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Abstract
It is known that the antipodal set of a Riemannian symmetric space of compact type G/K

consists of a union of K-orbits. We determine the dimensions of these K-orbits of most irre-
ducible symmetric spaces of compact type. The symmetric spaces we are not going to deal
with are those with restricted root system ar and a non-trivial fundamental group, which is
not isomorphic to Z2 or Zr+1. For example, we show that the antipodal sets of the Lie groups
Spin(2r + 1) r ≥ 5, E8 and G2 consist only of one orbit which is of dimension 2r, 128 and
6, respectively; SO(2r + 1) has also an antipodal set of dimension 2r; and the Grassmannian
Grr,r+q(R) has a rq-dimensional orbit as antipodal set if r ≥ 5 and r � q > 0.

1. Introduction

1. Introduction
The antipodal set of a point p ∈ M in a connected, compact Riemannian manifold (M, g)

is the set of points q ∈ M with maximal distance to p and is denoted by A(p). Given
a general Riemannian manifold M, it is not known how to determine A(p), but if M is a
symmetric space of compact type the situation changes; bringing us to the purpose of this
paper: We give a complete description of the antipodal set of most (Riemannian) symmetric
space of compact type.

The problem of determining the antipodal set in a symmetric space is not new. Already
in 1978 J. Tirao [7] solved it for symmetric spaces of rank one. However for higher rank
symmetric spaces little was known. Only S. Deng and X. Liu [3] determined those compact
simply connected symmetric spaces that have a finite number of points as antipodal set. In
addition they gave the exact number of points.

We note that, given a symmetric space of compact type, it is enough to determine the
antipodal set in each of the irreducible components, as by de Rham’s decomposition theorem
the antipodal set of the whole space is the product of the antipodal sets in the irreducible
components. Therefore we assume from now on M � G/K to be an irreducible symmetric
space of compact type, if not stated otherwise. Being able to restrict to irreducible spaces is
important for us, as we do case by case calculations.

It is quite immediate that the antipodal set of p ∈ G/K is a union of orbits of the form
expp(Ad(K)x) for specific x ∈ p � TpG/K. L. Yang determined in [8] those x of all irre-
ducible compact simply connected symmetric spaces and in [9] those x of most irreducible
non-simply connected symmetric spaces of compact type. He did not determine x for those
G/K that have restricted root system ar and a non-trivial fundamental group, which is not
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isomorphic to Z2 or Zr+1. Since the knowledge of x is essential for this work, we are not
able to determine the antipodal set in those cases. Therefore we refer to them as excluded
cases.

In this paper we analyze the antipodal set of G/K by determining the dimensions of the
orbits expeK(Ad(K)x) building the antipodal set, if G/K is not one of the excluded cases.

The paper is organized as follows: In section 2 we describe some well known facts on
symmetric spaces and their antipodal set. In section 3 we use those facts to give an explicit
description of the tangent space of the antipodal set of G/K. If G/K is in addition simply
connected this description reads as follows: Let αi be simple roots of the restricted root
system Σ of G/K, ψ =

∑r
i=1 diαi the highest root, J′j = {α =

∑r
k=1 ckαk ∈ Σ+ | c j

d j
� N}, p(α)

the root spaces in p and x = πe j, where e j is a maximal corner. Then the tangent space
of expeK(Ad(K)x) ⊂ A(eK) is a parallel translate of

⊕
α∈J′j
p(α). For a precise description

of maximal corners see section 2.3. In section 4 we use this description to determine the
dimensions of all orbits in all G/K but the excluded ones explicitly case be case. We give
several example calculations, the other cases can be treated in the same manner. In the tables
at the end of section 4 the whole results are stated.

We want to remark that the natural numbers N contain zero in our notation and further-
more that a different definition of antipodal set of symmetric spaces exists in the literature,
describing a different object.

2. Preliminaries

2. Preliminaries2.1. Some facts on symmetric spaces of compact type.
2.1. Some facts on symmetric spaces of compact type. Before we start with analyzing

the problem, we want to coarsely remind of some properties of symmetric spaces of compact
type. A proper description of the following and definitions of the named objects can for
example be found in [4].

A compact simply connected symmetric spaces is of compact type. Furthermore the
simply connected cover of a symmetric space of compact type is compact itself.

An irreducible symmetric space of compact type M is isometric to the space G/K :=
I0(M)/(I0(M))p with I0(M) being the connected component of the identity of the isometry
group of M and (I0(M))p being the stabilizer of a point p ∈ M of the natural action of the
isometry group.

The metric on G/K corresponds to a left invariant extension of a multiple of the Killing
form on Lie(G) = g. As G/K is of compact type, g is semi-simple. Furthermore there
exists a natural involution on g. Let k and p be the 1 and -1 eigenspaces of this involution,
respectively. The decomposition g = k + p is called the Cartan decomposition. The space p
has the property that it is isometric to TeKG/K.

Let hp be a maximal abelian subspace in p. We define for α ∈ h∗p
g(α) := {X ∈ g | [H, [H, X]] = −α(H)2X for all H ∈ hp}.

If g(α) � 0 and α � 0, we call α a root. Furthermore we set k(α) := g(α)∩k, p(α) := g(α)∩p .
We call dim k(α) the multiplicity of the root α and the set of all roots Σ restricted root system.

