UNSTABILIZED WEAKLY REDUCIBLE HEEGARDA SPLITTINGS

KUN DU

(Received May 29, 2017, revised September 20, 2017)

Abstract

In this paper, we give a sufficient condition for a (weakly reducible) Heegaard splitting to be unstabilized and uncritical. We also give a sufficient condition for a Heegaard splitting to be critical.

1. Introduction

All 3-manifolds in this paper are assumed to be compact and orientable. All surfaces in 3-manifolds are assumed to be properly embedded and orientable.

Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression bodies V and W with $S = \partial V = \partial W$, then we say M has a Heegaard splitting, denoted by $M = V \cup_S W$; and S is called a Heegaard surface of M. Moreover, if the genus $g(S)$ of S is minimal among all Heegaard surfaces of M, then $g(S)$ is called the genus of M, denoted by $g(M)$. If there are essential disks $B \subset V$ and $D \subset W$ such that $\partial B = \partial D$ (resp. $\partial B \cap \partial D = \emptyset$), then $V \cup_S W$ is said to be reducible (resp. weakly reducible). Otherwise, it is said to be irreducible (resp. strongly irreducible). If there are essential disks $B \subset V$ and $D \subset W$, such that $|B \cap D| = 1$, then $M = V \cup_S W$ is said to be stabilized; otherwise, $M = V \cup_S W$ is said to be unstabilized. If a surface F in a 3-manifold M is incompressible and not parallel to ∂M, then F is said to be essential. If a separating surface F in M is compressible on both sides of F, then F is said to be bicompressible. If every compressing disk in one side of F intersects every compressing disk in the other side, then F is said to be strongly irreducible. If F is incompressible except for ∂F, then F is said to be almost incompressible; if F is bicompressible except for ∂F, then F is said to be almost bicompressible; if F is strongly irreducible except for ∂F, then F is said to be almost strongly irreducible, where $[\partial F]$ is the isotopy class of ∂F.

Let M be a 3-manifold, and S be a closed separating compressible surface in M. S is said to be critical (see [1]), if the compressing disks for S can be partitioned into two sets C_0 and C_1, and there is at least one pair of disks $V_i, W_i \in C_i$ (i = 0, 1) on opposite sides of S, such that $V_i \cap W_i = \emptyset$, and if $V \in C_i$ and $W \in C_j$, lie on opposite sides of S, then $V \cap W \neq \emptyset$. If S is not critical, then S is said to be uncritical. There are some examples, see [2]–[4], [8]–[10].

Let S be a closed surface with $g(S) \geq 2$. The curve complex of S (see [5]) is the complex whose vertices are the isotopy classes of essential simple closed curves on S, and $k + 1$
vertices determine a \(k \)-simplex if they are represented by pairwise disjoint curves. If \(S \) is a torus, the curve complex of \(S \) (see [11], [12]) is the complex whose vertices are the isotopy classes of essential simple closed curves on \(S \), and \(k + 1 \) vertices determine a \(k \)-simplex if they can be represented by a collection of curves, any two of which intersect in only one point. We denote the curve complex of \(S \) by \(C(S) \). For any two vertices in \(C(S) \), one can define the distance \(d_{C(S)}(x, y) \) to be the minimal number of 1-simplices in a simplicial path joining \(x \) to \(y \) over all such possible paths.

If \(S \) is a surface with \(\partial S \neq \emptyset \), then we can define the curve complex \(C(S) \) of \(S \) and \(d_{C(S)}(x, y) \) for any two vertices \(x \) and \(y \) in \(C(S) \) by the same way, where the vertex of \(C(S) \) is the isotopy class of non-\(\partial \)-parallel essential simple closed curves on \(S \). The distance of the Heegaard splitting \(M = V \cup_S W \) with \(g(S) \geq 2 \) (see [6]) is \(d(S) = \min\{d_{C(S)}(\alpha, \beta) \ | \ \alpha \ \text{bounds a disk in} \ V \ \text{and} \ \beta \ \text{bounds a disk in} \ W \} \). If \(S' \) is an almost bicompressible subsurface of \(S \), then \(d(S') = \min\{d_{C(S')}(\alpha, \beta) \ | \ \alpha \ \text{bounds a disk in} \ V \ \text{and} \ \beta \ \text{bounds a disk in} \ W \} \) is said to be local Heegaard distance of \(S' \) respect to \(d(S) \) (see [7], [13]).

In this paper, we give a sufficient condition for a (weakly reducible) Heegaard splitting to be unstabilized and uncritical. We also give a sufficient condition for a Heegaard splitting to be critical as follows:

Theorem 1. Let \(M \) be a 3-manifold, \(M = V \cup_S W \) be a Heegaard splitting of \(M \), \(D \) be an essential disk in \(V \) such that \(\partial D \) cuts \(S \) into an almost incompressible surface \(F \) and an almost strongly irreducible surface \(S' \). If \(d(S') \geq 5 \), then \(M = V \cup_S W \) is unstabilized and uncritical.

