) = wx, t)+x(x, 1)
and hs(x,t) = y(x,1) + v(x,1). Letm = 0,1 and 0 < ¢t < T. Then we have from Lemma 4.1
and (4.12)

(4.16) 107h1 (-, )l < C(1+ 1) 42(16] log(2 + £) + N(T)).
In particular, from the Sobolev inequality, we get

4.17) G, Dllzs < C(1+ 1)~ (6] log(2 + 1) + N(T)).
Moreover, we get from Lemma 3.1 and (4.12)

(4.18) 18 o, Dllz2 < C(L+ )~ 4"2(16] + N(T)).

In particular, we get

(4.19) o, )l < C1+ 0712161 + N(T)).

Moreover, from Lemma 3.1 and (4.3), we have
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(4.20) 1073 (-, Dl < CloI(1 + 1)1 />m/2,

Hence, for [ = 0, 1, we have from Lemma 4.1 (4.12), (4.13), (4.16), (4.18) and (4.20)

l
(4.21) 1w + 0 C, DIl <C D NG A Dl 10" B - D)2

m=0

<C + 07327216 1og(2 + 1))* + N(T)?),

(4.22) 10w’ G, )l <ClO w(, Oll 2w, Dl 2w, Dl
-1 [-m

+C W Dl 1w, D65 w, Dl

m=0 n=0
<C(1 + ) * 121 + 34 + 7 'N(T)?
-1 I-m
+C Z Z(l + t)—1—m/2(1 4 t)—3/4—n/2(1 4 t)—3/4—1/2+m/2+n/2N(T)3
m=0 n=0

<C(1 + 0P PN(TY,

I—

(4.23) 16L@ 0L < € D7 I970C, Dl 195, Dlllds "o, Dl
0n

3

Il
(=}

[
o
I I-m
<C Z Z(l + t)—l—m/Z(l + t)—3/4—n/2(1 + t)—3/4—l/2+m/2+n/2(|6| log(2 + t))3
m=0 n=0
< C(1 +0)7712(16]10g(2 + 1))’
< C(1 + 0737216 log(2 + 1))

and
I I-m
(4.24) 16,y hah3)C, Dl SCZ 107 1 G, Dl 210t ha G, D210 ha -, Dl
m=0 n=0
I I-m

<C (1 + 074 M2(15|1og(2 + 1) + N(T))

[

m=0 n=0
X (1 + t)_1/4_n/2(|6| + N(T))(l + t)—l/2—1/2+m/2+n/2|6|

<C(1 + 0732728 1og(2 + 1) + N(T))(|6] + N(T))
<C(1 + 07327216 1og(2 + 1))* + N(T)?).

We note that the second term in (4.22) does not appear for / = 0. Summing up (4.21) through
(4.24), we obtain (4.14).

Now, we start with evaluation of /;, I, and /5. By using Lemma 3.4 and |§| < ””OHL}’ we
get

(4.25) 10%11 G, Dl < Cllluoller + ol (1 + D772 1=10,1,2,3.

From Lemma 3.5, for [ = 0, 1, we have
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/2

4.26) 1L DLz <C f (1 + 1= 7 2Yg( 9llunds
0

l ¢
+CO 0| A=A+ sy PG 9l ds
_ /2 :

[ f 1/2
v ([ e g ias)
0

m=0

EIz'l + 12.2 + 12.3.

We have from (4.14) and (4.15)

/2
(4.27) L, <C f (1 +1— ) *120 + 5)732((16]10g(2 + 5))* + N(T)?)ds
0

<C( + 7+ 1261 + N(T)?),

! t
(4.28) L, <C Z (1+1— )41 + 5)212((I6] 1og(2 + 5)* + N(T) )dss
— /2

!
<C(1 + 0712161 1og2 + 0)* + N(T)Y) | (1+1—5)7*ds
t/2

<C(1 + 1)/*12((16] 10g(2 + 1))* + N(T)?)

and

(4.29) s <C ZI:( fo 91 4 556l log(2 + ) + N(T)4)ds)1/2
m=0
<C((16]10g(2 + 1))* + N(T)z)( f t eI + s)_7/2_lds)1/2
<C(1 + 7+ 12((16]10g(2 + t))g + N(T)).
Summarizing (4.26) through (4.29), we obtain
(4.30) 10 L, DIz < CASP + N(T)*)(1 + 1)~ /412,