Let B(·, ·) be the Killing from on g. As g is semi-simple, we can identify an element α ∈ h∗p
with an element Hα ∈ hp by the relation α(H) = B(Hα,H) for all H ∈ hp. We define B on
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h∗p by B(α, β) := B(Hα,Hβ) for α, β ∈ h∗p. In this case (Σ, cB(·, ·)) is an abstract root system
for an suitable constant c ∈ R. For notational reasons we just write (·, ·) instead of cB(·, ·).
For the abstract root system we can fix an ordering and get a set of positive roots Σ+. With
respect to Σ+ we can decompose the spaces k and p as follows

k = k(0) ⊕
⊕
α∈Σ+
k(α), p = p(0) ⊕

⊕
α∈Σ+
p(α).(1)

These decompositions are called root space decomposition of k and p, respectively. Let Σ be
a root system, a set Σ̃ ⊂ Σ is called root subsystem, if the following holds:

1. for α, β ∈ Σ̃ it is α + β ∈ Σ̃, if α + β ∈ Σ,
2. −Σ̃ = Σ̃.

A root subsystem is an abstract root system itself and clearly there is a unique ordering
compatible with the ordering on Σ. Similar to the root space decompositions we define for a
root subsystem Σ̃

k(Σ̃) := k(0) ⊕
⊕
α∈Σ̃+
k(α).(2)

2.2. Basic properties of the antipodal set.
2.2. Basic properties of the antipodal set. Mathematically, the antipodal set of a point

p ∈ G/K is given by

A(p) = {x ∈ G/K | d(x, p) ≥ d(y, p) ∀y ∈ G/K}.
Let p = aK ∈ G/K be arbitrary and let �a be the left multiplication by a. Then

d(y, eK) ≤ d(x, eK) ⇐⇒ d(�a(y), p) ≤ d(�a(x), p) ∀x, y ∈ G/K,

which implies A(p) = �a(A(eK)). Let d(G/K) denote the diameter. As G/K is compact, we
find p0, q0 ∈ G/K with d(p0, q0) = d(G/K). The isometry group of a symmetric space acts
transitively therefore q ∈ A(p) if and only if d(p, q) = d(G/K). Hence every q ∈ A(p) can be
joined to p by a geodesic which is minimizing till q but not beyond. It follows A(p) ⊂ C(p),
where C(p) denotes the cut locus of p. Thus A(p) = {x ∈ C(p) |d(x, p) ≥ d(y, p) ∀y ∈ C(p)}.
The set of points X ∈ TpG/K with expp(tX) being a minimizing geodesic for t < 1 and not
minimizing for t > 1 is called the cut locus of p in TpG/K or alternatively the cut locus of p
in the tangent space and is denoted by CT (p). We use this to define the antipodal set in the
tangent space to be

AT (p) := {X ∈ CT (p) | |X| ≥ |Y | ∀ Y ∈ CT (p)}.(3)

If X ∈ CT (p), then |X| = d(expp(X), p) and expp maps CT (p) onto C(p), thus

expp(AT (p)) = A(p).(4)

As the antipodal sets of two points are isometric, it is enough to consider only eK. In view
of (4) we need to make two steps, namely determining AT (eK) and analyzing expeK .

2.3. Cut locus and antipodal set in the tangent space for simply connected symmetric
spaces.

2.3. Cut locus and antipodal set in the tangent space for simply connected symmetric
spaces. Let Σ be the restricted root system of G/K, where G/K is an irreducible compact
simply connected symmetric space. We fix an ordering on Σ that we keep for the rest of this
paper. Furthermore let Σ+ be the set of positive roots, ΠΣ the set of simple roots and ψ the
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highest roots of Σ with respect to this ordering. There is only one highest root, as G/K is
irreducible. L. Yang [8] defined the Cartan polyhedron to be

� := {x ∈ hp | γ(x) ≥ 0 for γ ∈ ΠΣ ∧ ψ(x) ≤ 1}.(5)

Clearly the condition that γ(x) ≥ 0 for γ ∈ ΠΣ implies that � is contained in the closure of a
Weyl chamber. The side of the Cartan polyhedron that does not contain 0 is denoted by

�′ := {x ∈ � | ψ(x) = 1}.(6)

Now we are able to cite the following theorem, which gives an explicit description of the
cut locus in the tangent space.

Theorem 2.1 (see [8] p. 689 and Appendix). Let G/K be a compact simply connected
symmetric space. Then CT (eK) = Ad(K)(π�′).

An immediate consequence of this theorem is, by (3) and the fact that K acts orthogonally,
that

AT (eK) = Ad(K)(π max(�′)),
with max(�′) := {x ∈ �′ | |x| ≥ |y| ∀y ∈ �′}.

The following proposition is well known.

Proposition 2.2. Let G/K be an irreducible symmetric space of compact type. For an
orbit of the form Ad(K)x, with x ∈ C̄ and C̄ being a closed Weyl chamber, we have Ad(K)x∩
C̄ = {x}.

