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Zhiyun CHENG, SujoyMUKHERJEE, Józef H. PRZYTYCKI, XiaoWANG and
Seung Yeop YANG

(Received March 28, 2018)

Abstract
In this paper we address the following question: When do two rooted trees have the same

plucking polynomial? The solution provided in the present paper has an algebraic version
(Theorem 2.5) and a geometric version (Theorem 1.2). Furthermore, we give a criterion for a
sequence of non-negative integers to be realized as a rooted tree.

1. Introduction

1. Introduction
Plane trees, sometimes also called ordered trees, are basic objects in combinatorics. It

is well known that the number of unlabeled plane trees with n edges and the number of
plane trees with n edges and k leaves coincide with the n-th Catalan number 1

n+1 (2n
n ) and

the Narayana number 1
n(n

k)(
n

k−1) respectively. In this paper, we are concerned with a new
rooted tree polynomial Q(T ) ∈ Z[q], called the plucking polynomial, which was recently
introduced by the third author in [7].

Throughout this paper rooted trees are always drawn on the upper half plane with root
lying on the bottom level. If T consists of a single point then we set Q(T ) = 1. If |E(T )| ≥
1, the plucking polynomial Q(T ) is defined recursively as follows

Q(T ) =
∑
v∈l(T )

qr(T ,v)Q(T − v).

Here l(T ) denotes the set of leaves of T , r(T , v) is the number of edges of T on the right side
of the unique path connecting v with the root (we assume the root is situated at the origin),
and T − v is the subtree of T obtained by deleting v from T . See Figure 1 for an example
of r(T , v). According to the definition, one can easily find that the rooted tree described in
Figure 1 has plucking polynomial [2]q[3]q[5]q[6]q.

Fig.1. An example of r(T , v).

Note that with a given embedding of T , if we fix the direction from left to right then we
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obtain an ordering on V(T ). It is easy to observe that r(T , v) is nothing but the number of
vertices which are “older” than v.

The definition of the plucking polynomial is motivated by the Kauffman bracket skein
modules of 3-manifolds. For an oriented 3-manifold M, the Kauffman bracket skein module
(M) [6] is generated by all isotopy classes of framed links in M and then one takes the
quotient by

(1) skein relation: [K] = A[K∞] + A−1[K0],
(2) framing relation: [K ∪©] = (−A2 − A−2)[K].

Here [©] denotes the trivial framed knot and K, K∞, K0 only differ in a small D3, see Figure
2.

Fig.2. Local diagrams in skein relation.

In [4], Dabkowski, Li and the third author studied (m × n)-lattice crossing L(m, n) in the
relative Kauffman bracket skein module of P× I, where P denotes an (m× n) parallelogram
with (2m + 2n) points on the boundary, see Figure 3.

Fig.3. L(m, n).

Roughly speaking, in order to calculate L(m, n) in the relative Kauffman bracket skein
module of P × I one needs to smooth all mn crossing points according to the skein relation
[K] = A[K∞] + A−1[K0] and then replace each trivial component with (−A2 − A−2). The
result can be written in the form

[L(m, n)] =
∑

C∈Catm,n

r(C)C,

where Catm,n denotes all crossingless connections between the boundary points of P and
r(C) ∈ Z[A, A−1]. Note that not every element of Catm,n can be realized. It was proved
in [4] that a Catalan state C is realizable if and only if every vertical line cuts C at most m
times and each horizontal line cuts C at most n times. For a Catalan state C with no returns,
the closed form formula for r(C) was studied in [4]. After the paper [4] was finished, it was
found that one can construct a rooted tree T (C) for each Catalan state C ∈ Catm,n, such that
if C has returns only on its ceiling then the coefficient r(C) is given by
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r(C) = A2|bM |−mnQ(T (C))|q=A−4 .