Corollary 2. Let \(M \) be a 3-manifold, \(M = V \cup_S W \) be a Heegaard splitting of \(M \), \(\psi \) be an essential simple closed curve on \(S \) which cuts \(S \) into an almost incompressible surface \(F \) and an almost strongly irreducible surface \(S' \). If \(d(S') \geq 9 \), then \(M = V \cup_S W \) is unstabilized.

Theorem 3. Let \(M \) be an irreducible 3-manifold, \(M = V \cup_S W \) be a Heegaard splitting of \(M \), \(D \) be an essential disk in \(V \) such that \(\partial D \) cuts \(S \) into an almost incompressible surface \(F \) and an almost strongly irreducible surface \(S' \).

1. If \(S \) is critical, then \(d(S') \leq 4 \).
2. If there are two essential disks \(D_V \subset V \) and \(D_W \subset W \), such that \(D_V \) is not isotopic to \(D_D \), \(D_W \cap D \neq \emptyset \) and \(D_W \cap D_V = \emptyset \), then \(S \) is critical.

2. The proof of Theorem 1

Firstly, we show that \(M = V \cup_S W \) is unstabilized. Assume on the contrary that \(M = V \cup_S W \) is stabilized. Then, there are two essential disks \(D_V \subset V \) and \(D_W \subset W \), such that \(|D_V \cap D_W| = 1 \). So, there is an essential simple closed curve \(\gamma \) on \(S \) which bounds an essential disk \(D_v \) in \(V \) and an essential disk \(D_w \) in \(W \) such that the 2-sphere \(S' = D_v \cup D_w \) bounds a once-punctured standard genus one Heegaard splitting of the 3-sphere (i.e. a 3-ball).

Proposition 4. \(\gamma \cap \partial D \neq \emptyset \).

Proof. Assume on the contrary that \(\gamma \cap \partial D = \emptyset \). If \(\gamma \) is parallel to \(\partial D \), then \(F \) and \(S' \) lie in opposite sides of \(S' \). Since \(F \) is almost incompressible, \(S' \) lies in the 3-ball bounded by \(S' \). Then, \(S' \) is a once-punctured torus. Hence, \(d(S') \leq 1 \), a contradiction. So, \(\gamma \) is a non-\(\partial \)-parallel essential simple closed curve on \(F \) or \(S' \). Since \(F \) is almost incompressible,
By Proposition 4, we may assume that $\gamma \cap \partial D \neq \emptyset$ and $|\gamma \cap \partial D|$ is minimal. So, each component of $\gamma \cap S'$ (resp. $\gamma \cap F$) is an essential arc on S' (resp. F). Recall that γ bounds an essential disk D^γ_t in V and an essential disk D^γ_w in W. If $|\gamma \cap S'| = |\gamma \cap F| = n$, then D^γ_t (resp. D^γ_w) is said to be an n-disk in V (resp. W).

Since $D^\gamma_t \cap D \neq \emptyset$, we may assume that each component of $D^\gamma_t \cap D$ is an arc on both D^γ_t and D. Let α be a component of $D^\gamma_t \cap D$. Then, α cuts a disk D_α from D^γ_t. If $\partial D_\alpha \cap D = \emptyset$, then D_α is said to be an outermost disk of D^γ_t, and α is said to be an outermost arc of $D^\gamma_t \cap D$ on D^γ_t. Since F is almost incompressible, all outermost disks of D^γ_t lie in the component of $cl(V - D)$ which contains S'. Let D_0 be an outermost disk of D^γ_t. Then, $|\partial D_0 \cap S'| = |\partial D_0 \cap D| = 1$, and $\partial D_0 \cap S'$ is an essential arc on S'. Let $l_1 = \partial D_0 \cap S'$ and $l'_1 = \partial D_0 \cap D$. We push l'_1 into ∂D and denote it by l'_1. Let $l^1 = l_1 \cup l'_1$. After isotopy, we may assume that l^1 lies in S'. Since l_1 is essential on S', l_1^1 is non-∂-parallel essential on S' and bounds an essential disk D_1 in V. So, $d_{c(S')}(l^1, \partial D_0) = 0$.