This proposition implies that AT (eK) consists of a union of orbits and the set of orbits is
in one to one correspondence to the set max(�′). L. Yang [8] has determined the set max(�′)
more precise. For the convenience of the reader, we explain his approach and some of his
steps:
As said before, (Σ, (·, ·)) is an abstract irreducible root system. Hence the Weyl chamber is a
cone and we only have one highest root. It follows that the Cartan polyhedron is a simplex.
We observe that for x1, x2 ∈ � and t ∈ [0, 1], we have

(tx1 + (1 − t)x2, tx1 + (1 − t)x2)
1
2 ≤ max{(x1, x1)

1
2 , (x2, x2)

1
2 }.(7)

We conclude that the function � → R sending x �→ (x, x)
1
2 reaches its maximum on the

vertices, but not on 0. Let {α1, . . . , αr} be a set of simple roots of Σ and ψ =
∑r

i=1 diαi its
highest root. Each side of the Cartan polyhedron is contained in a hyperplane of the form
{x ∈ hp | αi(x) = 0} or {x ∈ hp | ψ(x) = 1}, hence the vertices of the Cartan polyhedron are
the points that lie in r of these r + 1 hyperplanes. These points are 0 and e j with j = 1, . . . , r
such that

αi(e j) =
1
d j
δi j.(8)

In particular we get

max(�′) = {e j | (e j, e j)
1
2 = max

i=1,...,r
(ei, ei)

1
2 }.

We call the corners e j of the Cartan polyhedron with e j ∈ max(�′) the maximal corners
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of the Cartan polyhedron. For each irreducible restricted root system those corners can be
determined with straight forward calculations. This is done in [8]. The results are listed in
the following table. We want to remark that we used the indexing of the simple roots as in
[4] p. 477, 478, which differs in the cases e6, e7, e8 and g2 from the one in [8]. The factors
d j of the highest root are well known (see [1] Plate I - IX).

Table 1. Maximal corners of the Cartan polyhedron and the corresponding
factors of the highest root (see [8] p. 689 - 693)

Σ max(�′) Factors d j Σ max(�′) Factors d j

a2r er; er+1 dr = 1; dr+1 = 1 dr, r > 4 er−1; er dr−1 = 1; dr = 1
a2r−1 er dr = 1 e6 e1; e6 d1 = 1; d6 = 1
b2, b3 e1 d1 = 1 e7 e7 d7 = 1
b4 e1; e4 d1 = 1; d4 = 2 e8 e1 d1 = 2
br, r > 4 er dr = 2 f4 e4 d4 = 2
cr er dr = 1 g2 e1 d1 = 3
d4 e1; e3; e4 d1 = d3 = d4 = 1 bcr er dr = 2

The maximal corners are not explicitly stated in [8], but can easily be de-
duced.

Exemplary, we give L. Yangs calculation for Σ = ar: A choice of simple roots of Σ is α1 =

x1 − x2, . . . , αr = xr − xr+1 for {x1, x2, . . . , xr+1} a basis of Rr+1 such that (xi, x j) = 1
2 (ψ, ψ)δi j

and ψ =
∑r

i=1 αi the highest root (see [1] p. 265). We see that the factors di in front of the
simple roots building ψ are all equal to 1. As the corners of the Cartan polyhedron satisfy
αi(e j) = (αi, e j) = 1

d j
δi j, we can deduce

e j =
2

(ψ, ψ)(r + 1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩(r + 1 − j)
j∑

k=1

xk − j
r+1∑

k= j+1

xk

⎫⎪⎪⎪⎬⎪⎪⎪⎭ 1 ≤ j ≤ n.

This gives

(e j, e j) =
2 j(r + 1 − j)
(ψ, ψ)(r + 1)

.

For r odd this is maximal if j = r+1
2 and for r even this is maximal if j = r

2 or j = r
2 + 1.

Hence the maximal corner of the Cartan polyhedron corresponding to a2r−1 is er and for a2r

the maximal corners are er, er+1.

2.4. Cut locus and antipodal set in the tangent space for non-simply connected sym-
metric spaces.

2.4. Cut locus and antipodal set in the tangent space for non-simply connected sym-
metric spaces. Let M̃ be an irreducible compact simply connected symmetric space. We
can write M̃ = G̃/K̃ with G̃ simply connected. Throughout this section G̃ is always chosen
simply connected. We define

ZG̃/K̃(K̃) := {p ∈ G̃/K̃ | k · p = p ∀k ∈ K̃}.
For this set L. Yang showed the following:
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Proposition 2.3 (see [9] p. 517–519). Notations as before. For every p = aK̃ ∈ G̃/
K̃\{eK̃} the following are equivalent:

(a) p ∈ ZG̃/K̃(K̃);
(b) a ∈ NG̃(K̃), where NG̃(K̃) denotes the normalizer of K̃ in G̃;
(c) p = expeK̃(πe j), where e j is a corner of the Cartan polyhedron such that d j = 1.

Furthermore ZG̃/K̃(K̃) is a finite abelian group which can be identified with a subgroup of G̃.

We want to give some short comments on this proposition. The equivalence of (a) and (b)
can be easily seen from the fact that kaK̃ = aK̃ for all k ∈ K̃ and aK̃ ∈ ZG̃/K̃(K̃). From this it
follows that ZG̃/K̃(K̃) is a group. Part of the proof is to show that the map Ψ(aK̃) := aσ−1(a)
is well defined on ZG̃/K̃(K̃), where σ is the natural involution on G̃. Furthermore one shows
that Ψ : ZG̃/K̃(K̃) → Z(G̃) is a monomorphism, while Z(G̃) denotes the center of G̃. Then
ZG̃/K̃(K̃) is a finite abelian group and the map Ψ gives an identification with a subgroup of
G̃.

