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Abstract
We extend some results about Föllmer’s pathwise Itô calculus that have only been derived

for continuous paths to càdlàg paths with quadratic variation. We study some fundamental
properties of pathwise Itô integrals with respect to càdlàg integrators, especially associativity
and the integration by parts formula. Moreover, we study integral equations with respect to
pathwise Itô integrals. We prove that some classes of integral equations, which can be explicitly
solved in the usual stochastic calculus, can also be solved within the framework of Föllmer’s
calculus.

1. Introduction

1. Introduction
Föllmer’s pathwise Itô calculus originated in a seminal paper that introduced the notion

of the quadratic variation of a deterministic càdlàg path and proved a non-probabilistic ver-
sion of Itô’s formula [15]. In recent years, some related works have appeared, addressing
applications to mathematical finance. Most of these works only deal with continuous paths
of quadratic variation while the results of the original paper include discontinuous cases.
The main purpose of the present paper is to generalize some of these results so that they can
be applied to càdlàg paths with quadratic variation.

Föllmer’s pathwise Itô calculus is a deterministic counterpart of the classical Itô calcu-
lus. Its methodology is completely analytic and does not need any probabilistic assump-
tions. Therefore it can be regarded as a useful tool to study financial trading strategies under
probability-free settings: see, for example, [17, 38, 9]. Moreover, this theory is understood
as a method to construct stochastic integrals in a strictly pathwise manner. It can be applied
to stochastic processes having finite quadratic variation. Such a class of processes is strictly
wider than that of semimartingales. In this sense, Föllmer’s pathwise Itô calculus enables us
to extend stochastic integration theory beyond semimartingales.

There are several approaches to pathwise constructions of stochastic integration. We can
refer to [3, 27, 46, 47, 34, 35, 28, 29, 43, 37, 14, 7, 6, 8, 1], for example. Among them,
we think that Föllmer’s approach is intuitively clear (especially from a financial application
viewpoint) and needs only elementary arguments, which should be regarded as an advantage.
The rough path theory, pioneered by [30] (see, also, [22] and [20]), should be considered
as another important approach. Some authors have studied the relation between Föllmer’s
pathwise Itô calculus and rough path theory: see [35] and [19], for example.

Let us give an outline of Föllmer’s pathwise Itô calculus. Let Π = (πn)n∈N be a sequence
of partitions of R≥0 such that |πn| → 0 as n → ∞. We say that a càdlàg path X : R≥0 → R
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has quadratic variation along Π if there exists a càdlàg increasing function [X, X] such that
for all t ∈ R≥0

(i)
∑

ti∈πn
(Xti+1∧t − Xti∧t)2 converges to [X, X]t as n→ ∞,

(ii) Δ[X, X]t = (ΔXt)2.
An Rd-valued càdlàg path X = (X1, . . . , Xd) has quadratic variation if, for each i and j, the
real-valued path Xi + X j has quadratic variation. In [15], it is proved that if X has quadratic
variation, then for any f ∈ C2(Rd) the path t �→ f (Xt) satisfies Itô’s formula. That is, in
1-dimensional case,

f (Xt) − f (X0) =
∫ t

0
f ′(Xs−) dXs +

1
2

∫ t

0
f ′′(Xs−) d[X, X]s

+
∑

0<s≤t

{
Δ f (Xs) − f ′(Xs−)ΔXs − 1

2
f ′′(Xs−)(ΔXs)2

}

holds for all t ∈ R≥0. Here, the first term of the right-hand side, which we call the Itô-Föllmer
integral, is defined as the limit of a sequence of non-anticipative Riemann sums. Föllmer’s
theorem claims that the Itô-Föllmer integral

∫ t
0 f ′(Xs−) dXs exists and it satisfies the above

formula.
The results of this paper are divided into two parts. Our first aim is to establish several

calculation rules for Itô-Föllmer integrals. We slightly extend the theorem of Föllmer to a
path of the form t �→ f (At, Xt) with f ∈ C1,2(Rm×Rd) and an m-dimensional path A of locally
finite variation. Thus we find that for a path of the form t �→ ∇x f (At, Xt) the Itô-Föllmer
integral

∫ t
0 〈∇x f (As−, Xs−), dXs〉 exists. We call a path of the form ∇x f (At, Xt) an admissible

integrand of X. Because a càdlàg path defined as the Itô-Föllmer integral of an admissible
integrand has quadratic variation, we can consider the Itô-Föllmer integral by a path of this
type. For this case, we prove that Itô-Föllmer integral satisfies the so-called associativity
rule (Theorem 2.19). This was already proved by [38] for continuous integrators; we extend
it to general càdlàg paths with quadratic variation. An integration by parts formula is then
proved as an application of associativity and Föllmer’s theorem (Corollary 2.21).

The next aim is to study integral equations with respect to Itô-Föllmer integrals. By using
the calculation rules mentioned above, we can solve certain classes of integral equations.
First, we solve linear integral equations: the solutions to the homogeneous linear equa-
tions are given by the Doleans-Dade exponentials (Proposition 3.1). The solutions to the
inhomogeneous linear equations are constructed by using the result for the homogeneous
case (Proposition 3.4), which is a re-interpretation of the result by [26] in our pathwise set-
ting. These results are applied to compute a portfolio insurance strategy in finance (Propo-
sition 3.15). Further, we solve a path-dependent equation, which is called the drawdown
equation, introduced by [4]: their results are re-interpreted in our pathwise setting (Proposi-
tion 3.13).

Let us describe the structure of this paper. In Section 2, we study the basic properties
of Itô-Föllmer integrals. In Section 2.1 we define a quadratic variation and show some
propositions that will be used in following sections. Itô-Föllmer integrals and the associ-
ated Itô formula is introduced in Section 2.2. The associativity of Itô-Föllmer integrals and
an integration by parts formula are proved in Section 2.3. Pathwise quadratic variations of
semimartingales are discussed in Section 2.4. In Section 3, integral equations with respect
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to Itô-Föllmer integrals are studied. In Section 3.1, linear integral equations are explicitly
solved. In Section 3.2, certain nonlinear integral equations are solved. In Section 3.3, draw-
down equations, which are path-dependent equations, are studied. Applications to financial
topics satisfying certain kinds of floor constraints are considered in Section 3.4.

Here we give some notation and terminology that are frequently used in this paper. We
write N = {0, 1, 2, . . . } and N≥1 = {1, 2, 3, . . . }. The set of real numbers is denoted by R, and
we set R≥0 = [0,∞[ = {r ∈ R | r ≥ 0}. For x, y ∈ Rd, the standard Euclidean norm and inner
product are denoted by ‖x‖ and 〈x, y〉, respectively.

A function X : R≥0 → E ⊂ Rd is called an E-valued càdlàg path if it is right continuous
and has left-hand limits in E at all t ∈ R≥0. The set of all E-valued càdlàg paths is denoted
by D(R≥0, E). For X ∈ D(R≥0, E), we write Xt = X(t) and ΔXt = Xt − Xt−. For convenience,
we define X0− = X0 and ΔX0 = 0. Here note that X ∈ D(R≥0,R

d) satisfying Xt ∈ E (t ≥ 0)
is not necessarily regarded as an E-valued càdlàg path because Xt− can be in Rd \ E for
some t ∈ R≥0. Moreover, let us recall that if X is a càdlàg path satisfying ‖ΔX‖ ≤ c on
[0, t], then for any ε > 0 there exists a δ > 0 such that |s − u| < δ and s, u ∈ [0, t] implies
‖Xs − Xu‖ < ε + c.

The symbol FVloc denotes the set of all real-valued càdlàg paths of locally finite variation.
The total variation of A ∈ FVloc on [0, t] is denoted by V(A)t. If A ∈ FVloc, the series∑

0<s≤t ΔAs converges absolutely for all t ∈ R≥0. Then Ad
t :=

∑
0<s≤t ΔAs and Ac := A − Ad

are called the purely discontinuous part and the continuous part of A, respectively. For
A ∈ FVloc, we write

∫ t
0 f (s) dAs =

∫
]0,t] f (s) dAs when the Lebesgue-Stieltjes integral in the

right-hand side is well-defined.
In this paper, we suppose that any partition π = (ti)i∈N of R≥0 satisfies 0 = t0 < t1 <

t2 < · · · → ∞. For a partition π = (ti)i∈N, we define |π| = supi|ti+1 − ti|. We often identify
the partition π = (ti)i∈N with the set {t0, t1, . . . }, and use set notation for partitions. For
example, we write ti ∈ π or π ⊂ π′ for two partitions π and π′. Given a sequence of
partitions (πn)n∈N = ((tn

i )i∈N)n∈N and an Rd-valued càdlàg path X, we write δni X = Xtn
i+1
− Xtn

i

for convenience.
Given E ⊂ Rn, a normed space V , and a function f : E → V , we define

ω( f ; ε) = sup{ ‖ f (y) − f (x)‖V | x, y ∈ E, ‖x − y‖Rn < ε }.
If f is uniformly continuous, we have ω( f ; ε)→ 0 as ε→ 0.

Recall that a function f : U → Rn defined on an open subset U ⊂ Rm ×Rd is of Ck,l-class
(k, l ∈ N) if

(i) for each y, the map x �→ f (x, y) is k-times continuously differentiable and all deriva-
tives with respect to x are continuous in (x, y) ∈ U,

(ii) for each x, the map y �→ f (x, y) is l-times continuously differentiable and all deriva-
tives with respect to y are continuous in (x, y) ∈ U.

The symbol Ck,l(U) stands for the space of real-valued Ck,l-class function on U. The first
and the second order derivatives of f with respect to a variable x are denoted by ∇x f and
∇2

x f , respectively, if they exist. We simply write ∇ f for the first order derivative with respect
to all the variables.
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2. Quadratic variations and Itô-Föllmer integration

2. Quadratic variations and Itô-Föllmer integration2.1. Definition of quadratic variation and its properties.
2.1. Definition of quadratic variation and its properties. In this subsection, we define

the quadratic variation of a càdlàg path along a sequence of partitions, and we study some
fundamental properties of it.

The discrete quadratic variation of a real-valued càdlàg path X along a partition π is
defined by

[X, X]πt =
∑
ti∈π

(
Xti+1∧t − Xti∧t

)2 .

Definition 2.1. Let Π = (πn)n∈N be a sequence of partitions of R≥0 such that |πn| → 0,
and let X : R≥0 → R be a càdlàg path. We say that X has quadratic variation along Π if it
satisfies the following conditions.

(i) The sequence of càdlàg paths ([X, X]πn)n∈N converges pointwise to some càdlàg
increasing function [X, X]Π.

(ii) Δ[X, X]Πt = (ΔXt)2 holds for all t ∈ R≥0.
The increasing function [X, X]Π is called the quadratic variation of X along Π = (πn). We
often omit the symbol Π and simply write [X, X] if there is no ambiguity.