If there is an essential disk D_0 in W with $\partial D_0 \subset S'$, such that ∂D_0 is non-∂-parallel on S' and disjoint from a component h of $\gamma \cap S'$, then h cuts ∂D into two arcs h_1 and h'_1. Let $h^1 = h \cup h_1$. After isotopy, we may assume that h^1 lies in S' and $h^1 \cap \partial D_0 = \emptyset$. Since h is essential on S', h^1 is non-∂-parallel on S'. So, $d_{c(S')}(l^1, \partial D_0) \leq 1$. Since $h \cap l_1 = \emptyset$, $d_{c(S')}(h^1, l^1) \leq 2$. So, $d(S') \leq d_{c(S')}(\partial D_0, \partial D_0) \leq d_{c(S')}(\partial D, l^1) + d_{c(S')}(l^1, h^1) + d_{c(S')}(h^1, \partial D_0) \leq 3$, a contradiction.

By the argument as above, we may assume that for any essential disk D^W in W with $\partial D^W \subset S'$ and any component η of $\gamma \cap S'$, if ∂D^W is non-∂-parallel on S', then $\partial D^W \cap \eta \neq \emptyset$.

If D^W_η (which is bounded by γ) is a 1-disk in W, then $|\gamma \cap S'| = 1$. Then, $|\partial D^W_\eta \cap D| = 1$.

Hence, there are two outermost disks of D^W_η which lie in different components of $cl(V - D)$, a contradiction. So, we may assume that D^W_η is an n-disk with $n \geq 2$.

Proposition 5 ([2]). There are an essential disk D_k in W with $\partial D_k \subset S'$ and a component l_2 of $\gamma \cap S'$, such that ∂D_k is non-∂-parallel on S' and $d_{c(S')}(l^2, \partial D_k) \leq 3$, where l^2 is obtained from l_2 by attaching a component of $cl(\partial D - \partial l_2)$, after isotopy, l^2 is non-∂-parallel essential on S'.

Proof. Recall that for any essential disk D^W in W with $\partial D^W \subset S'$ and any component α of $\partial D^W \cap S'$, if ∂D^W is non-∂-parallel on S', then $\partial D^W \cap \alpha \neq \emptyset$. We may assume that $|\partial D^W \cap D^W_\eta|$ is minimal among all essential disks in W, whose boundaries lie in S' and are non-∂-parallel. So, each component of $D^W \cap D^W_\eta$ is an arc on both D^W and D^W_η. Since $|\partial D^W \cap D^W_\eta|$ is minimal, and for each component α of $\partial D^W_\eta \cap S'$, $\alpha \cap \partial D^W \neq \emptyset$, both endpoints of each arc of $\partial D^W_\eta \cap D^W$ on D^W_η lie in different components of $\partial D^W_\eta \cap S'$. For each subdisk D^W_α of D^W_η which is cut by D^W, if ∂D^W_α contains m components or subcomponents of $\partial D^W_\eta \cap S'$, then D^W_α is said to be a pseudo m-disk. For each component α of $\partial D^W_\eta \cap S'$, there are two components α_1 and α_2 of $\partial D^W_\eta \cap F$, which are adjacent to α. Let $L_\alpha = \{l \mid l$ is an arc of $D^W_\eta \cap D^W_\alpha$ on D^W_α, such that $l \cap \alpha \neq \emptyset\}$.

Suppose $\alpha \in \partial D^W_\eta \cap S'$ and l_α is a component of L_α. Then, l_α cuts D^W_η into two disks D' and D''. We may assume that D' is a pseudo m_1-disk, and D'' is a pseudo m_2-disk. Then, $m_2 = n - m_1 + 2$, see Figure 1. If D' (resp. D'') is a pseudo 2-disk, then l_α is said to be ∂-parallel to $\partial D^W_\eta \cap F$ in D^W_η. If all components of L_α are ∂-parallel to $\partial D^W_\eta \cap F$ in D^W_η, then
is only one component \(\alpha \) and \(\partial D \) is not \(\partial \) of \(D \). Hence, \(\alpha \) is a component of \(D \), which is disjoint from \(\partial D \). Thus, we may assume that there is a component \(\partial D \) of \(\partial D \) from \((\partial D \cup F) \cap \gamma \) in \(D \). So, we may assume that \(\partial D \cap \gamma \) is an \(n \)-disk with \(n \) cuts a disk \(\gamma \) in \(D \), such that \(D \cap \gamma \) is disjoint from \(\partial D \cap \gamma \). Then, \(k_1 \) cuts \(D \) into two disks \(D_1 \) and \(D_2 \). Suppose \(D_1 \) is a pseudo \(n_1 \)-disk and \(D_2 \) is a pseudo \(n_2 \)-disk. Since \(k_1 \) is not parallel to \(\partial D \cap F \) in \(D \), \(3 \leq n_1, n_2 < n \).