Proposition 2.4 (see [9] p. 519). Every symmetric space M of compact type with simply
connected cover M̃ = G̃/K̃ can be expressed as a quotient M̃/Γ for a subgroup Γ < ZM̃(K̃)
and for every subgroup Γ < ZM̃(K̃) the space M̃/Γ is a symmetric space which is covered by
M̃.

The quotient M = M̃/Γ is called a Clifford-Klein form of M.
Let Σ be the restricted root system of M̃ and hence also of M. In addition let ψ be the highest
root, � the Cartan polyhedron and ei the corners of the Cartan polyhedron. For a symmetric
space M with Clifford-Klein-form M̃/Γ we define, same as L. Yang [9], the sets

PΓ := {x ∈ � | (x, ei) ≤ 1
2

(ei, ei) for every expeK̃(πei) ∈ Γ},

P′Γ := {x ∈ PΓ | (x, ψ) = 1 ∨ ∃ expeK̃(πei) ∈ Γ : (x, ei) =
1
2

(ei, ei)}.
The set PΓ or more precisely its boundaries which do not contain zero, namely P′

Γ
, play

an important role in the description of the cut locus in the tangent space. This is given by
the next theorem.

Theorem 2.5 (see [9] p. 521 and Appendix). Let M̃ = G̃/K̃ be an irreducible compact
simply connected symmetric space and let M = G/K be a symmetric spaces covered by M̃.
Let M = M̃/Γ be a Clifford-Klein form, where Γ is a non-trivial subgroup of ZM̃(K̃). Then

CT (eK) = Ad(K)(πP′Γ).

Similar as in the simply connected case, this theorem implies together with (3) and the
fact that K acts orthogonally that

AT (eK) = Ad(K)(π max(P′Γ)),

where max(P′
Γ
) := {x ∈ P′

Γ
| |x| ≥ |y| ∀y ∈ P′

Γ
} and G/K is non-simply connected. By

Proposition 2.2 we can derive a one to one correspondence of points in max(P′
Γ
) and orbits

building the antipodal set in the tangent space.
We want to determine the set max(P′

Γ
). By a similar argument as in (7) it follows that this set

is a subset of the corners of the polyhedron PΓ. The explicit description of Γ given at the be-
ginning of this section, allows to try to determine max(P′

Γ
) of every irreducible non-simply
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connected symmetric space in case by case calculations. L. Yang has done this implicitly
in [9], where he determined the diameter of irreducible non-simply connected symmetric
spaces of compact type. As part of this calculations he also determined all possible sub-
groups of ZM̃(K̃). In the case that Σ = ar and Γ is not isomorphic to Z2 or Zr+1 he did not
determine the diameter and therefore we don’t know the set max(P′

Γ
). However, for all the

other cases we can derive max(P′
Γ
). The results are given in the table below.

In the table the subgroup Γ is given only up to isomorphism, if none of the subgroups
of ZM̃(K̃) are isomorphic. Otherwise they are given explicitly. Our indexing of the roots is
again as in [4] p. 477, 478 and differs therefore for e6 and e7 from the one in [9]. Again the
factors d j of the highest root are well known.

Table 2. Maximal corners of PΓ for most non-simply connected G/K = M̃/

Γ and the corresponding factors of the highest root (see [9] p. 528 - 533 and
Appendix)

Σ Γ max(P′
Γ
) Factors of ψ

ar r ≥ 3, r odd and Z2 e r+1
4

1
r+1

2 even

ar r ≥ 3, r odd and Z2
1
2 (e r−1

4
+ e r+3

4
) (1, 1)

r+1
2 odd

ar Zr+1
1

r+1 (e1 + . . . + er) (1, . . . , 1)

ar otherwise unknown

br Z2 er 2

cr r even Z2 e r
2

2

cr r odd Z2
1
2 (e r−1

2
+ e r+1

2
) (2, 2)

dr r even Z2 ⊕ Z2 e r
2

2

dr r odd Z4
1
2 (e r−1

2
+ e r+1

2
) (2, 2)

dr r {e, p1} er−1; er 1; 1

dr r even, r ≤ 6 {e, pr−1} e1 1

d8 {e, pr−1} e1; e4 1; 2

dr r even, r ≥ 10 {e, pr−1} e r
2

2

dr r even, r ≤ 6 {e, pr} e1 1

d8 {e, pr} e1; e4 1; 2

dr r even, r ≥ 10 {e, pr} e r
2

2

e6 Z3 e4 3

e7 Z2 e2 2

We use the notation e = eK̃, pi := expeK̃(πei). In the last column we write
(di, d j), if the maximal corner is of the form c(ei + e j) for some c ∈ R.

We want to remark that if the restricted root system Σ is one of bcr, e8, f4 or g2, then
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ZM̃(K̃) = {eK̃} and hence there is no non-simply connected symmetric space of compact
type with one of those restricted root systems.