Note that if X has quadratic variation along Π, it satisfies
∑

0<s≤t(ΔXs)2 < ∞ for all
t ∈ R≥0. The increasing property of [X, X]Π indeed follows from conditions (i) and (ii) of
Definition 2.1. We can see it from Proposition 2.5 and the fact that the pointwise limit of
a sequence of increasing functions is again increasing. A typical example of a quadratic
variation is the quadratic variation of a semimartingale. We discuss this case in Section
3.1. Another example is a Dirichlet process: see [15, 16, 41]. Also, paths of certain Gauss-
ian processes have quadratic variation: see, for example, [2]. The existence of quadratic
variations under non-probabilistic settings is studied in [44, 45, 29, 21].

Remark 2.2. In general, the dependence of the quadratic variation [X, X]Π on the choice
of a sequence of partitions is inevitable. This problem is discussed in [10, Section 7].

Definition 2.3. A d-dimensional càdlàg path X = (X1, . . . , Xd) has quadratic variation
along Π if, for each i, j ∈ {1, . . . , d}, Xi + X j has quadratic variation along Π.

Remark 2.4. In general, the existence of the quadratic variations of X and Y does not
imply that of X + Y: see [39].

The symbol QV(Π;Rd) denotes the set of all Rd-valued càdlàg paths that have quadratic
variation along Π. We also write QV(Π), or QV if d = 1. For (X, Y) ∈ QV(Π;R2), we define

[X, Y]Π =
1
2

(
[X + Y, X + Y]Π − [X, X]Π − [Y, Y]Π

)
.

The path [X, Y]Π is of locally finite variation, by definition. [X, Y]Π is called the quadratic
covariation of X and Y along Π. For X, Y ∈ QV(Π;R), the condition (X, Y) ∈ QV(Π;R2) is
clearly equivalent to the following two conditions.

(i) The function t �→ ∑
ti∈πn

(Xti+1∧t − Xti∧t) (Yti+1∧t − Yti∧t) converges pointwise to some
càdlàg path [X, Y]Π of locally finite variation.
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(ii) Δ[X, Y]Πt = ΔXtΔYt holds for all t ∈ R≥0.
Let δa be the Dirac measure on R≥0 concentrated at a, let X and Y be càdlàg paths, and

let π be a partition of R≥0. We define locally finite measures μπX and μπX,Y by

μπX,Y =
∑
ti∈π

(Xti+1 − Xti)(Yti+1 − Yti) δti

and μπX = μ
π
X,X . Then,

μπX,Y([0, t]) =
∑

ti∈π∩[0,t]

(Xti+1 − Xti)(Yti+1 − Yti).

Proposition 2.5. Let X and Y be real-valued càdlàg paths and let Π = (πn)n∈N be a
sequence of partitions such that |πn| → 0. Then, for all t ∈ R≥0, the following two conditions
are equivalent.

(i) The sequence ([X, Y]πn
t )n∈N converges.

(ii) The sequence (μπn
X,Y([0, t]))n∈N converges.

If these conditions are satisfied, both sequences have the same limit.

Proof. It suffices to give a proof when X = Y . If t ∈ [ti, ti+1[ and ti ∈ πn, we have∣∣∣ [X, X]πn
t − μπn

X ([0, t])
∣∣∣ = ∣∣∣ (Xti+1 − Xti)

2 − (Xt − Xti)
2
∣∣∣(2.1)

=
∣∣∣ (Xti+1 + Xt − 2Xti)(Xti+1 − Xt)

∣∣∣
≤ 4 sup

s∈[0,t+|πn |]
|Xs|

∣∣∣Xti+1 − Xt

∣∣∣ .
Combining the assumption |πn| → 0, right continuity of X, and (2.1), we obtain the assertion.

�

We see that, by Proposition 2.5, there is essentially no difference between the two defini-
tions of quadratic variation, convergence of μπn

X and convergence of [X, X]πn . Proposition 2.5
yields that, for X ∈ QV(Π), the sequence of distribution functions associated with (μπn

X )n con-
verges pointwise to [X, X]. Therefore, the sequence of measures (μπn

X ) converges vaguely to
the Stieltjes measure μX generated by [X, X]. Here recall that (μπn

X ) converges to μX vaguely
if and only if (μπn

X ([0, t])) converges μX([0, t]) for any t satisfying μX({t}) = 0. For such a
t ∈ R≥0 and for every bounded continuous function h, we have

lim
n→∞

∫
[0,t]

h dμπn
X =

∫
[0,t]

h dμX .

(See, for example, [18, Corollary 1.204].) This implies that, in the continuous path case,

lim
n→∞

∫
[0,t]

f (Xs) μ
πn
X (ds) =

∫
[0,t]

f (Xs) d[X, X]s

holds for every bounded continuous function f . The following lemma, which is proved
as a part of the proof of the Itô formula in [15], claims that a similar property holds for a
general càdlàg path of QV(Π). See also [31, Theorem 6.52] for a proof. Here we will give a
slightly extended version of this result. This lemma is a key to the proof of Proposition 2.7,
Theorems 2.13 and 2.19.



636 Y. Hirai

Lemma 2.6. Assume that X = (X1, . . . , Xd) ∈ QV(Π;Rd) and Y = (Y1, . . . , Ym) ∈
D(R≥0,R

m). Then for any continuous function g : Rd×Rm → R, t ∈ R≥0, and i, j ∈ {1, . . . , d},
we have

lim
n→∞

∫
[0,t]
g(Xs, Ys) μ

πn

Xi,X j(ds) =
∫

[0,t]
g(Xs−, Ys−) d[Xi, X j]s.

Proof. If d = 1, the assertion follows directly from Lemma A.1. For the general case, we
apply Lemma A.1 to each Xi and Xi + X j, and combine their convergence and the definition
of quadratic covariation. �

In semimartingale theory, a process defined as the composition of a semimartingale and
a C1 function again has quadratic variation ([32, Chapitre VI. 5. Theorem]). [15] mentions
that a similar result holds within this framework. Here we prove a slightly extended version
of that result.

Proposition 2.7. Let X ∈ QV(Π;Rd), let A ∈ FVm
loc, and let f ∈ C0,1(Rm × Rd) be locally

Lipschitz. Then f (A, X) has the quadratic variation along Π given by

(2.2)
[
f (A, X), f (A, X)

]
t =

d∑
k,l=1

∫ t

0

(
∂ f
∂xk

∂ f
∂xl

)
(As−, Xs−) d[Xk, Xl]c

s +
∑

0<s≤t

(Δ f (As, Xs))2.

Proof. Fix t > 0. Because the image of [0, t] under (A, X) is bounded in Rm+d, we can
assume, without loss of generality, that f has compact support. First note that there is a
positive constant C such that

∑
0<s≤t

(Δ f (As, Xs))2 ≤ C

⎛⎜⎜⎜⎜⎜⎜⎝∑
0<s≤t

(ΔXs)2 +
∑

0<s≤t

(ΔAs)2

⎞⎟⎟⎟⎟⎟⎟⎠ < ∞
thanks to the Lipschitz continuity of f .

Let

D(t) = {s ∈ [0, t] | Δ(A, X)s � 0},

Dp(t) =
{

s ∈ D(t)
∣∣∣∣∣ ‖Δ(A, X)s‖Rm+d ≥ 1

p

}
, p ∈ N≥1.

Then each Dp(t) is a finite set and
⋃

p≥1 Dp(t) = D(t). By convention, we use the following
notation. ∑

(1,n,p)

=
∑

tn
i ∈πn∩[0,t]

]tn
i ,t

n
i+1]∩Dp(t)�∅

,
∑

(2,n,p)

=
∑

tn
i ∈πn∩[0,t]

−
∑

(1,n,p)

.

Using this notation and Taylor’s theorem, we have∑
tn
i ∈πn∩[0,t]

{
δni f (A, X)

}2(2.3)

=
∑

(1,n,p)

{
δni f (A, X)

}2
+

∑
(2,n,p)

{
f (Atn

i+1
, Xtn

i+1
) − f (Atn

i
, Xtn

i+1
)
}2

+ 2
∑

(2,n,p)

{
f (Atn

i+1
, Xtn

i+1
) − f (Atn

i
, Xtn

i+1
)
} {

f (Atn
i
, Xtn

i+1
) − f (Atn

i
, Xtn

i
)
}
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+
∑

tn
i ∈πn∩[0,t]

〈
∇x f (Atn

i
, Xtn

i
), δni X

〉2 −
∑

(1,n,p)

〈
∇x f (Atn

i
, Xtn

i
), δni X

〉2

+ 2
∑

(2,n,p)

〈
rn

i , δ
n
i X

〉 〈∇x f (Ati , Xti), δ
n
i X

〉
+

∑
(2,n,p)

〈
rn

i , δ
n
i X

〉2

=: I(n)
1 + I(n)

2 + 2I(n)
3 + I(n)

4 − I(n)
5 + 2I(n)

6 + I(n)
7 ,

where

rn
i =

∫
[0,1]
∇x f (Atn

i
, Xtn

i
+ s δni X) ds − ∇x f (Atn

i
, Xtn

i
) ∈ Rd.

We now consider the behavior of each term of the right-hand side of (2.3).
Since D1 is finite, it is easy to verify that

lim
n→∞ I(n)

1 =
∑

s∈Dp(t)

(Δ f (As, Xs))2,

lim
n→∞ I(n)

5 =
∑

s∈Dp(t)

d∑
k,l=1

(
∂ f
∂xk

∂ f
∂xl

)
(As−, Xs−)ΔXk

sΔXl
s.

Lipschitz continuity of f implies that

lim
n→∞ I(n)

2 ≤
K
p

m∑
k=1

V(Ak)t, lim
n→∞

∣∣∣I(n)
3

∣∣∣ ≤ K
p

m∑
k=1

V(Ak)t

holds for a positive constant K. The convergence

lim
n→∞ I(n)

4 =

d∑
k,l=1

∫ t

0

(
∂ f
∂xk

∂ f
∂xl

)
(As−, Xs−) d[Xk, Xl]s

follows from Lemma 2.6. Moreover, we have

lim
n→∞

∣∣∣I(n)
6

∣∣∣ ≤ ω (
∇x f ;

2
p

)
K′

d∑
k=1

[Xk, Xk]t, lim
n→∞ I(n)

7 ≤ ω
(
∇x f ;

2
p

)2 d∑
k=1

[Xk, Xk]t,

where K′ = sups∈[0,t]‖∇x f (As, Xs)‖.
From (2.3) and the above, we see that

lim
n→∞

∣∣∣∣∣∣∣
∑

ti∈πn∩[0,t]

{
δni f (A, X)

}2 − (RHS of (2.2))

∣∣∣∣∣∣∣(2.4)

≤ C

⎛⎜⎜⎜⎜⎜⎝1
p
+ ω

(
∇x f ;

2
p

)
+ ω

(
∇x f ;

2
p

)2⎞⎟⎟⎟⎟⎟⎠ +
∣∣∣∣∣∣∣∣

∑
s∈D(t)\Dp(t)

(Δ f (As, Xs))2

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∑

s∈D(t)\Dp(t)

d∑
k,l=1

(
∂ f
∂xk

∂ f
∂xl

)
(As−, Xs−)ΔXk

sΔXl
s

∣∣∣∣∣∣∣∣
holds for some positive constant C. Let p → ∞, and then every term of the right-hand side
of (2.4) converges to 0. This completes the proof. �
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Remark 2.8. If the functions f of Proposition 2.7 are defined on only an open subset
U ⊂ Rm+d, the assertion is still valid provided that (A, X) can be regarded as a U-valued
càdlàg path.