Finally, we evaluate /5. At first, since y = u — y = w + v, from Lemma 2.3, Lemma 3.1
and Lemma 4.1, we have

(4.31) 1050, Dl < Cllluollz + lluollga)e ™21 + 7%, t>0, 1=0,1,2,3,
(4.32) 1050, DIz < Cllluollp + lluollgs)(L+ 6y~ V42 ¢t >0, 1=0,1,2,3,
(4.33) 10\, O)ll2 < C(I6]1og(2 + £) + N(T))(1 + 1) /42 1=0,1.

From the definition of I3, it follows that

&' Ii(x, 1) = — ko', f Ul e (9)](x, 2, 8)d.s
0

=—k fo fR 8N G(x =y, t = M Cx, D)y, Wy, $)dyds
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I+1

[+1 o "
-k ZO( i )aﬁ:l m(x, 00"J(x, 1),
where we put

) = fo fR Gx = st = s My )l

Therefore, from Lemma 3.2, we have

I+1
(434) 10415, Dl <C (1 + i G Dl
n=0

By making the integration by parts, we have

J(x,1) = f f 1G(x -y, t — Sy, Wy, s)dyds
0 R
) fo f 0.G(x — .1 — )31, (. $)dyds
R

v [ [ Gt - 9 0 s
0 R

Then, it follows that

!
9 f f 07 G(x — y.t — )Oyma(y, Wy, s)dyds
0 R

2
435 OGOl <C ) .

r=0

2

First, we shall evaluate J, for r = 0, 1. By Plancherel’s Theorem, we have

(4.36) J, <

iy fo I FG ) IE, )ds

L2(lE1<1)

+ =Jr1 +Jr.2

(&) fo eI P )€, s)ds

L2121

and

/2 !
@37 I S( f + f )||<if>"+2-*e—<f-s>'f'2F[(@anwuf, llz2ggends = Jria + Jriz.
0 /2
Since
(4.38) f |§|je—2(z-s>|§\2d§ <C(+1-s)212 >0,
lEl<1

and (4.31), (3.7) and Lemma 3.2, we have

1/2 N VE
(4.39) Jr1a sCf sup [F[(0 )Y€, s)|(f P42 205 d§) ds
0 =l lg1<1

/2
<c f (1 + 1= PSP )l ds
0
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/2
<C(1 + fy S f (14 92 luolles + ltollr)(1 + 574
0

<C(lluollzr + luollgs)(1 + 1)™/2 14,

While, we have from Lemma 3.2, (3.7), (4.31), (4.32) and (4.38)

/ L A\
(440) Jyp1a < C f sup €)™ FI@mwICE, 5 f (P gg) s
/2 €11 [£1<1
<C 2<1+r )T ()W) )l dss
t/
n+l-r

<C )y

m=0

t
(1+1 =97 "0, )02, s
t/2
n+l-r ¢
<C | A r= A+ R g+ gl )s (L + 57 s
m=0 Y12

< Clluollr + lluoll)(1 + )24, 1> 1.

For |£] > 1, by using the Schwarz inequality, we have

iy fo 9 PO (&, 5)ds
<c f 61 iy T )W E, )lds
1/2 1/2
< f et as) fo I G FU € 9P

) 1/2
< C( f 9P iy 1T P W (€L s>|2ds) .

0
Therefore we have from Lemma 3.2 and (4.32)

@an I <c( f |y FL ) (E, s>|2dsd§)

1€1>1
< f -9 f| NGy E oPdsds)
&>
n+l- r 1/2
<C Z f "N )T S)||des)
n+l— r

/2
<C Z f NS+ )7 (ol + uollg)* (1 + 5)7H mds)

1/2
<Cllull + ([ &0+ 5727as)
0
<Clluolls + ol )(1 + 172,
From (4.36), (4.37), (4.39), (4.40) and (4.41), we obtain
(442) Jr S C(HMOHLI + ”uO”H3)(1 + t)_n/2_1/4’ t Z 1, r= 0’ 1
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Next, we evaluate J,. For n = 0, we have from Lemma 2.2 with k = 0

(4.43) J, <C fo e A2 )W)l 2d s

SCL (1 +1 =) @) )l + e TN @) G, 9)lI2)ds
=Jr01 + J202.