First, we consider \(D_1 \). Note that \(D_1 \cap D \subseteq D \cap D \). If \(D_1 \) is a pseudo 3-disk, then there is only one component \(\alpha \) of \(\partial D \cap \gamma \) on \(\partial D \), such that \(\alpha \cap k_1 = \emptyset \). Hence, \(L_\alpha \) is parallel to \(\partial D \cap F \) in \(D \). So, we may assume that \(D_1 \) is a pseudo \(n_1 \)-disk with \(4 \leq n_1 < n \). If all components of \(D_1 \cap D \) on \(D_1 \) are parallel to \((\partial D \cap F) \cup k_1 \) in \(D \), then there is a component \(\alpha \) of \(\partial D \cap \gamma \), such that \(\alpha \cap k_1 = \emptyset \) and \(L_\alpha \) is parallel to \(\partial D \cap F \) in \(D \). So, we may assume that there is a component \(k_2 \) of \(D_1 \cap D \) on \(D_1 \), such that \(k_2 \) is not parallel to \(\partial D \cap F \) in \(D \). Then, \(k_2 \) cuts a disk \(D_2 \) from \(D_1 \), such that \(\partial D_2 \) does not contain \(k_1 \). Hence, \(D_2 \cap D \subseteq D_1 \cap D \subseteq D \cap D \). Since \(k_2 \) is not parallel to \((\partial D \cap F) \cup k_1 \) in \(D_1 \), we may assume that \(D_2 \) is a pseudo \(n_2 \)-disk with \(3 \leq n_2 < n_1 < n \). By the same argument as \(D_1 \), either there is a component \(\alpha \) of \(\partial D \cap \gamma \), which is disjoint from \(k_2 \), such that \(L_\alpha \) is parallel to \(\partial D \cap F \) in \(D \), or there is a component \(k_3 \) of \(D_3 \cap D \) on \(D_3 \), such that \(k_3 \) is not parallel to \((\partial D \cap F) \cup k_2 \) in

\[L_\alpha \text{ is said to be } \partial \text{-parallel to } \partial \cap \gamma \text{ in } D. \]

Lemma 6. There are at least two components \(\alpha \) and \(\beta \) of \(\partial \cap \gamma \), such that both \(L_\alpha \) and \(L_\beta \) are parallel to \(\partial \cap \gamma \) in \(D \).

Proof. If \(\partial \cap \gamma \) is an \(n \)-disk with \(n = 2, 3 \), then the Lemma holds, see Figure 2. So, we may assume that \(\partial \cap \gamma \) is an \(n \)-disk with \(n \geq 4 \). If all components of \(\partial \cap \gamma \) on \(\partial \cap \gamma \) are parallel to \(\partial \cap \gamma \), then the Lemma holds. So, we may assume that there is a component \(k_1 \) of \(\partial \cap \gamma \) on \(\partial \cap \gamma \), such that \(k_1 \) is not parallel to \(\partial \cap \gamma \) in \(D \). Then, \(k_1 \) cuts \(D \) into two disks \(D_1 \) and \(D_2 \). Suppose \(D_1 \) is a pseudo \(n_1 \)-disk and \(D_2 \) is a pseudo \(n_2 \)-disk. Since \(k_1 \) is not parallel to \(\partial \cap \gamma \) in \(D \), \(3 \leq n_1, n_2 < n \).
D^2_k. Then, k_3 cuts a disk D^1_k from D^2_k, such that ∂D^1_k does not contain k_2. Then, $D^1_k \cap D^W \subseteq D^2_k \cap D^W \subseteq D^1_k \cap D^W \subseteq D^W \cap D^W$. Since k_3 is not ∂-parallel to $(\partial D^W \cap F) \cup k_2$ in D^2_k, we may assume that D^1_k is a pseudo n_3-disk with $3 \leq n_3 < n_2 < n_1 < n$.

We continue this procedure as above, either there is a component α of $\partial D^m_k \cap S'$, such that L_α is ∂-parallel to $\partial D^m_k \cap F$ in D^W_γ, or there is a component k_m of $D^m_k \cap D^W$ on D^m, such that k_m is not ∂-parallel to $(\partial D^m_k \cap F) \cup k_{m-1}$ in D^m $(m \geq 2)$. Then, k_m cuts a disk D^m_k from D^m_{k-1}, such that ∂D^m_k does not contain k_{m-1}. Hence, $D^m_k \cap D^W \subseteq D^m_{k-1} \cap D^W \subseteq \cdots \subseteq D^1_k \cap D^W \subseteq D^W \cap D^W$. Since k_m is not ∂-parallel to $(\partial D^m_k \cap F) \cup k_{m-1}$ in D^m_{k-1}, we may assume that D^m_k is a pseudo n_m-disk with $3 \leq n_m < n_{m-1} < \cdots < n_2 < n_1 < n$. Since n is finite, either there is a component α of $\partial D^m_\gamma \cap S'$, such that L_α is ∂-parallel to $\partial D^m_\gamma \cap F$ in D^W_γ, or $n_m = 3$. If D^m_k is a pseudo n_m-disk with $n_m = 3$, then there is only one component α of $\partial D^m_k \cap S'$, which is disjoint from k_m, such that L_α is ∂-parallel to $\partial D^m_k \cap F$ in D^W_γ. Finally, we obtain a component α of $\partial D^m_\gamma \cap S'$, such that L_α is ∂-parallel to $\partial D^m_\gamma \cap F$ in D^W_γ.