The following results are direct consequences of Proposition 2.7.

Corollary 2.9. (i) If A ∈ FVloc, then A ∈ QV(Π;R) holds for any partitions Π =
(πn) with the condition |πn| → 0, and its quadratic variation is

[A, A] =
∑

0<s≤·
(ΔAs)2.

(ii) If A ∈ FVloc and X ∈ QV(Π;R), we have (X, A) ∈ QV(Π;R2) and

[X + A, X + A] = [X, X] + [A, A] + 2[X, A],

[X, A] =
∑

0<s≤·
ΔXsΔAs,

[X + A, X + A]c = [X, X]c.

(iii) If A ∈ FVloc and (X, Y) ∈ QV(Π;R2), then (X+A, Y) ∈ QV(Π;R2) and its quadratic
covariation is [X + A, Y] = [X, Y] + [A, Y].

2.2. Itô-Föllmer integrals and Itô’s formula.
2.2. Itô-Föllmer integrals and Itô’s formula. In this subsection, we introduce the idea

of the “integral”
∫ t

0 ξs−dXs with respect to X ∈ QV(Π) and prove the Itô formula. We first
define the Itô-Föllmer integral as the limit of a sequence of non-anticipative Riemann sums.

Definition 2.10. Let ξ : R≥0 → Rd be a càdlàg path and consider X ∈ QV(Π;Rd). We
call the limit ∫ t

0
〈ξs−, dXs〉 := lim

n→∞

∑
ti∈πn

〈
ξti , Xti+1∧t − Xti∧t

〉
,

the Itô-Föllmer integral of ξ with respect to X on ]0, t] along the sequence Π, if it con-
verges to a finite number. In the 1-dimensional case, we simply write

∫ t
0 ξs−dXs instead of∫ t

0 〈ξs−, dXs〉.

Remark 2.11. It is a well-known fact that
∫ t

0 ξs−dXs exists if X or ξ has locally finite
variation. When X is in FVloc, the Itô-Föllmer integral coincides with the Stieltjes integral
of s �→ ξs− by X.

[15] considers a different summation∑
ti∈πn∩[0,t]

〈
ξti , Xti+1 − Xti

〉
to define a pathwise Itô integral. However, they are equivalent under the right continuity of
integrators.

Proposition 2.12. For ξ, X ∈ D(R≥0,R
d) and t ∈ R≥0 the following two conditions are

equivalent.

(i)
∑

ti∈πn

〈
ξti , Xti+1∧t − Xti∧t

〉
converges.
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(ii)
∑

ti∈πn∩[0,t]
〈
ξti , Xti+1 − Xti

〉
converges .

If the conditions above are satisfied, the limits are equal.

Proof. For t ∈ [tn
i , t

n
i+1[ (tn

i ∈ πn), we have∣∣∣∣∣∣∣∣
∑
tn
i ∈πn

〈
ξtn

i
, Xtn

i+1∧t − Xtn
i ∧t

〉
−

∑
tn
i ∈πn∩[0,t]

〈
ξtn

i
, Xtn

i+1
− Xtn

i

〉 ∣∣∣∣∣∣∣∣ ≤ sup
s∈[0,t]
‖ξs‖Rd

∥∥∥Xtn
i+1
− Xt

∥∥∥
Rd .

Letting n→ ∞ the last term converges to 0 by the condition |πn| → 0 and the right continuity
of X. �

In this paper, we consider integrands of the form t �→ g(Xt) for a “nice” function g. [15]
proves that the Itô-Föllmer integral of t �→ ∇ f (Xt) with respect to X exists for C2-class f
and it satisfies the same relation as that of Itô’s formula in stochastic calculus. We can easily
extend this result as follows.

Theorem 2.13. Let X ∈ QV(Π;Rd) and A ∈ FVm
loc. Then, for any function f ∈ C1,2(Rm ×

R
d) and t ∈ R≥0, the Itô-Föllmer integral of ∇x f (A, X) with respect to X exists and satisfies

the following formula.

f (At, Xt) − f (A0, X0) =
m∑

k=1

∫ t

0

∂ f
∂ak

(As−, Xs−) d(Ak)c
s +

∫ t

0
〈∇x f (As−, Xs−), dXs〉

+

d∑
k,l=1

1
2

∫ t

0

∂2 f
∂xk∂xl

(As−, Xs−) d[Xk, Xl]c
s

+
∑

0<s≤t

⎧⎪⎪⎨⎪⎪⎩Δ f (As, Xs) −
d∑

k=1

∂ f
∂xk

(As−, Xs−)ΔXk
s

⎫⎪⎪⎬⎪⎪⎭ .
The proof of this theorem is similar to the proof of Föllmer’s pathwise Itô formula for

C2-functions. We consider the first order Taylor expansion with respect to a and the second
order Taylor expansion with respect to x, while, in C2 case, we use the second order Taylor
expansion for all the variables.

Remark 2.14. Theorem 2.13 still holds for a C1,2 function f defined on an open subset
U ⊂ Rm × Rd and for t ∈ [0, T ] if the restriction of (A, X) to [0, T ] is càdlàg as a U-valued
path.

2.3. Itô-Föllmer integrals of admissible integrands.
2.3. Itô-Föllmer integrals of admissible integrands. In this subsection, we study some

more basic properties of the Itô-Föllmer integrals with respect to X for integrands of the
form ∇x f (At, Xt).

Definition 2.15. Let X ∈ QV(Π;Rd). A d-dimensional càdlàg path ξ is called an ad-
missible integrand of X if, for any T > 0, there exist an m ∈ N, a function f of C1,2-class
defined on an open subset U of Rm × Rd, and A ∈ FVm

loc such that ξt = ∇x f (At, Xt) holds for
all t ∈ [0, T ] and the restriction of (A, X) to [0, T ] is U-valued càdlàg path.

For the terminology “admissible integrand”, we follow [38]. It follows from Theorem
2.13 that the Itô-Föllmer integral

∫ t
0 〈ξs−, dXs〉 exists for ξ and X of Definition 2.15. In this
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case, the map t �→ ∫ t
0 〈ξs−, dXs〉 is an R-valued càdlàg path. The representation of ξ in

Definition 2.15 is not unique. However, the Itô-Föllmer integral of ξ does not depend of
the representation because the integral is just the limit of non-anticipative Riemann sums by
definition. (See Definition 2.10.) We can easily see that the space of admissible integrands
of X is a vector space and the map ξ �→ ∫ t

0 〈ξs−, dXs〉 on it is linear.

Remark 2.16. (i) For an admissible integrand ξ = (ξ1, . . . , ξd) of X ∈ QV(Π;Rd),
the equation ∫ t

0
〈ξs−, dXs〉 =

d∑
i=1

∫ t

0
ξis−dXi

s

is not necessarily valid. Note that the existence of the Itô-Föllmer integral of the
left-hand side does not imply the existence of those of the right-hand side. If all
integrals of the right-hand side exist, then the integral of the left-hand side also exits
and the above equality holds.

(ii) Let X ∈ QV(Π), and ξt = g(At, Xt) (t ≥ 0), where g ∈ C1(Rm × R) and A ∈ FVm
loc.

Then ξ is an admissible integrand of X. Indeed, ξt = ∂
∂x f (At, Xt) holds for f (a, x) =∫ x

0 g(a, y) dy.
(iii) Let ξ is an admissible integrand of X ∈ QV(Π) and let B ∈ FVloc. Then for Y :=

X + B ∈ QV(Π), the Itô-Föllmer integral
∫ t

0 ξs−dYs exits and it satisfies∫ t

0
ξs−dYs =

∫ t

0
ξs−dXs +

∫ t

0
ξs−dBs, t ∈ R≥0.

We will now study the quadratic variation of a path given by Itô-Föllmer integration.

Proposition 2.17. Let X ∈ QV(Π;Rd), let ξ(1), . . . , ξ(m) be admissible integrands of X,
and let Yl

t =
∫ t

0

〈
ξ(l)s−, dXs

〉
for all t ≥ 0 and l ∈ {1, . . . ,m}. Then Y = (Y1, . . . , Ym) belongs to

QV(Π;Rm) and its quadratic covariations have the following form.

(2.5)
[
Yk, Yl

]
t
=

d∑
i, j=1

∫ t

0
ξ(k),i

s− ξ
(l), j
s− d

[
Xi, X j

]
s
.

Proof. We first assume m = 1. Fix T > 0 and an expression ξ = (∇x f ) ◦ (A, X) on [0, T ],
as in Definition 2.15. Define

Bt = f (At, Xt) − f (A0, X0) − Yt, t ∈ [0, T ].

Then, by Theorem 2.13, B is a càdlàg path of locally finite variation whose jumps are given
by

ΔBt = Δ f (At, Xt) −
d∑

i=1

∂ f
∂xi

(At−, Xt−)ΔXi
t .

Using Proposition 2.7 and Corollary 2.9, we can directly calculate the quadratic variation of
Y as follows.

[Y, Y]t = [ f (A, X), f (A, X)]t +
∑

0≤s≤t

[
(ΔBs)2 − 2ΔBsΔ f (As, Xs)

]
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=

d∑
i, j=1

∫ t

0

(
∂ f
∂xi

∂ f
∂x j

)
(As−, Xs−) d[Xi, X j]s.

Since T > 0 is arbitrarily fixed, this formula is extended to R≥0.
For general m ∈ N≥1, we obtain (2.5) by applying the above result to Yk + Yl for k, l ∈

{1, . . .m}. �

By Proposition 2.17, we see that a path of the form Yt =
∫ t

0 〈ξs−, dXs〉 again has quadratic
variation. So we can consider Itô-Föllmer integration by Y . The associativity of Itô-Föllmer
integration with respect to continuous integrators are proved in [38, Theorem 13]. In this
paper, we will extend this result to càdlàg integrators. For this purpose, we prepare a lemma.
This lemma is due to [38, Proof of Theorem 13] for the continuous path case.