We give an example of how Yang rather implicitly determines max(P′
Γ
) in the case that

Σ = dr and Γ = {eK̃, expeK̃(πe1)}: At first he gives explicit descriptions of the maximal
corners of the Cartan polyhedron ei up to a scaling by 1

2 (ψ, ψ), where ψ is the highest root
of dr. From that he shows (e1, e1) = 2(ψ, ψ)−1 and (e1, ei) = (ψ, ψ)−1 for all 2 ≤ i ≤ r, but
then (e1, ei) = 1

2 (e1, e1). This implies that the corners of PΓ include e2, . . . er. By definition
PΓ ⊂ �. As now max(�′) = {er−1, er} ⊂ PΓ, it follows that max(P′

Γ
) = {er−1, er}.

2.5. Orbits of the adjoint representation and the isotropy algebra.
2.5. Orbits of the adjoint representation and the isotropy algebra. In the subsections

before we have seen that the antipodal set in the tangent space consists of a union of orbits
of the form Ad(K)x for x ∈ πmax(�′) or x ∈ πmax(P′

Γ
). It is well known that Ad(K)x

is an embedded submanifold of p, as it is the orbit of a Lie group action of a compact Lie
group. Let Kx be the stabilizer of x under the adjoint action. The embedding i has the form
i : K/Kx → Ad(K)x. Let kx be the Lie algebra of Kx, which is called isotropy algebra. Then

TxAT (eK) = di TeKx K/Kx = di k/kx.(9)

Hence the following proposition helps us to determine TxAT (eK).

Proposition 2.6 (see [5] proposition 2.1). For a given x ∈ hp, let Σx := {α ∈ Σ |α(x) = 0}.
Then Σx is a root subsystem. The isotropy subalgebra of the adjoint representation at x is of
the form kx = k(Σx).

3. The tangent space of the antipodal set

3. The tangent space of the antipodal set
In this section we give an explicit description of the tangent space of the antipodal set of

all irreducible symmetric spaces of compact type, but those with restricted root system ar
and a non-trivial fundamental group different from Z2 or Zr+1. This enables us to calculate
its dimensions in the next section.

We have seen in the previous section that, if we are not in one of the excluded cases, the
antipodal set in the tangent space consists of disjoint orbits of x with x = πe j, x = π

2 (e j+e j+1)
for some specific j or x = π

r+1 (e1 + · · · + er). We fix one such x. Let p := expeK(x). By (4)
and (9) we have

TpA(eK) = (d expeK)x(TxAT (eK)) = (d expeK)xdi(k/kx).(10)

To calculate this tangent space we first need to determine k/kx, then map it by di to p and
at last apply (d expeK)x.

For the first step Proposition 2.6, (1) and (2) yield

k/kx = (k(0) ⊕
⊕
α∈Σ+
k(α))/(k(0) ⊕

⊕
α∈Σ+x
k(α)) �

⊕
α∈Σ+\Σ+x

k(α).

By definition i maps kKx to Ad(k)x, hence (di)eKx = −adx. Let Y ∈ k(α), α ∈ Σ+\Σ+x and
H ∈ hp. It is easy to check that ad2

H((di)eKx(Y)) = −α(H)2[Y, x]. This implies (di)eKx(Y) ∈
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g(α) and as [Y, x] ∈ p, even (di)eKx(Y) ∈ p(α). Since di is of full rank and dim k(α) = dim p(α)
([6] p. 60), this implies

(di)eKx(k(α)) = p(α).

Let px
0 denote the parallel transport from 0 to x. We summarize what we have just shown.

Proposition 3.1. Notations as before, then

TxAd(K)x = px
0(

⊕
α∈Σ+\Σ+x

p(α)).

We determine now Σ+\Σ+x for the three types of x using Proposition 2.6. Let {α1, . . . , αr}
be the set of simple roots of Σ with respect to the fixed ordering.

Let x = πe j. Then Σx = {α = ∑r
k=1 ckαk | α(πe j) = 0}. As α(πe j) = 0 ⇔ c j = 0, we get

Σ+\Σ+x = {α =
∑r

k=1 ckαk | c j > 0}.
Let x = π

2 (e j + e j+1). With a similar argument we derive Σ+\Σ+x = {α =
∑r

k=1 ckαk | c j >

0 ∨ c j+1 > 0}.
Let x = π

r+1 (e1+ . . .+er). Since α( π
r+1 (e1+ . . .+er)) = π

r+1 (c1+ . . .+cr) for α =
∑r

k=1 ckαk,
we get Σx = ∅ and hence Σ+\Σ+x = Σ+.

For the last step, namely applying (d expeK)x, we use the following theorem.

Theorem 3.2 (see [2] p. 325 and Appendix). Notations as before. Let H ∈ hp, then the
Euclidean parallel translate of ⊕

α(H)≡0 mod π ; α(H)�0 ; α∈Σ+
p(α)

to H constitutes the kernel of d(expeK)H.

We consider the three types of x separately. Again ψ =
∑r

i=1 diαi is the highest root of Σ
and α =

∑r
k=1 ckαk ∈ Σ+ thus ck ∈ N.

Let x = πe j. Then α(x) = πα(e j) = π
c j

d j
. If we apply Theorem 3.2, we see that p(α) is part

of the kernel of (d expeK)πe j if and only if c j

d j
∈ N\{0}. Thus

ker((d expeK)x) = px
0 (

⊕
α∈J j

p(α) ),

where J j := {α = ∑r
k=1 ckαk ∈ Σ | c j

d j
∈ N\{0}}.