We refer the reader to [5] for the definition of bM and the construction of T (C).
Keeping in mind an important relation between the plucking polynomial Q(T ) and the

coefficient r(C) will develop further properties of Q(T ). Although the definition of Q(T )
seems to depend on a particular embedding of a rooted tree T , as it was shown in [7] (see
Section 2), the polynomial Q(T ) does not. It is natural to ask the following two questions

(1) For a given polynomial f (q) ∈ Z[q], does there exist a rooted tree T such that
Q(T ) = f (q)?

(2) When do two rooted trees have the same plucking polynomial?
The first question was answered in [1]. In this paper we will focus on the second question.

Note that if the root of a rooted tree T has only one child, i.e. there is only one edge
incident with the root, then contracting this edge results in a new rooted tree T ′. We will
call this operation a destabilization and the inverse a stabilization. It is not hard to see that
Q(T ) = Q(T ′), i.e. operations of stabilization and destabilization preserve the plucking
polynomial. In particular, the plucking polynomial of any 1-ary rooted tree equals 1. We
say a rooted tree is reduced if the root has more than one child.

At the end of [1], we introduced the exchange move for rooted trees, see Figure 4. More
precisely, for a fixed embedded rooted tree T and two vertices v1, v2, we consider two em-
bedded circles S 1, S 2 such that S i ∩ T = vi (i = 1, 2). We use T1 and T2 to denote the
subtrees bounded by S 1 and S 2 respectively. In other words, Ti is a rooted tree with root vi
and it spans some children of vi and all of their descendants (i = 1, 2). If |E(T1)| = |E(T2)|
then we switch the positions of T1 and T2. We found in [1] that an exchange move preserves
plucking polynomial. We also asked a question if any reduced rooted trees with the same
plucking polynomial are related by a finite sequence of exchange moves. The answer to this
question was positive for all examples given in [1].

Fig.4. An exchange move.

Following a seminar talk by the first author about plucking polynomial at Peking Univer-
sity in September 2016, Hao Zheng observed the following potential counterexample. Later
we will show that this is really a counterexample, i.e. although the two rooted trees in Figure
5 have the same plucking polynomial [8]q[11]q[12]q[13]q[14]q[15]q[16]q[17]q[18]q[19]q

[2]3q[3]q[5]q[6]q
, none of them

can be obtained from the other via finitely many exchange moves.
In order to answer the question (2) above, we introduce a more general version of an

exchange move that we call a permutation move. Intuitively, a permutation move is an
operation defined as follows. For a rooted tree, choose n vertices v1, · · · , vn and the cor-
responding families of rooted subtrees T1, · · · , Tm (m ≥ n) with roots v1, · · · , vn. Then a
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Fig.5. Two rooted trees with the same plucking polynomial.

permutation move is simply a replacement of T1, · · · , Tm such that the number of edges
above each chosen vertex vi is preserved. The precise definition is as follows.

Definition 1.1. Let us consider n vertices v1, · · · , vn of a rooted tree T and two sequences
{αi}0≤i≤n, {βi}0≤i≤n which satisfy

0 = α0 < α1 < · · · < αn−1 < αn = βn > βn−1 > · · · > β1 > β0 = 0.
For v1, choose several children of it, say w1, · · · ,wα1 , and draw embedded circles S 1

i (1 ≤
i ≤ α1) in the plane such that S 1

i ∩ T = v1, wi is located in the interior of S 1
i and other w j

( j � i) are located outside of S 1
i . We use Ti to denote the subtree of T bounded by S 1

i , see
Figure 6 for an example of S 1

1. The other subtrees Ti (α1 + 1 ≤ i ≤ αn) can be defined in
the same way. If for any 0 ≤ i ≤ n − 1 and some element P ∈ αn , the symmetric group on
the set {1, 2, · · · ,αn}, we have

αi+1−αi∑
j=1

|E(Tαi+ j)| =
βi+1−βi∑

j=1
|E(TP(βi+ j))|,

then as illustrated in Figure 6, for all 0 ≤ i ≤ n− 1 we replace Tαi+1 ∨ Tαi+2 · · · ∨ Tαi+1 with
TP(βi+1) ∨ TP(βi+2) · · · ∨ TP(βi+1). We call this operation a permutation move on T .