Lemma 2.18. Let X ∈ QV(Π;Rd), let ξ be an admissible integrand of X, and let Yt =∫ t
0 〈ξs−, dXs〉. Then, for each T > 0, we can choose a C1,2 function F such that ξt =
∇xF(At, Xt), Yt = F(At, Xt), and

(2.6)
m∑

i=1

∫ t

0

∂F
∂ai

(As−, Xs−) d(Ai)c
s +

1
2

d∑
i, j=1

∫ t

0

∂2F
∂xi∂x j

(As−, Xs−) d[Xi, X j]c
s = 0

holds for all t ∈ [0, T ].

Proof. Fix T > 0 arbitrarily. Take m̃ ∈ N, Ã ∈ FVm
loc, an open set U ⊂ Rm × Rd, and

f ∈ C1,2(U,R) such that ξt = ∇x f (Ãt, Xt) for t ∈ [0, T ]. Let us define Ã0
t = f (Ãt, Xt) −

f (Ã0, X0) − Yt. Then, the path Ã0 is of finite variation on [0, T ] by Itô’s formula. Moreover,
let m = m̃ + 1, A = (Ã0, Ã), and

F (̃a0, ã, x) = f (̃a, x) − f (A0, X0) − ã0, (̃a0, ã, x) ∈ R × U.

Then, we have F ∈ C1,2(R × U), Yt = F(At, Xt), and

∇xF(At, Xt) = ∇x f (Ãt, Xt) = ξt, t ∈ [0, T ].

By construction and Itô’s formula, F clearly satisfies (2.6). �

The following theorem is the main theorem of this subsection. A corresponding result
for continuous integrators is already proved by [38]. Difficulties in discontinuous cases are
the facts that Lemma 2.6 is not obvious in discontinuous settings and that the summation of
residual terms does not vanish as n → ∞. The latter problem is solved by classifying the
jumps as in the proof of Proposition 2.7 and observing carefully big jump parts and small
jump parts each.

Theorem 2.19. Let X ∈ QV(Π;Rd) and Yk
t =

∫ t
0

〈
ξ(k)

s− , dXs

〉
, where ξ(1), . . . , ξ(ν) are ad-

missible integrands of X. Suppose that η = (η1, . . . , ην) is an ν-dimensional càdlàg path.
Then, the Itô-Föllmer integral

∫ t
0 〈ηs−, dYs〉 exists if and only if the Itô-Föllmer integral∫ t

0 〈
∑ν

k=1 η
k
s−ξ

(k)
s− , dXs〉 exists. If one of them exists, they satisfy

(2.7)
∫ t

0
〈ηs−, dYs〉 =

∫ t

0

〈 ν∑
k=1

ηk
s−ξ

(k)
s− , dXs

〉
, t ∈ R≥0.
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Proof. Fix T > 0. For each l ∈ {1, . . . , ν}, let Yl = Fl(Al, X) be the expression of
Lemma 2.18 where Al ∈ FVml

loc. By the second-order Taylor expansion, we have

δni Fl(A(l), X) =
〈
∇aFl(A(l)

tn
i
, Xtn

i
), δni A(l)

〉
+
〈
rn,l

i , δ
n
i A(l)

〉
+

〈
∇xFl(A(l)

tn
i
, Xtn

i
), δni X

〉
+

1
2

〈
∇2

xFl(A(l)
tn
i
, Xtn

i
)(δni X), δni X

〉
+
〈
Rn,l

i (δni X), δni X
〉
,

where rn,l
i and Rn,l

i are corresponding residual terms. Let Dl(t), Dl
p(t),

∑
(1,n,p)l

, and
∑

(2,n,p)l

be the quantities in the proof of Proposition 2.7 corresponding to the path (A(l), X). Then,

∑
πn∩[0,t]

〈ηtn
i
, δni Y〉 −

∑
πn∩[0,t]

〈 ν∑
l=1

ηl
tn
i
ξ(l)tn

i
, δni X

〉

=

ν∑
l=1

∑
(1,n,p)l

ηl
tn
i
δni Fl(A(l), X) −

ν∑
l=1

∑
(1,n,p)l

ηl
tn
i

〈
∇xFl(A(l)

tn
i
, Xtn

i
), δni X

〉

+

ν∑
l=1

∑
πn∩[0,t]

ηl
tn
i

〈
∇aFl(A(l)

tn
i
, Xtn

i
), δni A(l)

〉
−
ν∑

l=1

∑
(1,n,p)l

ηl
tn
i

〈
∇aFl(A(l)

tn
i
, Xtn

i
), δni A(l)

〉

+
1
2

ν∑
l=1

∑
πn∩[0,t]

〈
ηl

tn
i
∇2

xFl(A(l)
tn
i
, Xtn

i
)(δni X), δni X

〉

− 1
2

ν∑
l=1

∑
(1,n,p)l

〈
ηl

tn
i
∇2

xFl(A(l)
tn
i
, Xtn

i
)(δni X), δni X

〉

+

ν∑
l=1

∑
(2,n,p)l

ηl
tn
i

〈
rn,l

i , δ
n
i A(l)

〉
+

ν∑
l=1

∑
(2,n,p)l

ηl
tn
i

〈
Rn

i (δni X), δni X
〉

=: I(n)
1 − Ĩ(n)

1 + I(n)
2 − Ĩ(n)

2 +
1
2

I(n)
3 −

1
2

Ĩ(n)
3 + I(n)

4 + I(n)
5 .

Clearly we have

lim
n→∞

(
I(n)
1 − Ĩ(n)

1

)
=

ν∑
l=1

∑
s∈Dl

1(p)

ηl
s−

⎛⎜⎜⎜⎜⎜⎜⎝ΔYl
s −

d∑
k=1

ξ(l),ks− ΔXk
s

⎞⎟⎟⎟⎟⎟⎟⎠ = 0.

By the dominated convergence theorem, we see that

lim
n→∞ I(n)

2 =

ν∑
l=1

ml∑
j=1

∫ t

0
ηl

s−
∂Fl

∂a j
(A(l)

s−, Xs−) dA(l), j
s ,

lim
n→∞ Ĩ(n)

2 =

ν∑
l=1

ml∑
j=1

∑
s∈Dl

p(p)

ηl
s−
∂Fl

∂a j
(A(l)

s−, Xs−)ΔA(l), j
s .

By Lemma 2.6, we have

lim
n→∞ I(n)

3 =

ν∑
l=1

d∑
j,k=1

∫ t

0
ηl

s−
∂2Fl

∂x j∂xk
(A(l)

s−, Xs−) d[X j, Xk]s,

lim
n→∞ Ĩ(n)

3 =

ν∑
l=1

d∑
j,k=1

∑
s∈Dl

p(t)

ηl
s−
∂2Fl

∂x j∂xk
(A(l)

s−, Xs−)ΔX j
sΔXk

s .
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By a discussion similar to that of the proof of Theorem 2.13, we can take a constant C,
which does not depend on ε and n, such that

lim
n→∞

∣∣∣I(n)
4

∣∣∣ ≤ C
ν∑

l=1

ω

(
∇aFl;

2
p

)
, lim

n→∞
∣∣∣I(n)

5

∣∣∣ ≤ C
ν∑

l=1

ω

(
∇2

xFl;
2
p

)
.

As a consequence of these observations and (2.6) we obtain

lim
n→∞

∣∣∣∣∣∣∣
∑
πn∩[0,t]

〈ηtn
i
, δni Y〉 −

∑
πn∩[0,t]

〈 ν∑
l=1

ηl
tn
i
ξ(l)tn

i
, δni X

〉∣∣∣∣∣∣∣
≤ C

ν∑
l=1

(
ω

(
∇aFl;

2
p

)
+ ω

(
∇2

xFl;
2
p

))
+

∣∣∣∣∣∣∣∣
ν∑

l=1

∑
s∈Dl(t)\Dl

p(t)

ml∑
j=1

ηl
s−
∂Fl

∂a j
(A(l)

s−, Xs−)ΔA(l), j
s

∣∣∣∣∣∣∣∣
+

1
2

∣∣∣∣∣∣∣∣
ν∑

l=1

∑
s∈Dl(t)\Dl

p(t)

d∑
j,k=1

ηl
s−
∂2Fl

∂x j∂xk
(A(l)

s−, Xs−)ΔX j
sΔXk

s

∣∣∣∣∣∣∣∣ .
Letting p → ∞, we see that the right-hand side of this inequality converges to 0. Hence,
if one of the two Itô-Föllmer integrals exists, then the other also exists and their values are
equal. �

Remark 2.20. If η = (η1, . . . , ην) is an admissible integrand of Y , associativity in the
sense of (2.7) can be shown by direct calculation. Fix T > 0 and let ξ(l)t = ∇xFl(A(l)

t , Xt) be
those in the proof of Theorem 2.19. Define m = m1 + · · · + mν, a = (a(1), . . . , a(ν)) ∈ Rm,
F(a, x) = (F1(a(1), x), . . . , Fν(a(ν), x)), and At = (A(1)

t , . . . , A
(ν)
t ). Then we have Yt = F(At, Xt).

Choose B ∈ FVn
loc and g of C1,2-class such that ηt = ∇yg(Bt, Yt) holds for all t ∈ [0, T ]. Let

C = (B, A) and h(c, x) = h(b, a, x) = g(b,F(a, x)). Then, we have

∇xh(Ct, Xt) = ∇yg(Bt, Yt)∇xF(At, Xt) =
ν∑

l=1

ηl
tξ

(l)
t .

Hence,
∑ν

l=1 η
l
tξ

(l)
t is an admissible integrand of X. This expression is given by [38] in the

proof of Theorem 13. Applying the Itô formula to h(Ct, Xt), we get∫ t

0

〈 ν∑
l=1

ηl
s−ξ

(l)
s−, dXs

〉
= h(Ct, Xt) − h(C0, X0) −

n+m∑
i=1

∫ t

0

∂h
∂ci

(Cs−, Xs−) d(Ci)c
s(2.8)

− 1
2

d∑
i, j=1

∫ t

0

∂2h
∂xi∂x j

(Cs−, Xs−) d
[
Xi, X j

]c

s

−
∑

0<s≤t

⎧⎪⎪⎨⎪⎪⎩Δh(Cs, Xs) −
d∑

i=1

∂h
∂xi

(Bs−, Xs−)ΔXi
s

⎫⎪⎪⎬⎪⎪⎭ .
On the other hand, applying the Itô formula to g(B, Y), we see that∫ t

0
〈ηs−, dYs〉 = g(Bt, Yt) − g(B0, Y0) −

m∑
k=1

∫ t

0

∂g

∂bk
(Bs−, Ys−) d(Bk)c

s(2.9)
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− 1
2

ν∑
k,l=1

∫ t

0

∂2g

∂yk∂yl
(Bs−, Ys−) d

[
Yk, Yl

]c

s

−
∑

0<s≤t

⎧⎪⎪⎨⎪⎪⎩Δg(Bs, Ys) −
ν∑

l=1

∂g

∂yl
(Bs−, Ys−)ΔYl

s

⎫⎪⎪⎬⎪⎪⎭ .
Thanks to Proposition 2.17 and (2.6), we can check that the right-hand sides of (2.8) and
(2.9) are equal.