Second, we consider D^1_k. By the same argument as D^1_k, there is a component β ($\neq \alpha$) of $\partial D^m_\gamma \cap S'$, such that L_β is ∂-parallel to $\partial D^m_\gamma \cap F$ in D^W_γ. So, the Lemma holds.

By Lemma 6, there is a component l_2 of $\partial D^m_k \cap S'$, such that L_{l_2} is ∂-parallel to $\partial D^m_\gamma \cap F$ in D^W_γ. Let l'_2 and l''_2 be two components of $\partial D^m_\gamma \cap F$, such that l'_2 and l''_2 are adjacent to l_2. Since $|\gamma \cap \partial D|$ is minimal, both l'_2 and l''_2 are essential on F.

Lemma 7. There is a 1-disk D^1 in W, such that $(\partial D^1 \cap S') \cap l_2 = \emptyset$, and $\partial D^1 \cap F$ is parallel to l'_2 or l''_2.

Proof. Let k be a component of L_{l_2}. Since L_{l_2} is ∂-parallel to $\partial D^m_\gamma \cap F$ in D^W_γ, k cuts a pseudo 2-disk D^1 from D^W_γ. If $\text{int} D^1 \cap L_{l_2} = \emptyset$, then D^1 is said to be an outermost disk of D^W_γ, and k is said to be an outermost arc of $D^W \cap D^W_\gamma$ on D^W_γ. Let k_1 be a component of L_{l_2}, such that k_1 is an outermost arc of $D^W \cap D^W_\gamma$ on D^W_γ. Then, k_1 cuts an outermost disk D^1_k from D^W_γ, such that $\text{int} D^1_k \cap L_{l_2} = \emptyset$. So, D^1_k is a pseudo 2-disk. Since L_{l_2} is ∂-parallel to $\partial D^m_\gamma \cap F$ in D^W_γ, we may assume that k_1 is parallel to l'_2, where l'_2 is adjacent to l_2 on ∂D^W_γ. Note that k_1 also cuts D^W into two disks D^W_1 and D^W_2. Let $D_{l_1} = D^W_1 \cup D^W_2$ and $D_{l_2} = D^W_1 \cup D^W_2$. Since k_1 is parallel to l'_2 in D^W_γ, after isotopy, both $\partial D_{l_1} \cap F$ and $\partial D_{l_2} \cap F$ are parallel to l_2.

Since l'_2 is essential on F and F is almost incompressible, both $\partial D_{l_1} \cap S'$ and $\partial D_{l_2} \cap S'$ are essential on S'. Hence, D_{l_1} and D_{l_2} are 1-disks in W. After isotopy, $|D_{l_1} \cap D^W_\gamma| < |D^W \cap D^W_\gamma|$, $|D_{l_1} \cap D^W_\gamma| < |D^W \cap D^W_\gamma|$, $|D_{l_2} \cap D^W_\gamma| < |D^W \cap D^W_\gamma|$, and $|D_{l_2} \cap D^W_\gamma| < |D^W \cap D^W_\gamma|$. We may consider D_{l_1}, we only consider D_{l_2}. Let $L^1_{l_2} = \{k \mid k$ is a component of $D^W_1 \cap D_{l_2}$, such that $k \cap l_2 \neq \emptyset\}$. Then, $L^1_{l_2} \subseteq L_{l_2}$. Hence, $L^1_{l_2}$ is ∂-parallel to $\partial D^W_1 \cap F$ in D^W_γ. If $L^1_{l_2} = \emptyset$, let $D^1 = D_{l_2}$, then $l'_2 \cap (\partial D^1 \cap S') = \emptyset$ and $\partial D^1 \cap F$ is parallel to l'_2. Hence, the Lemma holds. If $L^1_{l_2} \neq \emptyset$, let k_2 be a component of $L^1_{l_2}$, such that k_2 is an outermost arc of $D_{l_2} \cap D^W_\gamma$ on D^W_γ. Then, k_2 cuts an outermost disk D^2_k from D^W_γ, such that $\text{int} D^2_k \cap L^1_{l_2} = \emptyset$. So, D^2_k is a pseudo 2-disk. Since $L^1_{l_2}$ is ∂-parallel to $\partial D^W_1 \cap F$ in D^W_γ, we may assume that k_2 is parallel to l'_2, where l'_2 is adjacent to l_2 in D^W_γ. Let D^2_k be a subdisk of D_{l_2}, which is cut by k_2, such that ∂D^2_k does not contain $\partial D_{l_2} \cap F$, and $D_{l_2} = D^W_1 \cup D^W_2$.