Fig.6. A permutation move.

Clearly a permutation move preserves the plucking polynomial (see Proposition 2.4) and
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the exchange move described in Figure 4 is a special case of permutation move. The main
result of this paper is as follows.

Theorem 1.2. Let TI and TII be two rooted trees. Then Q(TI) = Q(TII) if and only if TI

and TII are related by a finite number of stabilizations/destabilizations and one permutation
move.

The rest of this paper is organized as follows. Section 2 reviews some basic properties of
plucking polynomial and then points out some other accessible calculation methods of the
plucking polynomial. In section 3 we show that the trees shown in Figure 5 cannot be con-
nected by a finite number of exchange moves, so indeed trees in Figure 5 provide a negative
answer to our question given in [1]. Section 4 provides a proof of the main theorem. Finally
we revisit the realization problem of the plucking polynomial and give an application of it,
which may be of interest to experts in graph theory, algebraic combinatorics, or statistical
mechanics.

2. Some properties of plucking polynomial

2. Some properties of plucking polynomial
We first recall some standard notations in quantum calculus [3]. The q-analog of n, some-

times called the q-bracket or q-number, is defined to be [n]q = 1−qn

1−q . Similarly, the q-

factorial can be defined as [n]q! =
n∏

i=1
[i]q. Further, the q-binomial coefficients (also called

Gaussian binomial coefficients) can be simply expressed as (m+n
m,n )

q
= [m+n]q!

[m]q![n]q! . In general,

we define the q-multinomial coefficient as (n1+···+nk
n1,··· ,nk

)
q

= [n1+···+nk]q!
[n1]q!···[nk]q! .

A crucial observation about the plucking polynomial in [7] can be described as follows.

Lemma 2.1 ([7]). Let T1, T2 be a pair of rooted trees on the upper half plane, and T1
∨

T2
the wedge product of T1 and T2 (T1 on the left), then

Q(T1
∨

T2) = (|E(T1)|+|E(T2)|
|E(T1)|,|E(T2)| )q

Q(T1)Q(T2).

Since (n1+···+nk
n1,··· ,nk

)
q

= (nk−1+nk
nk−1,nk

)
q
(nk−2+nk−1+nk

nk−2,nk−1+nk
)

q
· · · ( n1+···+nk

n1,n2+···+nk
)

q
, repeating the lemma

above (k − 1) times one can easily conclude the following result.

Corollary 2.2 ([7]). Let T1, · · · , Tk be k rooted trees on the upper half plane. Denote the

wedge product of T1, · · · , Tk by
k∨

i=1
Ti (Ti is on the left of Ti+1 ). Then

Q(
k∨

i=1
Ti) = (

k∑
i=1
|E(Ti)|

|E(T1)|,··· ,|E(Tk)|
)

q

k∏
i=1

Q(Ti).

The recursive definition of the plucking polynomial stated in the beginning of Section 1
is inconvenient to use to calculate the plucking polynomial. In general, one needs to pluck
out the leaves of a rooted tree one by one and then calculate the plucking polynomial of the
new rooted tree with fewer edges. Corollary 2.2 gives us a more convenient way to calculate
the plucking polynomial of rooted trees. For a rooted tree T and a fixed vertex v, we use the
notation d(v) to refer to the number of descendants of v. For example, if v = r, the root of
T , then d(r) = |V(T )| − 1 = |E(T )|. Denote all children of v by v1, · · · , vk, we associate a
Boltzmann weight W(v) with v, which is defined by
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W(v) = ( d(v)
d(v1)+1,··· ,d(vk)+1)q

.