The following integration by parts formula is proved as a corollary of associativity.

Corollary 2.21. Let X ∈ QV(Π). For admissible integrands ξ, η of X and for A, B ∈ FVloc,
we define

Yt =

∫ t

0
ξs−dXs + At, Zt =

∫ t

0
ηs−dXs + Bt.

Then we have

YtZt =

∫ t

0
Ys−dZs +

∫ t

0
Zs−dYs + [Y, Z]t.

Proof. First note that (Y, Z) ∈ QV(Π;R2) holds by Corollary 2.9 and Proposition 2.17.
Applying Theorem 2.13 to f (y, z) = yz, we get

YtZt − Y0Z0 =

∫ t

0
〈∇ f (Ys−, Zs−), d(Y,Z)s〉 + [Y, Z]t, t ≥ 0.

We can deduce that ξY is an admissible integrand of X from the expression for Y in Lemma
2.18. Hence by Theorem 2.19 and Remark 2.16, the Itô-Föllmer integral

∫ t
0 Ys−dZs exists.

Thus we obtain∫ t

0
〈∇ f (Ys−, Zs−), d(Y, Z)s〉 =

∫ t

0
Ys−dZs +

∫ t

0
Zs−dYs, t ≥ 0.

This completes the proof. �

2.4. Quadratic variations of paths and semimartingales.
2.4. Quadratic variations of paths and semimartingales. In this subsection, we de-

scribe relations between quadratic variations in Föllmer’s sense and those of semimartin-
gales. Let (Ω, , (t)t∈R≥0 ) be a filtered measurable space such that (t) is right continuous
and universally complete, and let  be a family of probability measures on (Ω, ).

Definition 2.22. Let π = (τk)k∈N be a sequence of random variables such that 0 = τ0 ≤
τ1 ≤ . . . . If for every ω the partition (τk(ω))k∈N satisfies the conditions in Section 2.1, π
is called a random partition. In addition, if each τk is an (t)-stopping time, we call π an
optional partition. We denote the sequence (τk(ω))k∈N by π(ω) for each ω ∈ Ω.

The name optional partition is borrowed from [10, p.4]. This terminology is reasonable
because the term optional time is often used as another name for stopping time: see, for
example, [11, Chapter IV. No. 49]. For a sequence of optional partitions Π = (πn)n∈N, each
partition is denoted by πn = (τn

k)k∈N, for example. Given an optional partition π and a càdlàg
process X, the oscillation of paths of X along π is defined by
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Ot(X(ω), π(ω)) = sup
ti∈π

sup{‖Xs(ω) − Xu(ω)‖ | s, u ∈ [ti, ti+1[ ∩ [0, t]}.

Then, we can easily check that (ω, t) �→ Ot(X(ω), π(ω)) is a càdlàg adapted process because
X is càdlàg and adapted, and τn

k’s are stopping times. Also, recall that if a sequence (gn) in
Lp(P) satisfies

∑
n∈N‖gn − g‖pLp(P) < +∞, then (gn) converges almost surely to g.

Suppose that X is a semimartingale under P ∈  . Let us consider the usual quadratic vari-
ation [X, X]P of a semimartingale X under P. It is a well known fact that if a sequence of op-
tional partitions Π = (πn) satisfies |πn(ω)| → 0 almost surely, the sequence [X(ω), X(ω)]πn(ω)

converges to [X, X]P in the ucp topology. Hence, by taking a proper subsequence, P-almost
all paths of X have quadratic variation along π(ω) and they are almost surely equal to [X, X]P.

Our aim is to find a sufficient condition for Π under which P-almost every path of X
has quadratic variation along Π without taking a subsequence. The following Proposition
is due to [10, Proposition 2.4] for continuous semimartingales. Its proof can directly ap-
plied to càdlàg semimartingales. For the proof of the proposition, we use the notion of  p

spaces, semimartingale 
p spaces, and prelocalization of processes. See, [5] or [36] for

these contents.

Proposition 2.23. Suppose that, for all P ∈  , a càdlàg adapted process X is a P-
semimartingale and Π = (πn) is a sequence of optional partitions such that |πn(ω)| → 0
holds P-almost surely. Moreover, suppose that for every P ∈  and every T ∈ R≥0, the
series

∑
n OT (X(ω), πn(ω)) converges P-almost surely. Then, for all P ∈  , P-almost every

path of X has quadratic variation along Π that coincides with the usual quadratic variation
[X, X]P, P-almost surely.

Proof. We can assume X0 = 0 without loss of generality. Fix P ∈  . Recall that X
satisfies

[X, X]P = X2 − X− • X

where the last term of the right-hand side denotes the stochastic integral with respect to P.
First we suppose X ∈ 

4(P). Fix an arbitrary T in R≥0 and define KT :=
∑

n OT (X, πn).
Then, KT is a random variable since it is defined as the (convergent) series of a sequence of
positive random variables. We define a probability measure Q equivalent to P by

Q(A) =
1

E[exp(−KT )]

∫
A

e−KT (ω)P(dω).

Then, X is again a semimartingale with respect to Q. Here recall that the stochastic integral
is invariant under an equivalent change of probability measure. (See, for example, [23,
12.22 Theorem].) We have KT ∈ L4(Q), and X ∈ 

4(Q) by definition of Q. Let Hn :=∑
k Xτn

k
1]]τn

k ,τ
n
k+1]] and let Kn := Hn − X−. Then Hn and Kn are locally bounded predictable

processes. By definition, we see that

(2.10)
∑
n∈N

sup
t∈[0,T ]

|Kn
t |2 ≤

⎛⎜⎜⎜⎜⎜⎝∑
n∈N

sup
t∈[0,T ]

|Kn
t |
⎞⎟⎟⎟⎟⎟⎠

2

≤ K2
T ∈ L2(Q).

Consider a decomposition X = M + A such that M ∈ loc,0(Q) and A ∈  . Since Kn is
locally bounded, the decomposition Kn•X = Kn•M+Kn•A satisfies Kn•M ∈loc,0(Q) and
Kn • A ∈  . Combining (2.10), the monotone convergence theorem, Schwarz’s inequality,
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and Theorem 2 of [36, Chapter V], we get∑
n∈N

∥∥∥(Kn • X)T |∥∥∥2
2(Q) ≤ C ‖KT ‖2L4(Q)

(∥∥∥[M,M]1/2
T

∥∥∥2

L4(Q) + ‖V(A)T ‖2L4(Q)

)

where C is a positive constant. Since X ∈ 
4(Q), we can take a decomposition such that

the right-hand side of the above inequality is finite. This proves that (Kn • X)∗T → 0 holds
Q-almost surely, and hence P-almost surely. Consequently, we have P-almost surely

sup
t∈[0,T ]

∣∣∣[X(ω), X(ω)]πn(ω)
t − [X, X]P

t (ω)
∣∣∣ = sup

t∈[0,T ]
|(Kn • X)t(ω)| −→ 0,

as n → ∞. This completes the proof for X ∈ 
4(P). The general case is proved by the

above argument and the usual prelocalization procedure. �

Remark 2.24. An example of optional partitions used in Proposition 2.23 can be given in
the following manner. For a càdlàg semimartingale X satisfying the assumption of Proposi-
tion 2.23, we define a sequence of stopping times inductively as

τn
0(ω) = 0,

τn
k+1(ω) = inf

{
t > τn

k(ω)
∣∣∣∣∣ |Xt(ω) − Xτn

k
(ω)| > 1

2n+1

}
∧

(
τn

k(ω) +
1
n

)
.

Then Π = ((τn
k)k∈N)n∈N clearly satisfies the assumption of Proposition 2.23 for all P ∈  .

Remark 2.25. Because of Theorem 2.13 and Proposition 2.23, the Itô-Föllmer integral∫ t
0 g(Xs−) dXs for g of C1-class converges almost surely along Π = (πn) provided that∑

n Ot(X, πn) < ∞ a.s.. Under this assumption, Π seems to control the oscillations of the
paths of X, only. It is known that, in general, we have to control the oscillation of integrands
to obtain the pathwise convergence of stochastic integrals: see [27]. The oscillation of the
paths of g ◦ X− is controlled by that of X in this particular case. Hence, our result is valid.

3. Integral equations with respect to Itô-Föllmer integrals and their applications to
finance

3. Integral equations with respect to Itô-Föllmer integrals and their applications to
finance

We have seen that some fundamental formulas in stochastic integration theory are valid
within the framework of Itô-Föllmer integrals. In this section, using these formulas, we
compute explicit solutions to certain integral equations.

3.1. Linear equations.
3.1. Linear equations. For a given X ∈ QV(Π) and an H ∈ D(R≥0,R), we consider the

following equation for Y .

(3.1) Yt = Ht +

∫ t

0
Ys−dXs.

If H is (not) constant, the equation (3.1) is called an (in)homogeneous linear equation. A
solution of (3.1) is an admissible integrand of X that satisfies (3.1).

We first consider the following proposition.
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Proposition 3.1. Let X ∈ QV(Π) and let

(X)t = exp
(
Xt − X0 − 1

2
[X, X]c

t

) ∏
0<s≤t

(1 + ΔXs)e−ΔXs .

Then (X) is the unique solution to the homogeneous linear equation

(3.2) Yt = 1 +
∫ t

0
Ys−dXs.

Proof. Let

V(X)t =
∏

0<s≤t

(1 + ΔXs)e−ΔXs .

It is well known that this infinite product converges absolutely and V(X) is a càdlàg purely
discontinuous function of locally finite variation. (See, for example, [25, Chapter I, 4.61
Theorem].) Here we define f (x, a, b) = ex−X0−a/2b. It is easy to see that f is of C2-class.
Since ∂

∂x f (Xt, [X, X]c
t ,Vt) = (X)t holds, the function (X) is an admissible integrand of X.

Applying the Itô-Föllmer formula to f (Xt, [X, X]c
t ,Vt), we see that Y = (X) satisfies (3.2).