From Lemma 3.2 and (4.33), we have
t/2 t
444) o, :C( f + f J -+ = 9 U@ 9luds
0 t/2
/2
<C(1+0n~ 4 f 161(1 + 5)7/*(16] log(2 + s) + N(T))(1 + 5)/*ds
0

+C f (L+1 =)0l + $)7 /(6] log(2 + 5) + N(T))(1 + 5)/*ds
/2

<C(1 + 074161 + N(T)*) + C(1 + )734(6/* 1og(2 + 1) + 61> + N(T)?)
<C(1 + 07 Y* 6P + N(T)»

and

t
(4.45) J202 <C f eI + 5)7 (161 Tog(2 + 5) + N(D)(1 + 8)7/*ds
0

<C(16/*10g(2 + 1) + 61> + N(T)?) fo t eI + 5)*ds
<C( + 5) (6 log(2 + 1) + |6* + N(T)?).

Therefore, we obtain from (4.43) through (4.45)

(4.46) Jr < C(+ 07367 + N(THY), n=0.

In the following, let n > 1. By using Plancherel’s theorem, we have

(4.47) Jr <

(iey' f I (&, s)ds
0

L2(j1<D)

+ = J2.1 + J2_2.

LA(j=1)

s
(i€’ f I PP, s)ds
0
First, we estimate J, ;. It follows that
t/2 t 5
@48) o f " f Jicigre 5 FL@E Dlirgaends = s + T
0 t/2

From Lemma 3.2, (4.33) and (4.38), we have

1/2 ) 1/2
(4.49)  J11 <C f sup |F[(0*n)w (&, s)l( f |2 e~ 2kl df) ds
0 [l [£1<1

1/2
<C f (1L +1 =)V @n)w)C, o)l ds
0

899
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1/2
<C(1 + ™14 f 161(1 + 5)73/4(16]1og(2 + 5) + N(T))(1 + 5)~/*ds
0
<C( + ™46 + N(T)®)

and

t ) 1/2
@sn iz <C [ sl Fi@mwie sl [ lee I de) as
1/2 |€1<1 lg1=<1

<C | A +1t-57 07 (@2n))C, 9lpds
t/2

n—1 i

<C Y| A= AT, )Y, Dllds
t/2

=€ Z (1 +1—9)"46|(1 + 5) /2~ 1/2m2+1/4
m=0 t/2

X (16]1og(2 + 5) + N(T)(1 + 5)™"*ds

t
<C(L+ 0> (6P log2 + ) + 61 + N(T)*) | (1+1—s5)7/*ds
/2

<C(1 +1)™2734(16* 1og(2 + 1) + 61> + N(T)?).

In the same way as (4.41), we have from Lemma 3.2 and (4.33)

1/2

@51 <c L y fo & IR gy U@ WIE, )Pdsde)

' 1/2
SC( f e f (€)™ FI@mWI(E, s>|2dgds)
0 €1
n—1 t 12
<C Z( f e NG, )Y s)||§2ds)
m=0 0