Note that d(v) =
k∑

i=1
(d(vi) + 1). The following state product formula of the plucking

polynomial was proved in [7].

Proposition 2.3 (State product formula [7]). Q(T ) =
∏
v∈V(T )

W(v).

It follows immediately that plucking polynomial does not depend on a particular embed-
ding of T , so the plucking polynomial is an invariant of rooted trees. On the other hand, since
the plucking polynomial can be written as the product of some q-multinomial coefficients
and each q-multinomial coefficient can be written as the product of some q-binomial coeffi-
cients, we conclude that plucking polynomial of rooted trees can be written as the product
of some q-binomial coefficients. Based on this fact, in [1] we gave a complete answer to the
first question mentioned in Section 1. To address the second question, we need to simplify
further the formula for plucking polynomial.

Proposition 2.4. Let T be a rooted tree and r the root of it, then Q(T ) = [d(r)]q!∏
v∈V(T )\{r}

[d(v)+1]q
.

Proof. According to Proposition 2.3, the plucking polynomial Q(T ) has the form∏
v∈V(T )

W(v). Let v(� r) be a vertex of T and w its ancestor. Note that the numerator of

W(v) equals [d(v)]q!, and the denominator of W(w) has a factor [d(v) + 1]q!. After cancel-
ing [d(v)]q! for all non-root vertices the result follows. �

Proposition 2.4 motivates us to consider the multiset D(T ) = {d(v)|v ∈ V(T )}1. Ac-
cording to Proposition 2.4, the plucking polynomial Q(T ) is determined by the set D(T ).
The following proposition tells us that for reduced trees Q(T ) and D(T ) are essentially
equivalent.

Theorem 2.5. Assume T1 and T2 are two reduced rooted trees, then Q(T1) = Q(T2) if
and only if D(T1) = D(T2).

Proof. It suffices to prove that if Q(T1) = Q(T2) then D(T1) = D(T2). Assume
D(T1) = {a1, · · · , an} and D(T2) = {b1, · · · , bm}, where a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥
· · · ≥ bm. Since T1 and T2 are both reduced, we observe that d(r1) = a1 > a2 + 1, d(r2) =
b1 > b2 + 1 and n = a1 + 1, m = b1 + 1. Here ri denotes the root of Ti (i = 1, 2). It
follows that

Q(T1) = [a1]q!
n∏

i=2
[ai+1]q

=

a1∏
i=1

(1−qi)

n∏
i=2

(1−qai+1)
and Q(T2) = [b1]q!

m∏
i=2

[bi+1]q
=

b1∏
i=1

(1−qi)

m∏
i=2

(1−qbi+1)
.

It is clear that e
2πi
a1 is a root of Q(T1) with the minimal argument and e

2πi
b1 is a root of Q(T2)

with the minimal argument. Since Q(T1) = Q(T2), we must have a1 = b1, therefore
n = a1 − 1 = b1 − 1 = m.

1Equivalently, instead of the set D(T ), one can also consider the generating function
∑
i

cixi, where ci denotes

the multiplicity of i in D(T ).
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Since
n∏

i=2
[ai + 1]q =

n∏
i=2

[bi + 1]q, it follows that ai = bi, for all 2 ≤ i ≤ n. �

In this section, we only mentioned some basic properties of the plucking polynomial that
are relevant to this paper. The reader interested in many other important properties of the
polynomial is referred to [2], where the unimodality of its coefficients was proven, or to [7],
where a connection between the plucking polynomial and homological algebra is discussed.

3. The exchange move is not sufficient

3. The exchange move is not sufficient
In this section we show that the two rooted trees depicted in Figure 5 cannot be connected

by exchange moves, although they have the same plucking polynomial. In other words,
exchange move is not sufficient to connect all pairs of rooted trees with the same plucking
polynomial.

First we notice that one can only obtain finitely many rooted trees from the rooted tree T1
in Figure 5 via exchange moves. By comparing them with T2 one finds that T2 is different
from all of them.