For uniqueness, we will take an arbitrary solution Y of (3.2) and show that Y = (X). Let
Y be a solution of (3.2), and let Z = X − X0 − (1/2)[X, X]c. Then we see that X := (Y, Z)
belongs to QV(Π;R2) by the representation Yt = 1 +

∫ t
0 Ys−dXs and by Corollary 2.9 and

Proposition 2.17. The Itô-Föllmer formula implies the existence of the Itô-Föllmer integral∫ t
0 〈∇g(Ys−, Zs−), dXs〉 where g(y, z) = ye−z. Since Y is represented as Y = F(A, X) by some

F of C1,2-class and A of locally finite variation, the Itô-Föllmer integral
∫ t

0 g(Ys−, Zs−) dXs

exists. Moreover, by Remark 2.16∫ t

0
g(Ys−, Zs−) dZs =

∫ t

0
g(Ys−, Zs−) dXs − 1

2

∫ t

0
g(Ys−, Zs−) d[X, X]c

s

also exists. Therefore, we can write

(3.3)
∫ t

0
〈∇g(Ys−, Zs−), dXs〉 = −

∫ t

0
g(Ys−, Zs−) dZs +

∫ t

0
e−Zs−dYs.

Applying the Itô-Föllmer formula to W = g(Y, Z) = Ye−Z and using (3.3), we obtain

Wt − 1 =
∫ t

0
−Ws−dZs +

∫ t

0
e−Zs−dYs +

1
2

∫ t

0
Ws−d[Z, Z]c

s

+

∫ t

0
−e−Zs−d[Y, Z]c

t +
∑

0<s≤t

{
ΔWs +Ws−ΔZs − e−Zs−ΔYs

}
=

∑
0<s≤t

ΔWs.

Note that W satisfies

(3.4) Wt = 1 +
∫ t

0
Ws−dRs,

where R is a purely discontinuous function of locally finite variation defined by

Rt =
∑

0<s≤t

{
(1 + ΔXs)e−ΔXs − 1

}
.
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The function U := (X)e−Z clearly satisfies (3.4) because (X) is a solution of (3.2). Hence

Wt − Ut =

∫ t

0
(Ws− − Us−) dRs

holds for all t. Gronwall’s lemma for Stieltjes integrals implies W = U, and so Y = (X).
This establishes uniqueness. �

Remark 3.2. If X ∈ QV(Π) satisfies ΔXt � −1 for all t ≥ 0, we have (X)t � 0 and
(X)t− � 0 for all t ≥ 0. Moreover, if ΔXt > −1 holds for all t ≥ 0, then (X)t > 0 and
(X)t− > 0 hold for all t ≥ 0.

Remarks 2.14 and 3.2 allow us to apply the Itô-Föllmer formula (Theorem 2.13) to
1/(X)t. Consequently, we obtain the following lemma.

Lemma 3.3. Let X ∈ QV(Π) satisfy ΔXt � −1 for all t ∈ R≥0. Then 1/(X) ∈ QV(Π)
and the following representation holds.

1
(X)t

− 1 = −
∫ t

0

dXs

(X)s−
+

∫ t

0

d[X, X]c
s

(X)s−
+

∑
0<s≤t

1
(X)s−

[
(ΔXs)2

1 + ΔXs

]
.

With the help of Proposition 3.1 and Lemma 3.3, we obtain the following proposition.
The first expression (3.5) was introduced by [26] for inhomogeneous linear SDEs.

Proposition 3.4. Suppose that X ∈ QV(Π) satisfies ΔXt � −1 for all t ∈ R≥0 and that H
is an admissible integrand of X. Define

(3.5) Zt = Ht − (X)t

∫ t

0
Hs−d

(
1

(X)

)
s
, t ∈ R≥0.

Then, it is the unique solution to the following inhomogeneous linear equation.

(3.6) Zt = Ht +

∫ t

0
Zs−dXs.

Moreover, if H is represented as

(3.7) Ht =

∫ t

0
ξs−dXs + At

by an admissible integrand ξ and A ∈ FVloc, then Z admits another expression as follows.

Zt = (X)t

⎛⎜⎜⎜⎜⎜⎜⎝H0 +

∫ t

0

dHs

(X)s−
−
∫ t

0

d[H, X]c
s

(X)s−
−

∑
0<s≤t

ΔHsΔXs

(X)s− (1 + ΔXs)

⎞⎟⎟⎟⎟⎟⎟⎠ .(3.8)

Proof. We first prove that Z is a solution of (3.6). The existence of the Itô-Föllmer
integral Yt :=

∫ t
0 Hs−d((X)−1)s follows from the assumption about H, Theorem 2.19, and

Lemma 3.3. Applying Corollary 2.21 and Proposition 2.17 to Y(X), we get

Zt − Ht =

∫ t

0
Hs−dXs −

∫ t

0
Hs−d[X, X]c

s −
∑

0<s≤t

Hs−(ΔXs)2

1 + ΔXs

−
∫ t

0
Ys−(X)s−dXs +

∫ t

0
Hs−d[X, X]s −

∑
0<s≤t

Hs−(ΔXs)3

1 + ΔXs
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=

∫ t

0
Zs−dXs.

Hence Z satisfies equation (3.6).
Next we show uniqueness. Let W be an arbitrary solution of (3.6). Corollary 2.21 yields

Wt − Ht

(X)t
=

∫ t

0
(Ws− − Hs−) d

(
1

(X)

)
s
+

∫ t

0

Ws−
(X)s−

dXs +

[
W − H,

1
(X)

]
t
.

Using Proposition 2.17 and Corollary 2.9, the quadratic covariation part is given by[
W − H,

1
(X)

]
t
= −

∫ t

0

Ws−
(X)s−

d[X, X]c
s −

∑
0<s≤t

Ws−
(X)s−

(ΔXs)2

1 + ΔXs
.

Therefore,

Wt − Ht

(X)t
= −

∫ t

0
Hs−d

(
1

(X)

)
s
.

This indicates W = Z and establishes the uniqueness of solutions.
Now, suppose H is represented as (3.7). By Corollary 2.21, Proposition 2.17, and Lemma

3.3 we have

Ht

(X)t
− H0 =

∫ t

0

dHs

(X)s−
+

∫ t

0
Hs−d

(
1

(X)

)
s
−
∫ t

0

d [H, X]s

(X)s−
−

∑
0<s≤t

1
(X)s−

ΔHsΔXs

1 + ΔXs
.

Combining this and (3.5), we obtain the expression of (3.8). �

3.2. Nonlinear equations.
3.2. Nonlinear equations. By combining Proposition 3.4 and results in [13, Section 3],

we can solve a certain class of nonlinear equations.

Proposition 3.5. Let X ∈ QV(Π) satisfy ΔXt � −1 for all t, and let f be a continuous
function on R≥0 × R. Suppose that the integral equation

(3.9) Yt = x +
∫ t

0

f (s, Ys(X)s)
(X)s

ds

with respect Y has a unique solution. Then, the path Z = Y(X), where Y denotes the unique
solution of (3.9), is the unique solution of

(3.10) Zt = x +
∫ t

0
f (s, Zs) ds +

∫ t

0
Zs−dXs.

Here, the terminology “solution of (3.10)” means an admissible integrand of X that satis-
fies (3.10).

Proof. We see that, by Corollary 2.21,

Yt(X)t =

∫ t

0
(X)s

f (s, Ys(X)s)
(X)s

ds +
∫ t

0
Ys(X)s−dXs

=

∫ t

0
f (s, Ys(X)s) ds +

∫ t

0
Ys−(X)s−dXs.

Therefore, Y(X) is a solution of (3.10). For uniqueness, let Z be an arbitrary solution of
(3.10) and let
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Ht = x +
∫ t

0
f (s, Zs) ds.

Then, by Proposition 3.4, Z satisfies

Zt = (X)t

(
x +

∫ t

0

f (s, Zs)
(X)s

ds
)
.

Hence the path W := Z/(X) satisfies (3.9). By the uniqueness of solutions of (3.9), we
have Z = W(X) = Y(X). �

Remark 3.6. Equation (3.9) has a unique solution if, for example, f satisfies the following
conditions.

• (Local Lipschitz condition) For each T,M > 0, there is a constant LT,M > 0 such
that for all x, y ∈ [−M,M] and all t ∈ [0, T ],

| f (t, x) − f (t, y)| ≤ LT,M |x − y|.
• (Linear growth condition) For each T > 0, there is a constant KT > 0 such that for

all (t, x) ∈ [0, T ] × R,

| f (t, x)| ≤ KT (1 + |x|).
Under these assumptions, g(t, y) = f (t, y (X)t)/(X)t again satisfies both local Lipschitz
and linear growth conditions. Indeed, fix T > 0 and M > 0, and define M′ =
supt∈[0,T ]|(X)t|M. Then g satisfies

|g(t, x) − g(t, y)| = LT,M′ |y − x|.
Moreover, it satisfies

|g(t, y)| ≤ KT

(
1

inft∈[0,T ]|(X)t| + 1
)

(1 + |y|) .

By the assumption that ΔXt � −1, Remark 3.2 and the càdlàg property of (X), we see that
inf[0,T ]|(X)t| > 0. Hence, g satisfies the linear growth condition.

Remark 3.7. There is another class of nonlinear equations that is solvable within our
framework. [33] discuss an extension of the so called Doss–Sussmann method within the
framework of Föllmer’s calculus for continuous paths. The Doss–Sussmann method is a
way to solve SDEs by using the solution of ODEs [12, 42].

3.3. Drawdown equations.
3.3. Drawdown equations. In this section, we deal with integral equations which are

called drawdown equations. We follow [4, Section 2–3], which studies Azéma–Yor pro-
cesses and related drawdown equations. We interpret their results in our pathwise setting.

Given an R-valued càdlàg path X, we define its running maximum, denoted by X, through
the formula Xt = sup0≤s≤t Xs for all t ∈ R≥0. Then the path X is càdlàg and increasing. In this
subsection, we always assume that X is continuous. Recall that this continuity assumption
implies

(3.11)
∫ t

0
(Xs − Xs) dXs = 0, t ∈ R≥0.
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Proposition 3.8. Suppose that X ∈ QV(Π) satisfies X0 = a and that the running maximum
X is continuous. Let U : [a,∞[ → R be a C2 function such that U(a) = a∗. (We consider
only right derivatives at a.) Then the function

MU
t (X) := U(Xt) − U′(Xt)(Xt − Xt)

has quadratic variation along Π and satisfies

MU
t (X) = a∗ +

∫ t

0
U′(Xs) dXs.

Proof. The function f (a, x) = U(a) − U′(a)(a − x) is clearly belongs to C1,2-class. The
existence of the quadratic variation of MU(X) = f (X, X) follows from Proposition 2.7. Ap-
plying the Itô-Föllmer formula to f (X, X), we obtain

f (Xt, Xt) − a∗ = −
∫ t

0
U′′(Xs)(Xs − Xs) dXs +

∫ t

0
U′(Xs) dXs.

By (3.11) we see that∫ t

0

∣∣∣U′′(Xs)(Xs − Xs)
∣∣∣ dXs ≤ sup

s∈[0,t]
|U′′(Xs)|

∫ t

0
(Xs − Xs) dXs = 0.