n—1 ; .
=¢ Z(f e ISP+ 5)" (10l log(2 + ) + N(T)*(1 + s)_3/2_mds)
m=0 0

<C(6P log(2 + 1) + 161 + N(T)z)( fo 91 s)—5/2—"ds)1/2
<C1 + 07?3361 log(2 + 1) + 6] + N(T)?).
Therefore, summing up (4.46) through (4.51), for n > 0, we obtain
(4.52) Jo < C( + )™ V481 + N(T)).
Therefore, from (4.34), (4.35), (4.42) and (4.52), we have
(4.53) 101G, Dll2 < Cllluollpr + lluollgn + 161 + N(TYH(A + 6"+ p > 1, 1= 0,1
Since |6] < ”uOHLi’ summarizing (4.11), (4.25), (4.30) and (4.53), we obtain
4.54) 10w, Dl < C+ 07 Pluglly + luollys + N(TY), 1<t<T, 1=0,1.
For 0 <t <1, from (2.6), (3.2) and (4.2), we obtain
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(4.55) 183w(, Dz <ClNduC, Dllzz + ClIAXC, Dllzz + ClIC, D2
<Cllupllys +Clo], 0<t<1, [=0,1.
Finally, combining (4.54) and (4.55), we get
(1 + 0210w, Dl < Clluollyy + lluollys + N(TY), 0<t<T, [=0,1.
Since ||ug| L+ ||teo|| > 1s small, we obtain the desired estimate
N(T) < C(lluollzr + lluollg2)-
This completes the proof. O
In order to complete the proof of the main theorem, it is sufficent to show Proposition 4.3
below. Here we need to improve the proof of Lemma 3 in [5] to avoid the factor \/@.
Proposition 4.3. Assume that |6| < 1. Then the estimate
(4.56) o, 0) = VD= < Clold + )7, 1> 1
holds. Here v(x, t) is the solution to (4.1) and V(x, 1) is defined by (1.13).
Proof. We set
(4.57) Alx,y,t,8) = 0(G(x —y, t — )N (x, 1))
= 0.Gx .1~ IMED) + (& DG o1 = M),
F(y,5) = m(y. s)(~(c/3x W, $)° = kxyy (v, 9)).

By Lemma 3.3 and (3.10), we have

(4.58) v(x,t)zf fA(x,y, t,)F(y, s)dyds
0 Jr

t 1/2
= f fA(x, y,t, $)F(y, s)dyds + f fA(x, y,t, $)F(y, s)dyds
/2 JR 0 R
=J, + Jo.

First, we evaluate J;. We shall show
(4.59) 171G Dl < Clol(1 + )"
It follows that from (4.57)

! b
Ji = —gm(x, )] f f ((%cG(x -y, =)+ Ex(x, NG(x —y,t— S))nz(y, (Y. $) dyds
t/2 JR
! b
e [ (2.6 1=+ 006G = 1= 9 oy D, s
t R

= J1.1 + J1.2.

For J; 1, by making the integration by parts, we have
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Jii(x, 1)
f

b
NN f Glx—y.t- s)(aymz(y, W, 1) + Sy D1 (s W, s)%)dyds
3 /2 JR 2

! b
) f f GG~ 1,1 - 9)(~xw. ' ma(y, 9
3 12 JR 2

b
+3nﬂ%sh4%sfxﬂ%S)+EXUsQWﬂ%shK%SVﬂdWB-
Therefore, from Lemma 3.1, we obtain

4.60) |11 Dl
< Cf/z GGt = (G e + e Cr Il iz + G Dl G, $)I3e)ds

!
<CoP | ((1+ 92+ +0"21 +5))ds
t/2

<ClsPA +n7".
For J; , by making the integration by parts, we have
Jia(x, 1)

f

b
= —km(x, 1) R fR G(x—y,1— S)(ay(UZ(y’ SNy (Y- $)) + Sx (X D020y Xy (Y- S)))dde-

d b
= k(1) f f GG = 1= (-1, e I, )
t/2 JR

b
#1200 s 5) + X D20, 0,50 s
Therefore, from Lemma 3.1, we have

4.61) (120Dl

< Cf/z NGC, = N (G $)llze (s Ollze + Dol Ol + G Ollzs b, $)llz=)ds

!
<Clol | (1+)2+A+21 +9)?)ds
/2

<Csl1+0)7h

Hence, from (4.60) and (4.61), we have (4.59).
Next, we evaluate J,. Spliting the y-integral at y = 0 and making the integration by parts,
we obtain

1/2
4.62) J, :f fA(x, y,t, $)F(y, s)dyds
0

R
/2 00 0o

:f f Ay(x,y,t, s)f F(q, s)dqdyds
0 0 y

12 0 y 1/2
—f f Ay(x,y,t, s)f F(q, s)dqdyds+f A(x,0,t, s)fF(q, s)dgds
0 —00 —00 0 R
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=3+ 4+ Js.
First, we note that Lemma 3.1 yields