Recall that in Section 2 we associate a Boltzmann weight W(v) with each vertex v, which
is defined by

W(v) = ( d(v)
d(v1)+1,··· ,d(vk)+1)q

.

Let U(v) denote the unordered k-tuple (d(v1) + 1, · · · , d(vk) + 1), and U(T ) the multiset
{U(v)}v∈V(T ). Consider v1, v2 in Figure 4. If U(v1) = (a1, · · · , am, b1, · · · , bn), U(v2) =

(c1, · · · , cs, d1, · · · , dt), and
n∑

i=1
bi =

s∑
j=1

c j, then after the exchange move we have U(v1) =

(a1, · · · , am, c1, · · · , cs), U(v2) = (b1, · · · , bn, d1, · · · , dt) and all other tuples in U(T ) are
preserved.

For the two rooted trees T1, T2 in Figure 5, we have
U(T1) = {(9, 10), (3, 6), (1, 7), (2, 2), (6), (5) × 2, (4), (3), (2) × 2, (1) × 4, (0) × 5}

and
U(T2) = {(9, 10), (2, 7), (2, 6), (1, 3), (6), (5) × 2, (4), (3), (2) × 2, (1) × 4, (0) × 5}.

A key observation is, although many rooted trees can be obtained from T1 via exchange
moves, most of them have the same set U as T1. The only exception is

U = {(3, 6, 10), (9), (1, 7), (2, 2), (6), (5) × 2, (4), (3), (2) × 2, (1) × 4, (0) × 5}.
It follows that T2 cannot be obtained from T1 by exchange moves.

One can directly show that there are essentially only four different rooted trees that can
be obtained from T1 by exchange moves (see Figure 7). Here we illustrate how one rooted
tree can be obtained from another by exchange moves. Obviously T2 is not one of them.

Before ending this section, we would like to remark that one can find some other pairs of
“smaller” rooted trees with the same plucking polynomial but they cannot be connected by
exchange moves. For example, the two rooted trees T3 and T4 described in Figure 8 have
the same plucking polynomial. Similar as above one can check that they are not related by
exchange moves. Note that |E(T3)| = |E(T4)| = 18 < 19 = |E(T1)| = |E(T2)|. These two
rooted trees T3 and T4 can be regarded as a reduced version of Hao Zheng’s T1, T2 described
in Figure 5.
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Fig.7. Rooted trees obtained from T1 by exchange moves.

Fig.8. Another counterexample with fewer edges.

4. The proof of Theorem 1.2

4. The proof of Theorem 1.2
Now we give a proof of Theorem 1.2.

Proof. With some destabilization (if necessary) we may assume that TI , TII are both
reduced. By Theorem 2.5 we deduce that D(TI) = D(TII). In particular, TI and TII have
the same number of edges. Now it is sufficient to prove that TI and TII are related by one
permutation move.

The proof goes by induction on |E(TI)| (= |E(TII)|). When |E(TI)| = 1, 2, 3, 4, there is
no pair of distinct rooted trees with the same plucking polynomial. The first pair of rooted
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trees appear when |E(TI)| = |E(TII)| = 5, see Figure 9. It is easy to see that the second tree
can be obtained from the first tree by one exchange move, which interchanges the places of
the subtrees bounded by dashed curves.

Fig.9. Two 5-edge rooted trees with the same plucking polynomial.

Now we assume that any two reduced rooted trees can be transformed into each other by
one permutation move if they have (k − 1) edges and the same plucking polynomial. It is
sufficient to prove that the statement is still correct for the case |E(TI)| = |E(TII)| = k.
Suppose that TI , TII are two reduced rooted trees with the same plucking polynomial and
|E(TI)| = |E(TII)| = k. We need to prove that TI and TII differ by one permutation move.