Hence

MU
t (X) = f (Xt, Xt) = a∗ +

∫ t

0
U′(Xs) dXs.

holds for all t ∈ R≥0. �

Definition 3.9. We call the function MU(X) defined in Proposition 3.8 the Azéma–Yor
path associated with U and X.

The following proposition, which was originally proved by [4], is still valid within the
framework of Itô-Föllmer integration. It is easy to see that the proof of [4, Proposition 2.2]
is pathwise and does not use Itô calculus. So we can replace the word “max-continuous
semimartingale” with “path of QV(Π) with continuous running maximum.”

Proposition 3.10 ( [4, Proposition 2.2] ). (i) Let X, U satisfy the same assumptions
as in Proposition 3.8. Moreover, we suppose that U is increasing. Then MU(X) still
has a continuous running maximum and satisfies MU

t (X) = U(Xt) for all t ∈ R≥0.
(ii) In addition to the assumptions of (i), let F be an increasing C2 function such that

U ◦ F is well defined. Then, MU
t (MF(X)) = MU◦F

t (X).

The following is a direct consequence of Propositions 3.10 and 3.8.

Corollary 3.11 ( [4, Corollary 2.4] ). Consider a strictly increasing C2 function U defined
on [a,∞[ such that U(a) = a∗. Let V : [a∗,U(∞)[ → [a,∞[ denotes the inverse of U
where U(∞) = limx→∞U(x). Moreover, suppose that X ∈ QV(Π) has continuous running
maximum and satisfies X0 = a. Then, we have Xt = MV

t (MU(X)). If we define Yt = MU
t (X),

X and Y are expressed as follows.
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Yt = a∗ +
∫ t

0
U′(Xs) dXs, Xt = a +

∫ t

0
V ′(Y s) dYs, t ∈ R≥0.

Definition 3.12. Let X be a real-valued càdlàg path and w be a real-valued function de-
fined on some subset of R including [X0,∞[. We say that X satisfies the w-drawdown con-
straint if Xt ∧ Xt− > w(Xt) holds for all t ∈ R≥0.

Let us consider the Azéma–Yor path MU(X) associated with a strictly positive valued X
and a strictly increasing U. We can construct a function w such that MU(X) satisfies the
w-drawdown constraint. Indeed, let V = U−1, h(x) = U(x) − xU′(x), and w = h ◦ V . Then
we have

MU
t (X) ∧ MU

t−(X) = U(Xt) − U′(Xt)Xt + U′(Xt)(Xt ∧ Xt−)

> U(Xt) − U′(Xt)Xt = h(V(U(Xt))) = w(MU
t (X)).

Conversely, given a “nice” function w, we can construct a càdlàg path that satisfies the w-
drawdown constraint as follows.

Proposition 3.13. (i) Let X ∈ QV(Π) satisfy X0 = a and Xt ∧ Xt− > 0. Suppose
that its running maximum is continuous. We consider a function w : [a∗,∞[→ R of
C1-class satisfying y − w(y) > 0 for all y ∈ [a∗,∞[. Moreover, we define

V(y) = a exp
(∫

[a∗,y]

1
s − w(s)

ds
)
, y ∈ [a∗,∞[

and U = V−1. Then MU(X) is the unique solution of

(3.12) Yt = a∗ +
∫ t

0

Ys− − w(Y s)
Xs−

dXs

that satisfies the w-drawdown constraint and has continuous running maximum.
(ii) Let Y ∈ QV(Π). Suppose that Y satisfies the w-drawdown constraint, Y0 = a∗, and

its running maximum is continuous. Then, Xt = MV
t (Y) is the unique càdlàg path

of QV(Π) such that X is continuous, X0 = a and X satisfies (3.12).

The integral equation (3.12) is called a drawdown equation. The terminology “solution of
(3.12)” means an admissible integrand of X that satisfies equation (3.12). To prove unique-
ness, we use the following lemma.

Lemma 3.14. Suppose X and Y of QV(Π) satisfy Xt, Xt−, Yt, Yt− > 0, X0 = Y0 and∫ t

0

dXs

Xs−
=

∫ t

0

dYs

Ys−
for all t ∈ R≥0. Then X = Y.

Proof. Let

Zt =

∫ t

0

dXs

Xs−
=

∫ t

0

dYs

Ys−
, t ∈ R≥0.

Then we can easily check that both X and Y are admissible integrands of Z. Theorem 2.19
implies that X/X0 and Y/Y0 are solutions to the homogeneous linear equation driven by Z
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with initial value 1. Hence, by Proposition 3.1, we obtain X = X0(Z) = Y0(Z) = Y . �

Proof of Proposition 3.13. (i) We first prove that Y = MU(X) satisfies (3.12). By
definition, the derivative of V is V ′(y) = V(y)/(y−w(y)) and the derivative of U is U′ = 1/V ′.
Therefore, by Proposition 3.10 and Corollary 3.11, we have

Yt− − w(Yt) = Yt− − U(Xt) + U′(Xt)V(U(Xt)) = U′(Xt)Xt−.

This proves

Yt =

∫ t

0
U′(Xs)dXs =

∫ t

0

Ys− − w(Y s)
Xs−

dXs.

The Itô-Föllmer integral of this equation is well-defined since U′(X) has locally finite vari-
ation.

Next, we show uniqueness. Suppose that Y is a solution of (3.12) satisfying the w-
drawdown constraint and that the running maximum Y is continuous. Since Y satisfies the
w-drawdown constraint, MV

t (Y) and MV
t−(Y) are strictly positive. It is easy to see that Y−w(Y)

X
is an admissible integrand of X, and 1

Y−w(Y)
is an admissible integrand of X. Then we have

∫ t

0

dYs

Ys− − w(Y s)
=

∫ t

0

1

Ys− − w(Y s)

Ys− − w(Y s)
Xs−

dXs =

∫ t

0

dXs

Xs−

thanks to Theorem 2.19. Moreover, we see that∫ t

0

dYs

Ys− − w(Y s)
=

∫ t

0

V ′(Y s)
MV

s−(Y)
dYs =

∫ t

0

dMV
s (Y)

MV
s−(Y)

.

The second equality follows from Theorem 2.19. Hence,∫ t

0

dXs

Xs−
=

∫ t

0

dMV
s (Y)

MV
s−(Y)

.

This proves X = MV(Y) because of Lemma 3.14. Then we can deduce that Yt = MU
t (X)

from Corollary 3.11.
(ii) Suppose that Y ∈ QV(Π) satisfies the w-drawdown constraint and Y0 = a∗, and that

the running maximum Y is continuous. Let X := MV(Y). Then, Y is an admissible integrand
of X due to Corollary 3.11 and the definition of an Azéma–Yor path. Hence Y−w(Y)

MV (Y) is also an
admissible integrand of X. By the associativity of Itô-Föllmer integrals, we have∫ t

0

Ys− − w(Y s)
MV

s−(Y)
dMV

s (Y) =
∫ t

0

Ys− − w(Y s)
MV

s−(Y)
V ′(Y s) dYs =

∫ t

0

MV
s−(Y)

MV
s−(Y)

dYs = Yt − Y0.

Therefore X = MV(Y) satisfies (3.12). Let Z be any càdlàg path of QV(Π) satisfying (3.12)
such that Z0 = a and Z is continuous. Then we can show∫ t

0

dZs

Zs−
=

∫ t

0

dMV
s (Y)

MV
s−(Y)

,

in the same way as the proof of the first part. Consequently, we obtain MV(Y) = Z. �
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3.4. Applications to Finance.
3.4. Applications to Finance.

3.4.1. Model-free CPPI with jumps.
3.4.1. Model-free CPPI with jumps. As an application of the results for linear integral

equations, we consider model-free constant proportion portfolio insurance (CPPI) and dy-
namic proportion portfolio insurance (DPPI) strategies with jumps, which extend the results
of [38].

Throughout this section, we will fix a sequence of partitions Π = (πn)n∈N such that |πn| →
0 as n → ∞. Assume that there is one riskless asset and one risky asset in the market. The
price process of the riskless asset B is a càdlàg path of locally finite variation with B0 = 1.
The risky asset price process S belongs to QV(Π). We suppose that both B and S are strictly
positive valued and that Bt− and S t− are also strictly positive. We consider a portfolio that
consists of ξt units of the risky asset and ηt units of the riskless asset at time t. We will
assume that ξ is an admissible integrand of S and η is a càdlàg path. The pair (ξ, η) is called
a trading strategy. The value of the portfolio at time t is defined by Vt = ξtS t + ηtBt. A
strategy (ξ, η) is self-financing if

Vt = V0 +

∫ t

0
ξs−dS s +

∫ t

0
ηs−dBs

holds for all t.
Let K be a nonnegative càdlàg path of locally finite variation. A DPPI strategy, introduced

by [38], is a trading strategy given by

(3.13) ξt =
mt(Vt − Kt)

S t
, ηt =

Vt − ξtS t

Bt
,

where the multiplier m : R≥0 → R is an admissible integrand of X. When m is constant, this
is a so called CPPI strategy. Our aim is to construct a self-financing DPPI strategy satisfying
Vt ≥ Kt for all t ∈ R≥0. From now on, we assume that K has the form K = LB, where L is a
nonincreasing càdlàg function.

Proposition 3.15. Let S ∈ QV(Π) be a price process of a risky asset, B ∈ FVloc be that
of a riskless asset and V0 ≥ 0 be the initial wealth. Suppose that S , S −, B, B− are strictly
positive and L is a nonincreasing path such that V0 ≥ L0. For an admissible integrand
m : R≥0 → R of S , we define a path X by

Xt =

∫ t

0

ms−
S s−

dS s +

∫ t

0

(1 − ms−)
Bs−

dBs.

If m satisfies ΔXt � −1 for all t, the DPPI strategy given below is self-financing.

Vt = LtBt + (X)t

⎛⎜⎜⎜⎜⎜⎜⎝V0 − L0 −
∫ t

0

Bs−
(X)s−

dLc
s −

∑
0<s≤t

Bs

(X)s−
ΔLs

1 + ΔXs

⎞⎟⎟⎟⎟⎟⎟⎠ ,
ξt =

mt(Vt − LtBt)
S t

, ηt =
Vt − ξtS t

Bt
.

Moreover, if the condition ΔXt > −1 holds for all t ≥ 0, the value process of this portfolio
satisfies Vt ≥ LtBt for all t.

Proof. Let Kt = LtBt. If the DPPI strategy (ξ, η) given by (3.13) is self-financing, the
value process must satisfy
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(3.14) Vt − V0 =

∫ t

0

ms−(Vs− − Ks−)
S s−

dS s +

∫ t

0

Vs− − ms−(Vs− − Ks−)
Bs−

dBs.

Set

Xt =

∫ t

0

ms−
S s−

dS s +

∫ t

0

(1 − ms−)
Bs−

dBs, Ht = V0 −
∫ t

0
Ks−

[
dXs − 1

Bs−
dBs

]
.