(4.63) sup sup sup|A,(x,y,1, )|
0<s<t/2 xeR yeR

< Cosup/z(llaiG(-, t= 9= + G Ol=ll0xG(, 2 = 9)llr)
<s<t

<C sup (t—9) P+ A+ -5 <3,
0<s<t/2

since
b
Ay(x,y,1,5) = —ni(x, t)(ﬁiG(x -y, t—S)+ E/y(x, N0.G(x —y,t— s)).
By making the integration by parts, we have

(o] b (o]
f 12(q, $)x 44(q, )dq = =2y, S)xy(y, 5) + 1 f 12(q, $)(x(q, $)*)4dq
Yy Y

b o
=~ N, )~ 71, WY, 9 + = f m2(q, x (g, 5)°dg.
Y

Therefore, we have

(4.64) f F(q. s)dq = f m(a, s)(—%x(q, S - kiaqa, s))dq
Y Y
b Pk o\ [
=k, )\ xy W, 5) + —x (W, $)* |- — + = f m(q, $)x(g, 5)*dq.
? ( / 4 ) ( 8 3) ,

Similarly, we obtain

Y b b2k Y
(4.65) f F(q. s)dq = —km(y. s)(my, 9+ X, s)z)—(— + 5) f (@, (4. 5)°dq.

8  3/)J)..
because
Y b 'Y )
f 12(q, )X 44(q, $)dg = m2(y, $)x (Y, S)+Z f n2(q, $)(x(q, $)7)4dq

b p: (v
= 12, My (Y, 9) + T, KW, 5)* + < f 12(q, $)x(q, $)°dq.

From Lemma 3.1, (4.63) and (4.64), we have

/2 00 00
el <Cr [T [ b9+ b9 + [t 9P daduds
y

1/2 /2 00 q
<cr fo [ b 91+ bt v + fo fo fol)((q, ) dydgds)
R

1/2 /2 oo
sa‘”( fo (<G Mz + G, 9N7)ds + fo fo qlx(q,s>|3dqu)

1/2 /2
<cr( f 011 + 9712 + 10P(1 + 97 P)ds + f f ety 9 dyds)
0 0 R
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t/2
gch1+04-+Cf”{f‘ ]}mu@L@P@m&
0 R

By using (3.1), we have

f e, )P dy < Clo? f (1 + )32 WAy
R R

scwifa+@*ﬂmu+@*fﬂwﬂuy
R

< CI6P116:G (-, 1+ )l
< ClsPA + )72

Thus, we obtain
12
(4.66) 173C, )l < Clol(1 + 1™ + €1 f 5P (1 + 5)7'2ds
0
<Clol+07", > 1.
Similarly, we have from (4.63) and (4.65)

/2 0 Y
|J4(x, D] <Ct3/* fo f (m(y,s>|+w<y,s)|2+ f b((q,s>|3dq)dyds

/2 t/2 0 0
<cr| fo fR (Lo 9 + (s HP)dyds + fo f f g, )Pdydqds)
o

/2 t/2 0
<cr ([ el + e+ [ [ alvia. o dads)

t/2
<Clol(L + 7 + € f f iy, s)dyds.
0 R
Therefore, we have
(4.67) 4G, Ol < CI8IL+ )71, 1> 1.

Finally, we evaluate J5. By the integration by parts, we get

f F(q, s)dg = —% f m2(q, $)x(q, $)’dq — k f 12(q. )X 44(q, 5)dg
R R R

c

bk
3 f (g, $)x(q s)3dq—7 f m2(q, $)(x(q, $)P)4dq
R R

c b’k
—~(5+%) [ ma onta. g
3 8 JJr
From the definition of 77, and y, and (1.9), we have

fR n2(g (g, $)°dg = fR (A )_1(1+S)_3/2X*(L)3dq

Vi+ts Vi+s
=(1+s)7" f 1.2 x:(2) dz
R
=d(l+s)".