Let x = π
2 (e j + e j+1). Then α(x) = π

2α(e j + e j+1) = π
2 ( c j

d j
+

c j+1

d j+1
). We see that p(α) is part of

the kernel of (d expeK)πe j if and only if c j

d j
+

c j+1

d j+1
∈ 2N\{0}. Thus

ker((d expeK)x) = px
0 (

⊕
α∈J j, j+1

p(α) ),

where J j, j+1 := {α = ∑r
k=1 ckαk ∈ Σ | c j

d j
+

c j+1

d j+1
∈ 2N\{0}}.

Let x = π
r+1 (e1 + . . . + er). Then α( π

r+1 (e1 + . . . er)) = π
r+1 (c1 + . . . + cr). Note that we

can assume in this case Σ = ar and therefore ci = 0, 1 if α is a positive root. It follows
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1
r+1 (c1 + . . . + cr) � N. Hence

ker((d expeK)x) = {0}.
Let for the moment be p := px

o. In view of (10), Proposition 3.1 and the results on
ker((d expeK)x) we have just shown, we get

TexpeK (x) expeK(Ad(K)x) =p(
⊕

α∈Σ+\Σ+x
p(α))/p(

⊕
α∈I
p(α) ∩

⊕
α∈Σ+\Σ+x

p(α))

=p(
⊕
α∈I′
p(α)),

where I = J j, J j, j+1 or ∅, depending on which x we are considering, and I′ := (Σ+\Σ+x )\(I ∩
Σ+\Σ+x ). We summarize our results in a theorem.

Theorem 3.3. Let G/K be an irreducible symmetric space of compact type, that has
not both the restricted root system Σ = ar and a non-trivial Γ � Z2 or Zr+1, where Γ is
given through a Clifford-Klein-form of G/K. Let ψ =

∑r
i=1 diαi be the highest root of the

restricted root system and assume roots are written in the way α =
∑r

k=1 ckαk. Furthermore
let {e1, . . . , er} be the corners of the Cartan polyhedron. If G/K is simply connected, then
take x ∈ πmax(�′), if G/K is non-simply connected, then take x ∈ πmax(P′

Γ
), while max(�′)

and max(P′
Γ
) are given in the tables 1, 2. Then expeK(x) ∈ A(eK) and the tangent space of

the antipodal set at expeK(x) can be given explicitly depending on the form of x. If x = πe j,
then

TexpeK (x)A(eK) = px
0(
⊕
α∈J′j

p(α)), for J′j = {α ∈ Σ+ |
c j

d j
� N}.

If x = π
2 (e j + e j+1), then

TexpeK (x)A(eK) = px
0(

⊕
α∈J′j, j+1

p(α)), J′j, j+1 = {α ∈ Σ+ |
c j

d j
+

c j+1

d j+1
� 2N}.

If x = π
r+1 (e1 + . . . + er), then

TexpeK (x)A(eK) = px
0(
⊕
α∈Σ+
p(α)).

Proof. Almost everything has been proved so far. What is left, is to verify that J′j =
(Σ+\Σ+x )\(J j ∩Σ+\Σ+x ) and J′j, j+1 = (Σ+\Σ+x )\(J j, j+1 ∩Σ+\Σ+x ), which is straight forward. �

We know that for a positive root α =
∑r

k=1 ckαk it is ck ∈ N. Let again x = πe j. If the
corresponding factor of the highest root d j equals 1, we have c j/d j = c j ∈ N. In this case
J′j = ∅ and hence dim(TexpeK (x)A(eK)) = 0. Thus some cases with dim(TexpeK (x)A(eK)) = 0
can be read of tables 1 and 2. The calculations in the next section show that this are all cases.
For simply connected G/K this result was first proved by Deng and Liu in [3]. We state it in
the corollary below.

Corollary 3.4 (see [3]). Let G/K be an irreducible compact simply connected symmetric
space with restricted root system Σ. Let ψ =

∑r
i=1 diαi be the highest root and let e j be a
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maximal corner of the Cartan polyhedron. If d j = 1, then dim expeK(Ad(K)(πe j)) = 0. In
particular dim(A(eK)) = 0 if Σ is one of the following: b2, b3, ar, cr, dr, e6 or e7.

4. Dimensions of the orbits building the antipodal set

4. Dimensions of the orbits building the antipodal set
Let x ∈ πmax(�′) or x ∈ πmax(P′

Γ
) and x � π

r+1 (e1 + . . . + er). In view of Theorem 3.3,
we have seen that x = πe j or x = π

2 (e j + e j+1) and

dim TexpeK (x)A(eK) = dim
⊕
α∈J′j

p(α), J′j = {α =
r∑

k=1

ckαk ∈ Σ+ | c j

d j
� N} or

dim TexpeK (x)A(eK) = dim
⊕
α∈J′j, j+1

p(α), J′j, j+1 = {α |
c j

d j
+

c j+1

d j+1
� 2N}

To determine the dimension of A(eK) at expeK(x) we do the following:
1. Determine the set J′j, if x = πe j or J′j, j+1, if x = π

2 (e j + e j+1).
2. Sum up the dimensions of the spaces p(α) for α ∈ J′j or J′j, j+1.

If there are more than one maximal corners, we consider each corner and its orbit separately.
The union of these orbits builds the antipodal set. The maximal corners and the correspond-
ing factors d j are given in table 1 and table 2. The facts on root systems can for example be
found in [1]. The root multiplicities are well known, see for example [6] p. 119 and p. 146.
Throughout the rest of the section let {x1, . . . , xr} be a possibly scaled standard basis.