These paths are well-defined by assumption. Then (3.14) can be rewritten as

(3.15) Vt = Ht +

∫ t

0
Vs−dXs.

Because X satisfies ΔXt � −1 for all t, the equation (3.15) has the unique solution

Vt = (X)t

⎛⎜⎜⎜⎜⎜⎜⎝H0 +

∫ t

0

dHs

(X)s−
−
∫ t

0

d[H, X]c
s

(X)s−
−

∑
0<s≤t

1
(X)s−

ΔHsΔXs

1 + ΔXs

⎞⎟⎟⎟⎟⎟⎟⎠(3.16)

by Proposition 3.4. Consequently, if V is given by (3.16), the DPPI strategy of (3.13) is
self-financing. Using Lemma 3.3, Corollaries 2.21 and 2.9, and (3.16) we have

(3.17)
Vt

(X)t
− Kt

(X)t
= V0 − L0 −

∫ t

0

Bs−
(X)s−

dLc
s −

∑
0<s≤t

Bs

(X)s−
· ΔLs

1 + ΔXs
.

This proves the first part of the assertion.
Now suppose that ΔXt > −1 holds for all t ∈ R≥0. Then by Proposition 3.2 we see that

(X)t is strictly positive. (3.17) implies that Vt/(X)t − Kt/(X)t ≥ 0 holds for all t since L
is nonincreasing and satisfies V0 ≥ L0. Hence Vt ≥ Kt holds for all t ∈ R≥0. �

Let us consider a case where the multiple m is constant in Proposition 3.15. If mt = m for
all t, the process X in the proposition is

Xt = m
∫ t

0

1
S s−

dS s + (1 − m)
∫ t

0

1
Bs−

dBs.

Then we have

ΔXt = m
ΔS t

S t−
+ (1 − m)

ΔBt

Bt−
.

By the assumptions S , S −, B, B− > 0, the conditions ΔS t/S t− > −1 and ΔBt/Bt− > −1 are
always satisfied. If we choose m such that 0 ≤ m ≤ 1, we have ΔXt− > −1. In this case, the
value process V always satisfies Vt ≥ Kt.

3.4.2. Portfolio strategies satisfying drawdown constraint.
3.4.2. Portfolio strategies satisfying drawdown constraint. In this subsection, we will

consider portfolio strategies satisfying the drawdown constraint as an application of obser-
vations about drawdown equations. Let S , B be the same paths as in Section 3.4.1, V0 be
initial wealth and w be a function satisfying the assumptions of Proposition 3.13. Our pur-
pose is to find a self-financing trading strategy satisfying the w-drawdown constraint. First
we show the following characterization of the self-financing condition. This equivalence is a
well-known result in the classical Itô calculus framework. It also holds within our pathwise
framework.
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Proposition 3.16. Let S ∈ QV(Π) be a risky asset, B ∈ FVloc be a riskless asset with
initial price B0 = 1 and V0 ≥ 0 be an initial wealth. Suppose that all of S , S −, B, B− are
strictly positive valued. Define Ṽ = V/B and S̃ = S/B. Then for a trading strategy (ξ, η),
the following two conditions are equivalent.

(i) The trading strategy (ξ, η) is self-financing.
(ii) For all t ∈ R≥0,

(3.18) Ṽt = V0 +

∫ t

0
ξs−dS̃ s.

Proof. We first show that an admissible integrand ξ is also an admissible integrand of S̃ .
Fix T > 0 and choose A ∈ FVm

loc and a function F of C1,2-class that satisfies ξt = d
dx F(At, S t)

(t ∈ [0, T ]). Then ξ can be represented as ξ = d
dxg(At, Bt, S̃ t), where g(a, b, x) = F(a, bx)/b.

This means that ξ is an admissible integrand of S̃ .
Next we prove that (i) implies (ii). By Corollary 2.21, we have

Vt

Bt
=

V0

B0
+

∫ t

0
ξs−

(
S s−d

(
1
B

)
s
+

1
Bs−

dS s + d
[
S ,

1
B

]
s

)
(3.19)

+

∫ t

0
ηs−

(
Bs−d

(
1
B

)
s
+

1
Bs−

dBs + d
[
B,

1
B

]
s

)
,

S̃ t =
S 0

B0
+

∫ t

0
S s−d

(
1
B

)
s
+

∫ t

0

1
Bs−

dS s +

[
S ,

1
B

]
t
,(3.20) ∫ t

0
Bs−d

(
1
B

)
s
+

∫ t

0

1
Bs−

dBs +

[
B,

1
B

]
t
= 0.

Combining these three equations, we obtain (3.18).
It remains to prove that (ii) implies (i). Using condition (ii), Corollary 2.21, Theo-

rem 2.19, (3.20) and (3.19), we get

Vt = V0 +

∫ t

0
ξs−dS s +

∫ t

0
ηs−dBs +

∫ t

0
ξs−

(
Bs−d

[
S ,

1
B

]
s
+

1
Bs−

d[S , B]s + d
[[

S ,
1
B

]
, B

]
s

)
.

The integrator of the last term satisfies∫ t

0
Bs−d

[
S ,

1
B

]
s
+

∫ t

0

1
Bs−

d[S , B]s +

[[
S ,

1
B

]
, B

]
t

=
∑

0<s≤t

ΔS s

(
Bs−Δ

1
Bs
+

1
Bs−
ΔBs + Δ

1
Bs
ΔBs

)
= 0.

Therefore, V satisfies the self-financing condition. �

According to Proposition 3.16, we can assume that B = 1 identically when we consider
a self-financing portfolio. Now we apply the results about Azéma–Yor paths and drawdown
equations to trading strategies.

Proposition 3.17. Suppose that the running maximum of the risky price process S ∈
QV(Π) is continuous and that the riskless price process is identically 1. Let V0 ≥ 0 be an
initial wealth, and suppose w : [V0,∞[ → R satisfies the same assumptions as in Proposi-
tion 3.13. Functions U and W are defined as
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W(y) = S 0 exp
(∫

[V0,y]

1
s − w(s)

ds
)
, y ∈ [V0,∞[,

and U = W−1. If we set

ξt = U′(S t), ηt = MU(S )t − ξtS t,

the trading strategy (ξ, η) is self-financing. Furthermore, the value of portfolio V := ξS + η
satisfies the w-drawdown constraint in the sense of Definition 3.12.

Proof. The self-financing property of the strategy (ξ, η) follows from Proposition 3.8.
Moreover by Proposition 3.13, we see that V = MU(S ) satisfies w-drawdown constraint.

�

Appendix A On the convergence of a sequence of discrete measures on R≥0

Appendix A. On the convergence of a sequence of discrete measures on R≥0
Let us consider a sequence of measures (μn) of the form

(A.1) μn =
∑
i≥0

an
i δtn

i
,

where an
i ≥ 0 and πn = (tn

i )i∈N is a partition of R≥0.

Lemma A.1. Let Π = (πn)n∈N be a partition of R≥0 satisfying |πn| → 0. Suppose that, for
each n ∈ N, μn is a locally finite measure of the form (A.1) and the distribution functions
of (μn) converge pointwise to that of a positive locally finite measure μ with μ({0}) = 0.
Moreover, we assume the following condition.

(∗) For each t ∈ R≥0 take a sequence (in) such that t ∈ ]tn
in
, tn

in+1]. Then (an
in

)n converges
to μ({t}).

Then for all f ∈ D(R≥0,R) and all t ∈ R≥0, we have

lim
n→∞

∫
[0,t]

f (s)μn(ds) =
∫

[0,t]
f (s−)μ(ds).

Remark A.2. Condition (∗) is true if (μn) is given by

μn =
∑

i

μ(]tn
i , t

n
i+1])δtn

i
.

This condition is also satisfied if μn = μ
πn
X for X ∈ QV(Π). In this case, Condition (∗)

corresponds to Condition (ii) of Definition 2.1.

Proof. Let Dt = {s ∈ [0, t] | Δ f (s) � 0} and Dn
t = {s ∈ Dt | |Δ f (s)| > 1/n}. For m ∈ N≥1

define finite positive measures on [0, t] by

μ′m(E) = μ(Dm
t ∩ E), μ′′m(E) = μ(E) − μ′m(E) = μ(E \ Dm

t ),

μ′m,n =
∑
tn
i ≤t

an
i 1{i|Dm

t ∩]tn
i ,t

n
i+1]�∅}(i)δtn

i
, μ′′m,n = μn − μ′m,n.

We can deduce from the finiteness of Dm
t and the condition (∗) that

(A.2) lim
n→∞

∫
[0,t]

f (s)μ′m,n(ds) =
∫

[0,t]
f (s−)μ′m(ds).
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Moreover, we see the distribution functions of (μ′m,n)n converge pointwise to that of μ′m on
[0, t]; similarly the distribution functions of (μ′′m,n)n converge to that of μ′′m.

Let C = supn μn([0, t]) + μ([0, t]). Now we fix an arbitrary δ > 0 and pick m such that
1/m < δ/3C. Take a function g of the form

g = f (0)1{0} +
∑

1≤i≤N

bi−11]si−1,si], 0 = s0 < s1 < · · · < sN ≤ t,

such that |g(t) − f (t−)| ≤ δ/3C on [0, t]. Then, we have∣∣∣∣∣∣
∫

[0,t]
f (s)μ′′m,n(ds) −

∫
[0,t]

f (s−)μ′′m(ds)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

[0,t]
{ f (s) − f (s−)} μ′′m,n(ds)

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫

[0,t]
{ f (s−) − g(s)} μ′′m,n(ds)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫

[0,t]
g(s)μ′′m,n(ds) −

∫
[0,t]
g(s)μ′′m(ds)

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫

[0,t]
{g(s) − f (s−)} μ′′m(ds)

∣∣∣∣∣∣
= I1 + I2 + I3 + I4.

By assumption we see that, for sufficiently large n,

I1 ≤ 1
m

sup
n
μn([0, t]) ≤ δ

3
, I2 ≤ δ3C

sup
n
μn([0, t]) ≤ δ

3
, I4 ≤ δ3C

μ([0, t]) ≤ δ
3
.

Furthermore we have limn→∞ I3 = 0 by assumption. Consequently,

(A.3) lim
n→∞

∣∣∣∣∣∣
∫

[0,t]
f (s)μ′′m,n(ds) −

∫
[0,t]

f (s−)μ′′m(ds)

∣∣∣∣∣∣ ≤ δ.
Combining (A.2) and (A.3), we obtain

lim
n→∞

∣∣∣∣∣∣
∫

[0,t]
f (s)μn(ds) −

∫
[0,t]

f (s−)μ(ds)

∣∣∣∣∣∣ ≤ δ.
Because δ is chosen arbitrarily, we have the desired result. �
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