Thus, we obtain
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2

bk
fF(q, s)dg = —d(? + )(1 + s)_
Therefore, we have

2
4.68) Js= —d(% + = ¢ n](x t)f (1+s) {6 G(x,t—s)+ —)((x HG(x,t — s)}

2
:—d(%+cm(xt)f (1 +5) {6G(xt—s) 8,G(x,t+ 1)

+ é)((x, H(G(x,t—5)—G(x,t+ 1))}ds

—d(% + c)m(x t){(? GO, t+1)+ —)((x HG(x,t+ 1)}10g(1 + 2)
=Js1 + Jso.

Since
1
O Gx,t—5)—0.G(x,t+1)= (1 + ) f (0,0'G)(x, 1 +1—6(1 + 5))do
0

for [ =0, 1, we have
10 G(x, 1 — 5) — 0\ G(x,t + 1| < C(1 + 5)(t — 5)7>/*71/2,
From (1.9), (3.7) and Lemma 3.1, we obtain

ld| < fR . be.()Pdy < Cllx -, 0)[13; < CloP.

Therefore, we obtain

/2
(4.69) [1J5.1(. Dl <Clof’ f (1+ S)_l((l + )=+ A+ +5)( - S)_3/2)ds
0
<ClsP1+07", r>1.

Finally, by the definition of V(x, ), J5, can be written as follows:
b’k t
Jso(x,1) = — d(— + )nl(x t){c') G(x,t+ 1)+ —)((x HG(x,t + 1)}log( 2)

8
S T I P I

Since V. (x) is bounded, we obtain

3 V(m) Lwlog(l+ 11/3/2)(1”)—1

<ClsP1 +n7", r>1.

(4.70) IJ52(,0) = V(,

Therefore, summarizing (4.58), (4.59), (4.62) and (4.66) through (4.70), we obtain (4.56).
O



906 1. Fukupa

AckNowLEDGEMENTS. The author would like to express his sincere gratitude to Professor
Hideo Kubo for his feedback and valuable advices. The author also would like to thank
Professor Masakazu Kato for his useful suggestion and comments.

This study is partially supported by MEXT through Program for Leading Graduate
Schools (Hokkaido University “Ambitious Leader’s Program”).

References

[1] 1.D. Cole: On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math. IX (1951),
225-236.

[2] N. Hayashi, E.I. Kaikina and P.I. Naumkin: Large time asymptotics for the BBM-Burgers equation, Ann.
Henri Poincaré 8 (2007), 485-511.

[3] N. Hayashi and PI. Naumkin: Asymptotics for the Korteweg-de Vries-Burgers equation, Acta Math. Sin.
(Engl. Ser.), 22 (2006), 1441-1456.

[4] E. Hopf: The partial differential equation u, + uu, = pu,,, Comm. Pure Appl. Math. 3 (1950), 201-230.

[5] E.I. Kaikina and H.F. Ruiz-Paredes: Second term of asymptotics for KdVB equation with large initial data,
Osaka J. Math. 42 (2005), 407-420.

[6] G. Karch: Asymptotic behavior of solutions to some pseudoparabolic equations, Math. Meth. Appl. Sci. 20
(1997), 271-289.

[7] G. Karch: LP-decay of solutions to dissipative-dispersive perturbations of conservation laws, Ann. Polon.
Math. 67 (1997), 65-86.

[8] G. Karch: Self-similar large time behavior of solutions to Korteweg-de Vries-Burgers equation, Nonlinear
Anal. 35 (1999), 199-219.

[9] M. Kato: Large time behavior of solutions to the generalized Burgers equations, Osaka J. Math. 44 (2007),

923-943.

[10] S. Kawashima: Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and
applications, Proc. Roy. Soc. Edinburgh Sect. A 106 (1987), 169—-194.

[11] T.-P.Liu: Hyperbolic and Viscous Conservation Laws, CBMS-NSF Regional Conference Series in Applied
Mathematics 72, SIAM, Philadelphia, PA, 2000.

[12] A.Matsumura and K. Nishihara: Global Solutions of Nonlinear Differential Equations-Mathematical Anal-
ysis for Compressible Viscous Fluids, Nippon-Hyoron-Sha, Tokyo, 2004, (in Japanese).

Department of Mathematics
Hokkaido University
Sapporo 060-0810

Japan

e-mail: i.fukuda@math.sci.hokudai.ac.jp