Denote the roots of TI , TII by r1, r2 respectively. Let us assume that D(TI) = D(TII) =
{a1, a2, · · · , ak+1}, where a1 ≥ a2 ≥ · · · ≥ ak+1. It is clear that a1 = d(r1) = d(r2) = k.
Choose vertices u1, u2 in TI , TII respectively such that d(u1) = d(u2) = a2. Then ui must
be a child of ri (i = 1, 2). We use ei to denote the edge between ri and ui (i = 1, 2), and by
taking edge contractions on e1 and e2 we will obtain two new rooted trees T ′I and T ′II . Note
that for these two new rooted trees we have D(T ′I ) = D(T ′II) = {a1 − 1, a3, · · · , ak+1}, and
therefore T ′I and T ′II have the same plucking polynomial. By the induction assumption, it
follows that T ′II can be obtained from T ′I by making one permutation move. Since there is a
one-to-one correspondence between E(TI)\{e1} and E(T ′I ), V(TI)\{u1} and V(T ′I ), we will
use the same notation to denote an edge (vertex) in TI and its corresponding edge (vertex)
in T ′I . In particular, the roots of T ′I and T ′II are still denoted by r1 and r2.

If r1 coincides with some element in {v1, · · · , vn} (see Figure 6), without loss of generality,
let us assume that v1 = r1. In T ′I , denote the children of v1 involved in the permutation move
by w1, · · · ,wα1 . Then in TI , some elements of {w1, · · · ,wα1} are adjacent to u1 and others
are adjacent to r1. Without loss of generality, we assume w1, · · · ,wγ are adjacent to u1 and
wγ+1, · · · ,wα1 are adjacent to r1, where 0 ≤ γ ≤ α1. As before, for each i = 1, 2, · · · ,α1 we
still use Ti to denote the subtree involved in the permutation move which contains the vertex

wi. After the permutation move, the places of
α1∨

i=1
Ti will be occupied by

β1∨
i=1

TP(i), where

P is the corresponding permutation of {1, · · · ,αn} (see Figure 6). Similarly, in the original
rooted tree TII , some of {TP(1), · · · , TP(β1)} are attached to u2 and others are attached to r2.

Let us assume
δ∨

i=1
TP(i) are attached to u2 and

β1∨
i=δ+1

TP(i) are attached to r2.

Now let us consider the remaining children (and their descendants) of r1, which form
a rooted subtree of T ′I . This rooted subtree can be regarded as the wedge sum of four
rooted subtrees, say TA1

∨
TB1

∨
TC1

∨
TD1 . Without loss of generality, we suppose that

in TI the subtree TA1

∨
TC1 is attached to u1 and TB1

∨
TD1 is attached to r1. Since T ′I

and T ′II differ by one permutation move, and the rest children of r1 are not involved in
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Fig.10. The relations between TI , TII , T ′I , T ′II .

the permutation move, there are four subtrees corresponding to TA1

∨
TB1

∨
TC1

∨
TD1 in

T ′II , say TA2

∨
TB2

∨
TC2

∨
TD2 . Without loss of generality, we assume in TII the subtree

TA2

∨
TD2 is attached to u2 and the other subtree TB2

∨
TC2 is attached to r2, see Figure 10.

We note that since the permutation move was applied, TA1 and TA2 may represent different
rooted trees, but they have the same number of edges, i.e. |E(TA1)| = |E(TA2)|. This
equality also holds for the other three pairs of subtrees.

Observe that, due to our choices, d(u1) = d(u2). On the other hand, we know that

d(u1) =
γ∑

i=1

|E(Ti)|+ |E(TA1)|+ |E(TC1)| and

d(u2) =
δ∑

i=1

|E(TP(i))|+ |E(TA2)|+ |E(TD2)|.