We give several calculations as example, as the other calculation are in the same manner
we leave them away and just state the whole results in the tables at the end of this section.

Simply connected symmetric spaces:

Let G/K be a symmetric space of compact type with restricted root system Σ = bcr.
Then G/K is simply connected. A choice of simple roots of bcr is {α1, . . . , αr−1, αr} =
{x1 − x2, . . . , xr−1 − xr, xr}. Thus the positive roots are Σ+ = {xi ± x j (i < j), xi, 2xi}. The
maximal corner of the Cartan polyhedron is er, hence the antipodal set consists of one orbit
and is therefore a manifold. The highest root is given by ψ = 2

∑r
j=1 α j, meaning dr = 2.

Thus cr/dr � N if and only if cr = 1. It is straight forward to check J′r = {x1, . . . , xr}.

Type A III with Σ = bcr: Given a symmetric space of type A III of the form G/K =
SU(2r + q)/S (U(r) × U(r + q)), then the multiplicities of the roots α = ±xi are mα = 2q.
Hence dim A(eK) = 2qr.

Type C II with Σ = bcr: For a symmetric space of type C II of the form G/K = SP(2r+q)/
(SP(r)×SP(r+q)) the multiplicities of the roots α = ±xi are mα = 4q. Thus dim A(eK) = 4qr.

Type D III with Σ = bcr: Let us consider a symmetric space of type D III. In this case
the multiplicities of the roots α = ±xi are mα = 4. Hence the dimension of the antipodal set
of G/K = SO(4r + 2)/U(2r + 1) takes the value dim A(eK) = 4r.
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Type E III with Σ = bc2: For a symmetric space of type E III the multiplicities of the
roots α = ±xi are mα = 8. Hence, if G/K = E6/Spin(10) · SO(2), then dim A(eK) = 16.

Type F II with Σ = bc1: A symmetric space of type F II has root multiplicities mα = 8
for α = ±xi . Thus for G/K = F4/Spin(9) we have dim A(eK) = 8.

Let now G/K be a compact simply connected symmetric space with Σ = br. By table 1 we
get three different cases. For r = 2, 3 the antipodal set is of dimension zero (see Corollary
3.4), for r = 4 it is the union of a positive dimensional manifold and a point and for r > 4 it
is a positive dimensional manifold. In the following we determine the positive dimensional
part, thus r ≥ 4. A choice of simple roots is {α1, . . . , αr−1, αr} = {x1 − x2, . . . , xr−1 − xr, xr},
then Σ+ = {xi ± x j (i < j), xi}. The maximal corner of the Cartan polyhedron is er with
dr = 2. We get J′r = {x1, . . . , xr}.

Type BD I with Σ = br: For a simply connected symmetric space of type BD I the
multiplicities of the roots α = ±xi are mα = q. Thus for G/K = Gr,r+q with r ≥ 4 and q > 0,
the positive dimensional part of the antipodal set is of dimension rq.

Spin(2r+1): We consider the Lie group Spin(2r + 1) with r ≥ 4. In this case the multi-
plicities of all roots are mα = 2 and thus the positive dimensional part of the antipodal set is
of dimension 2r.

Non-simply connected symmetric spaces:

Type BD I with Σ = br and Γ = Z2: Let M̃/Γ be an irreducible symmetric space given
in the Clifford-Klein-form such that M̃ = Grr,r+q, r ≥ 2, q > 0, Σ = br and Γ = Z2. In
this case max(P′

Γ
) = {er} and dr = 2. A choice of simple roots is {α1, . . . , αr−1, αr} = {x1 −

x2, . . . , xr−1− xr, xr}, hence Σ+ = {xi± x j (i < j), xi}. It is easy to check that J′r = {x1, . . . , xr}.
The root multiplicities of those roots are q, which implies dim A(eK) = rq.

Type A I with Γ = Z2: Let M̃/Γ be an irreducible symmetric space of type A I such
that Γ = Z2. In this case Σ = ar.
If r ≥ 3, r odd and r+1

2 even, then max(P′
Γ
) = {e r+1

4
}. As d r+1

4
= 1, it follows dim A(eK) = 0.

If r ≥ 3, r and r+1
2 odd, then max(P′

Γ
) = { 12 (e r−1

4
+ e r+3

4
)} and d r−1

4
= 1 = d r+3

4
. Since

Σ+ = {xi − x j | i < j ≤ r + 1} and we are looking for those roots with c r−1
4
+ c r+3

4
= 1, we get

J′r−1
4 , r+3

4
= {xi − x r+3

4
| i < r+3

4 } ∪ {x r+3
4
− x j | r+3

4 < j ≤ r + 1}. As the root multiplicities of all
roots are 1, we deduce dim A(eK) = r.