By the same argument as D_{l_1}, D_{l_2} is a 1-disks in W and $\partial D_{l_2} \cap F$ is parallel to l'_2. After isotopy, $|D_{l_1} \cap D^W_\gamma| < |D_{l_1} \cap D^W_\gamma| < |D^W \cap D^W_\gamma|$ and $|D_{l_2} \cap D^W_\gamma| < |D_{l_2} \cap D^W_\gamma| < |D^W \cap D^W_\gamma|$. Let $L^2_{l_2} = \{k \mid k$ is a component of $D^W_1 \cap D_{l_2}$ on D^W_γ, such that $k \cap l_2 \neq \emptyset\}$. Then, $L^2_{l_2} \subseteq L^1_{l_2} \subseteq L_{l_2}$.

Unstabilized Weakly Reducible Heegaard Splittings

169
Hence, L_j^2 is ∂-parallel to $\partial D_j^W \cap F$ in D_j^W. By the same proof as D_k, either $D^1 = D_k$ such that $l_2 \cap (D^1 \cap S') = \emptyset$ and $D^1 \cap F$ is parallel to l_2, or we obtain a 1-disk D_k, in W, such that $\partial D_k \cap F$ is parallel to l_2, where l_2 is adjacent to l_2 in ∂D_j^W. $D_k \cap D_j^W \subseteq D_k \cap D_j^W$ and $k \cap l_2 = \emptyset$ \Rightarrow $l_2 \subseteq L_j^2 \subseteq L_j^1 \subseteq L_j^2$. Continue this procedure as above, since $|D_j^W \cap D_j^W|$, is finite, finally, we obtain a 1-disk D_k ($m \geq 1$) in W, such that $\partial D_k \cap F$ is parallel to l_2, where l_2 is adjacent to l_2 in ∂D_j^W. $D_k \cap D_j^W \subseteq D_k \cap D_j^W \subseteq D_k \cap D_j^W$, and $k \cap l_2 = \emptyset$ \Rightarrow $l_2 \subseteq L_j^2 \subseteq L_j^1 \subseteq L_j^2$. Let $D^1 = D_k$. Then, $l_2 \cap (D^1 \cap S') = \emptyset$ and $D^1 \cap F$ is parallel to l_2. Hence, the Lemma holds.

Lemma 8. If D^1 is a 1-disk in W, then there is an essential disk D_k in W with $\partial D_k \subset S'$, such that $D_k \cap D^1 = \emptyset$.