Together with |E(TA1)| = |E(TA2)|, |E(TD1)| = |E(TD2)| and
α1∑

i=1
|E(Ti)| =

β1∑
i=1
|E(TP(i))|

(by the definition of the permutation move), we deduce that
γ∑

i=1

|E(Ti)|+ |E(TC1)| =
δ∑

i=1

|E(TP(i))|+ |E(TD1)|, and

α1∑

i=γ+1

|E(Ti)|+ |E(TD1)| =
β1∑

i=δ+1

|E(TP(i))|+ |E(TC1)|.

Consider the the permutation move on TI as shown in Figure 11. Roughly speaking, this
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Fig.11. A permutation move connecting TI and TII .

permutation move is obtained from the permutation move on T ′I by splitting the children of
v1 into the children of u1 and the children of r1, and all other subtrees Tα1+1, · · · , Tαn on
v2, · · · , vn are the same as that of the permutation move on T ′I . Since

γ∑

i=1

|E(Ti)|+ |E(TC1)| =
δ∑

i=1

|E(TP(i))|+ |E(TD1)| and

α1∑

i=γ+1

|E(Ti)|+ |E(TD1)| =
β1∑

i=δ+1

|E(TP(i))|+ |E(TC1)|,

we find that this move satisfies the definition of permutation move. It is not difficult to find
that under this permutation move TI will be transformed into TII .

If vi � r1 for any 1 ≤ i ≤ n, the proof is similar. One just needs to notice that in this case

α1 = β1 = 0, in other words,
α1∨

i=1
Ti =

β1∨
i=1

TP(i) = ∅. �

Corollary 4.1. Let TI and TII be two reduced rooted trees. D(TI) = D(TII) if and only
if they can be connected by one permutation move.

As an example, we will show how to use a permutation move to connect the two rooted
trees described in Figure 5. Choose three vertices v1, v2 and v3 from T1 (see Figure 5, notice
that here v1 is a descendant of v2) and P = (632541) = (16)(23)(45) ∈ 6. Now the
following permutation move (see Figure 12) can be used to transform T1 into T2. Note that,
as we have already shown in Section 3, T1 cannot be connected to T2 via exchange moves
only.

Finally, we would like to note that, for two rooted trees connected by a permutation move
there might be many different permutation moves which also connect them.

5. The realization problem revisited

5. The realization problem revisited
In this section we revisit the first question mentioned in Section 1, i.e. for a given poly-

nomial f (q) ∈ Z[q], can we find a rooted tree T such that Q(T ) = f (q)? According to
Proposition 2.4, it is equivalent to ask the following question from the viewpoint of graph
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Fig.12. A permutation move connecting T1 and T2 in Figure 5.

theory.

Question 5.1. For a given n-multiset {a1, a2, · · · , an} (without loss of generality, we sup-
pose 0 ≤ a1 ≤ a2 ≤ · · · ≤ an), is there a rooted tree T with D(T ) = {a1, a2, · · · , an}?

It is easy to find some obstacles for a n-multiset {a1, · · · , an} being the set D(T ) of some
rooted tree T . For example, it is evident to see that an = n − 1 and an−1 < an. Hence
both {0, 0, 1, 1, 2} and {0, 0, 1, 2, 2} are not realizable. On the other hand, a1 must be 0.
Actually, it is easy to observe that the number of 0’s in {a1, · · · , an} is not less than the
number of 1’s, since each vertex v with d(v) = 1 has a child w with d(w) = 0. Therefore,
for instance {0, 1, 1, 3, 4} is also not realizable. However, even if {a1, · · · , an} satisfies all
conditions above, it is not always realizable. As an example, one can easily find that although
{0, 1, 2, 2, 4} satisfies all conditions above, it cannot be realized as the set D(T ) for some
rooted tree T .

If there exists a rooted tree T with D(T ) = {a1, · · · , an}, then we know that the pluck-

ing polynomial of T equals [an]q!
n−1∏
i=1

[ai+1]q
. Since the plucking polynomial of a rooted tree can

be written as the product of some q-binomial coefficients, it follows that [an]q!
n−1∏
i=1

[ai+1]q
can be

written as the product of some q-binomial coefficients. As the main result of this section,
we will show that this condition is not only necessary but also sufficient. Hence it offers a
complete answer to Question 5.1.

Theorem 5.2. For a given n-multiset {a1, a2, · · · , an} where 0 ≤ a1 ≤ a2 ≤ · · · ≤ an,
there exists a rooted tree T such that D(T ) = {a1, a2, · · · , an} if and only if [an]q!

n−1∏
i=1

[ai+1]q
can be

written as the product of some q-binomial coefficients.

Before giving the proof of this theorem, let us take a brief review of our main result in
[1]. Assume that a polynomial f (q) is a product of some q-binomial coefficients, i.e.

f (q) =
k∏

i=1
(mi+ni

mi,ni
)

q
=

k∏
i=1

[mi+ni]q!
[mi]q![ni]q! .

If a q-number [p]q appears both in the numerator and denominator of f (q), then we delete

both of them. Finally we will obtain a fraction [a1]q···[as]q
[b1]q···[bt]q

and ai � b j. We call this fraction
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the reduced form of f (q). It is not difficult to observe that the reduced form is unique.

Theorem 5.3 ([1]). Consider a product of q-binomial coefficients f (q) =
k∏

i=1
(mi+ni

mi,ni
)

q
,

then f (q) can be realized as the plucking polynomial of some rooted trees if and only if each
q-number appears at most once in the numerator of the reduced form of f (q).

We would like to remark that we can always find a binary rooted tree T to realize f (q),

and
k∏

i=1
(mi+ni

mi,ni
)

q
coincides with the state product formula (Proposition 2.3) of the plucking

polynomial of T if we ignore the contributions from those vertices that have only one child
(note that these contributions are trivial). The readers are referred to [1] for more details.

Now we give the proof of Theorem 5.2. Proof. The “only if” part has been explained in
Section 2, therefore it suffices to prove the“if” part.

First note that if an−1 = an then obviously [an]q!
n−1∏
i=1

[ai+1]q
cannot be written as a product of

some q-binomial coefficients. We claim that actually we can assume that an−1 ≤ an − 2.
This is because, if an−1 = an − 1 then we have

[an]q!
n−1∏
i=1

[ai+1]q
= [an−1]q!

n−2∏
i=1

[ai+1]q
.

If {a1, a2, · · · , an−1} can be realized as the set D(T ) for some rooted tree T , then we can find
a rooted tress T ′ realizing {a1, a2, · · · , an} by applying a stabilization on T . Hence from now
on let us assume that an−1 ≤ an − 2.

Note that if [an]q!
n−1∏
i=1

[ai+1]q
can be written as the product of some q-binomial coefficients

k∏
i=1

(mi+ni
mi,ni

)
q
, then the numerator of the reduced form does not repeat any q-number, since

the numerator equals [an]q! = [1]q[2]q · · · [an]q. According to Theorem 5.3 we know that

there exists a rooted tree T such that Q(T ) =
k∏

i=1
(mi+ni

mi,ni
)

q
= [an]q!

n−1∏
i=1

[ai+1]q
. With some destabi-

lizations we can assume that T is reduced.
Let us assume that D(T ) = {b1, · · · , bm} and 0 ≤ b1 ≤ b2 ≤ · · · ≤ bm. Then we have

[bm]q!
m−1∏
i=1

[bi+1]q
= [an]q!

n−1∏
i=1

[ai+1]q
.

Since an−1 ≤ an − 2 and bm−1 ≤ bm − 2, it follows that bm = an. Now we have
1

m−1∏
i=1

[bi+1]q
= 1

n−1∏
i=1

[ai+1]q
,

which implies {b1 + 1, · · · , bm−1 + 1} = {a1 + 1, · · · , an−1 + 1} and m = n. Therefore
D(T ) = {b1, · · · , bm} = {a1, · · · , an}, this completes the proof. �
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