Proof. Assume on the contrary that for each essential disk D_k in W with $\partial D_k \subset S'$, $D_k \cap D^1 \neq \emptyset$. We may assume that $|D_k \cap D^1|$ is minimal among all essential disks in W with $\partial D_k \subset S'$. If $\partial D_k \cap F$ is parallel to $\partial S'$, then $|D_k \cap D^1| = 1$. Let $\delta = D_k \cap D^1$. Then, there is a subdisk D_δ of D^1 which is cut by δ, such that D_δ contains $\partial D^1 \cap F$. We can push δ into F. After isotopy, we denote D_δ by D'_δ. So, D'_δ is an essential disk in W with $\partial D'_\delta \subset F$ and $\partial D'_\delta$ is not parallel to ∂F. It is a contradiction to the fact that F is almost incompressible. So, we may assume that ∂D_δ is not parallel to $\partial S'$. Since $|D_\delta \cap D^1|$ is minimal, each component of $D_\delta \cap D^1$ is an arc on both D_δ and D^1. Let λ be an outermost arc of $D^1 \cap D_\delta$ on D^1, such that λ cuts a subdisk D_λ from D^1 with $\text{int} D_\lambda \cap D_\delta = \emptyset$, and ∂D_λ does not contain $\partial D^1 \cap F$. Also, λ cuts D_δ into D_δ^1 and D_δ^2. Let $D_\delta^1 = D_\lambda \cup D_\lambda^1$ and $D_\delta^2 = D_\lambda \cup D_\lambda^2$. Since D_λ is essential in W with $\partial D_\lambda \subset S'$ and ∂D_λ is not parallel to $\partial S'$, at least one of D_λ^1 and D_λ^2 is essential in W whose boundary lies in S' and is not parallel to $\partial S'$. We may assume that D_λ^1 is essential in W with $\partial D_\lambda^1 \subset S'$ and ∂D_λ^1 is not parallel to $\partial S'$. So, $|D_\lambda^1 \cap D^1| < |D_\lambda \cap D^1|$, a contradiction. By Lemma 7, we may assume that D^1 is a 1-disk in W, such that $l_2 \cap (\partial D^1 \cap S') = \emptyset$, and $\partial D^1 \cap F$ is parallel to l_2, where l_2 is adjacent to l_2 in ∂D_j^W. l_2 is essential on F. For convenience, let $\gamma_1 = \partial D^1 \cap S'$ and $\gamma_2 = \partial D^1 \cap F$. So, $l_2 \cap \gamma_1 = \emptyset$, and γ_2 is parallel to l_2. By Lemma 8, there is an essential disk D_k in W with $\partial D_k \subset S'$, such that $\partial D_k \cap \gamma_1 = \emptyset$. Let l^2 be a non-∂-parallel essential simple closed curve on S', which is obtained from l_2 by attaching a component of $\text{cl}(\partial D_\lambda \cap l_2)$, γ_1^l be a non-∂-parallel essential simple closed curve on S', which is obtained from γ_1 by attaching a component of $\text{cl}(\partial D_\lambda \cap \gamma_1)$. Since $l_2 \cap \gamma_1 = \emptyset$, $|l^2| \leq 1$. So, $d_{\text{C}(S')}(|l^2|, \gamma_1^l) \leq 2$. Since $\partial D_k \cap \gamma_1 = \emptyset$, $|\partial D_k \cap \gamma_1 | = 0$. Then, $d_{\text{C}(S')}(|l^2|, \partial D_k) \leq 1$. Hence, $d_{\text{C}(S')}(|l^2|, \partial D_k) \leq d_{\text{C}(S')}(|l^2|, \gamma_1^l) + d_{\text{C}(S')}(|l^2|, \partial D_k) \leq 3$. So, the Proposition holds. By Proposition 5, there are an essential disk D_k in W with $\partial D_k \subset S'$ and a component l_2 of $\gamma \cap S'$, such that ∂D_k is non-∂-parallel on S' and $d_{\text{C}(S')}(|l^2|, \partial D_k) \leq 3$, where l^2 is obtained from l_2 by attaching a component of $\text{cl}(\partial D_\lambda \cap l_2)$, after isotopy, l^2 is non-∂-parallel essential on S'. Since both l_1 and l_2 are components of $\gamma \cap S'$, $l_1 \cap l_2 = \emptyset$. Then, $|l^1| \cap l^2 | \leq 1$. Since l^1 bounds an essential disk D_1 in V with $\partial D_1 \subset S'$ and ∂D_1 is not ∂-parallel, there is an essential disk D^1 in V with $\partial D^1 \subset S'$, such that ∂D^1 is non-∂-parallel on S' and $d_{\text{C}(S')}(|l^2|, \partial D^1) \leq 1$. So,
Secondly, we show that the Heegaard surface S is uncritical. Assume on the contrary that S is critical. Then, all compressing disks for S can be partitioned into two sets C_0 and C_1, and there is at least one pair of disks $V_i, W_i \in C_i$ ($i = 0, 1$) on opposite sides of S, such that $V_i \cap W_i = \emptyset$, and if $V \in C_1$ and $W \in C_{1-i}$ lie on opposite sides of S, then $V \cap W = \emptyset$.

We may assume that D lies in C_0, D_V and D_W lie in C_1 and $D_V \cap D_W = \emptyset$. By definition, $D \cap D_W \neq \emptyset$. Since ∂D cuts S into an incompressible surface F and an almost strongly irreducible surface S', by a similar argument as above, there are essential disks $D_V \in V$, $D_W \subset W$ and a component $l_2 \subset (\partial D_W \cap S')$, such that ∂D_V is non-∂-parallel on S', ∂D_W is non-∂-parallel on S', $d_{\partial S'}(\partial D_V, l_1) \leq 1$ and $d_{\partial S'}(\partial D_W, l_1) \leq 3$, where l_1 is obtained from l_2 by attaching a component of $c(l, \partial D - \partial l_2)$, after isotopy. l_1 is non-∂-parallel essential on S'. So, $d(S') \leq d_{\partial S'}(\partial D_V, \partial D_W) \leq d_{\partial S'}(\partial D_V, l_1) + d_{\partial S'}(l_1, \partial D_W) \leq 4$, a contradiction.

\[\square\]

3. The proof of Corollary 2

Assume on the contrary that $M = V \cup W$ is stabilized. Then, there are two essential disks $D_V \subset V$ and $D_W \subset W$, such that $|D_V \cap D_W| = 1$. So, there is an essential simple closed curve γ on S which bounds an essential disk D_V in V and an essential disk D_W in W such that the 2-sphere $S = D_V \cup D_W$ bounds a once-punctured standard genus one Heegaard splitting of the 3-sphere (i.e. a 3-ball). By arguments similar to those for Proposition 4, we may assume that $\gamma \cap \psi \neq \emptyset$ and $|\gamma \cap \psi|$ is minimal. So, each component of $\gamma \cap S'$ (resp. $\gamma \cap F$) is an essential arc on S' (resp. F).

If D_V (resp. D_W) is a 1-disk in V (resp. W), then $|\gamma \cap S'| = 1$. Let $l = \gamma \cap S'$. By Lemma 10 in [2], there are essential disks $D_V' \subset V$ and $D_W' \subset W$, such that $\partial D_V'$ is non-∂-parallel on S', $\partial D_W'$ is non-∂-parallel on S', $d_{\partial S'}(\partial D_V', l_1) \leq 1$ and $d_{\partial S'}(\partial D_W', l_1) \leq 1$, where l_1 is obtained from l by attaching a component of $c(l, \partial D - \partial l)$, after isotopy. l_1 is non-∂-parallel essential on S'. So, $d(S') \leq d_{\partial S'}(\partial D_V', \partial D_W') \leq d_{\partial S'}(\partial D_V', l_1) + d_{\partial S'}(l_1, \partial D_W') \leq 2$, a contradiction.

So, we may assume that D_V' (resp. D_W') is an n-disk in V (resp. W) with $n \geq 2$. By arguments in the proof of Theorem 1, there are essential disks $D_V \subset V$, $D_W \subset W$, and components l_1 and l_2 of $\gamma \cap S'$, such that ∂D_V is non-∂-parallel on S', ∂D_W is non-∂-parallel on S', $d_{\partial S'}(\partial D_V, l_1) \leq 3$ and $d_{\partial S'}(\partial D_W, l_1) \leq 3$, where l_1 is obtained from l_1 by attaching a component of $c(l, \partial D - \partial l_1)$, after isotopy. l_1 is non-∂-parallel essential on S'. Since both l_1 and l_2 are components of $\gamma \cap S'$, $l_1 \cap l_2 = \emptyset$. Hence, $d_{\partial S'}(l_1, l_2) \leq 2$. So, $d(S') \leq d_{\partial S'}(\partial D_V, \partial D_W) \leq d_{\partial S'}(\partial D_V, l_1) + d_{\partial S'}(l_1, l_2) + d_{\partial S'}(l_2, \partial D_W) \leq 8$, a contradiction.

\[\square\]

4. The proof of Theorem 3

(1) By arguments in the proof of Theorem 1, if S is critical, then $d(S') \leq 4$.

(2) For all compressing disks for S, we partition them into two sets C_0 and C_1. Let $V \cap C_0 = \{D\}$, $W \cap C_0 = \{D_W\}$. D_W is an essential disk in W and $D_W \cap D = \emptyset$, $V \cap C_1 = \{D_V\}$. D_V is an essential disk in V and D_V is not isotopic to D, $W \cap C_1 = \{D_W\}$. D_W is an essential disk in W and $D_W \cap D \neq \emptyset$. Since S' is almost strongly irreducible, $V \cap C_1 \neq \emptyset$ and
W \cap C_0 \neq \emptyset. Since there is an essential disk $D_W \subset W$ with $D_W \cap D \neq \emptyset$, $W \cap C_1 \neq \emptyset$.

In C_0, for any disk D^0_W in $W \cap C_0$, $D^0_W \cap D = \emptyset$. In C_1, there are two essential disks $D^1_V \subset (V \cap C_1)$ and $D^1_W \subset (W \cap C_1)$, such that $D^1_W \cap D^1_V = \emptyset$. For any disk D^0_W in $W \cap C_1$, $D^1_W \cap D \neq \emptyset$. For any disks $D^0_W \subset (W \cap C_0)$ and $D^1_V \subset (V \cap C_1)$, since M is irreducible, F is almost incompressible and S' is almost strongly irreducible, ∂D^0_W lies in S' and ∂D^0_W is non-\(\partial\)-parallel on S'. If $D^1_V \cap D = \emptyset$, since S' is almost strongly irreducible, $D^0_W \cap D^1_V \neq \emptyset$. If $D^1_V \cap D \neq \emptyset$, we may assume that $|D^1_V \cap D|$ is minimal and each component of $D^1_V \cap D$ is an arc on both D^1_V and D. Assume on the contrary that $D^0_W \cap D^1_V = \emptyset$. By arguments in the proof of Theorem 1, all outermost disks of D^1_V lies in the component of $cl(V - D)$ which contains S'. Let D_0 be an outermost disk of D^1_V. We can push ∂D_0 into S'. After isotopy, we still denote it by D_0. Since ∂D_0 is non-\(\partial\)-parallel on S' and $D^0_W \cap D_0 = \emptyset$, it is a contradiction to the fact that S' is almost strongly irreducible. \(\square\)

References

School of Mathematics and Statistics
Lanzhou University
Lanzhou, 730000
P.R. China
e-mail: dukun@lzu.edu.cn