Type C II with Γ = Z2: Let M̃/Γ be an irreducible symmetric space of type C II such
that Γ = Z2. In this case Σ = cr. We take the simple roots to be {α1, . . . , αr−1, αr} =
{x1 − x2, . . . , xr−1 − xr, 2xr}, which yields Σ+ = {xi ± x j (i < j), 2xi}.
If r is even, we have max(P′

Γ
) = {e r

2
} and d r

2
= 2. We are looking for those roots that have

c r
2
= 1. The result is J′r

2
= {xi ± x j | i ≤ r

2 < j}. As the root multiplicities of xi ± x j with i � j

are 4, we derive dim A(eK) = 2r2.
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If r is odd, we have max(P′
Γ
) = { 12 (e r−1

2
+ e r+1

2
)} and d r−1

2
= 2 = d r+1

2
. Then α =

∑r
i=1 ciαi ∈

J′r−1
2 , r+1

2
if and only if c r−1

2
+ c r+1

2
= 1, 2 or 3. Thus

J′r−1
2 , r+1

2
= {xi ± x j | i ≤ r + 1

2
, i < j, j ≥ r + 1

2
} ∪ {2x r+1

2
}.

The root multiplicities are mxi±x j = 4 for i � j and m2xi = 3 and hence dim A(eK) =
2r2 + 4r − 3.

Spin(2r)/Γ with |Γ| = 4: Consider the Lie group Spin(2r)/Γ with |Γ| = 4. Then Σ = dr.
A set of simple roots can be chosen to be {x1 − x2, . . . , xr−1 − xr, xr−1 + xr}. In this case we
get Σ+ = {xi ± x j | i < j}.
If r is even, then Γ = Z2 ⊕ Z2. The maximal corner is e r

2
and d r

2
= 2. One can check that

J′r
2
= {xi ± x j | i ≤ r

2 < j}. The root multiplicities are 2, thus dim A(eK) = r2.

If r is odd, then Γ = Z4. The maximal corner is 1
2 (e r−1

2
+ e r+1

2
) and d r−1

2
= 2 = d r+1

2
. Similar

as before we are looking for roots with c r−1
2
+ c r+1

2
= 1, 2 or 3. We get J′r−1

2 , r+1
2
= {xi ± x j | i <

j, i ≤ r+1
2 , j ≥ r+1

2 }. The root multiplicities are 2, thus dim A(eK) = r2 + 2r − 3.

Type E I with Γ = Z3: A choice of simple roots is

α1 =
1
2

(x1 + x8 − x2 − x3 . . . − x7), α2 = x1 + x2, α3 = x2 − x1,

α4 = x3 − x2, α5 = x4 − x3, α6 = x5 − x4.

In this case

Σ+ = {xi ± x j | 1 ≤ j < i ≤ 5} ∪ {1
2

(x8 − x7 − x6 +

5∑
i=1

(−1)v(i)xi) |
5∑

i=1

v(i) is even}.

The maximal corner is e4 and d4 = 3. Thus we are looking for roots such that c4 = 1
or 2. There are no roots with c4 > 3. We get the following result

J′4 = {xi − x j | j ≤ 2 < i ≤ 5} ∪ {xi + x j | j < i, 3 ≤ i ≤ 5}
∪ {α1 + xi − x1 | i = 3, 4 or 5} ∪ {α1 + xi + x j | 2 ≤ j < i ≤ 5}
∪ {α1 + α3 + xi + x j | ( j, i) = (3, 4), (3, 5) or (4, 5)}

As |J′4| = 27 and mα = 1 for all roots, we get dim A(eK) = 27.

Let us consider some cases, where x = π
r+1 (e1+ . . .+er) ∈ max(P′

Zr+1
). If x is of that form,

then it has to be Σ = ar. It is well known that in this case all root multiplicities are the same.
As now TexpeK (x)A(eK) = px

0(
⊕

α∈Σ+ p(α)), we get dim A(eK) = mα|a+r |, where mα is the root
multiplicity and |a+r | = r(r+1)

2 .

Type A I with rank r and Γ = Zr+1: We have mα = 1, therefore dim A(eK) = r(r+1)
2 .

Type A II with rank r and Γ = Zr+1: We have mα = 4, therefore dim A(eK) = 2r(r + 1).

Type E IV with Γ = Z3: We have mα = 8, this gives dim A(eK) = 24.

SU(r+1) with Γ = Zr+1: In this case mα = 2, therefore dim A(eK) = r(r + 1).
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The following four tables contain the dimensions of the different components of the an-
tipodal set of all irreducible symmetric spaces of compact type, but those cases explicitly
excluded. We want to give a few remarks on those tables: If there is more than one maximal
corner, then the dimensions of the corresponding orbits in the following column are listed in
the same order as the maximal corners. The indexing of the simple roots is again as in [4] p.
477, 478. In the following q is a positive integer. Furthermore we use the notation e = eK
and pi = expeK(πei). Other references were given at the beginning of this section.

Table 3. Maximal corners of the Cartan polyhedron and the dimensions
of the components of the antipodal set of irreducible compact simply con-
nected symmetric spaces of type I

Type M or (g, k) Σ max(�′) dim A

A I SU(2r)/SO(2r) a2r−1 er 0
SU(2r + 1)/SO(2r + 1) a2r er; er+1 0; 0

A II SU(4r)/Sp(2r) a2r−1 er 0
SU(4r + 2)/Sp(2r + 1) a2r er; er+1 0; 0

A III Grr,r+q(C), r ≥ 2, q ≥ 1 or r = 1 bcr er 2qr

Grr,r(C), r ≥ 2 cr er 0

C I Sp(r)/U(r) cr er 0

C II Grr,r+q(H), r ≥ 2, q ≥ 1 or r = 1 bcr er 4qr

Grr,2r(H), r ≥ 2 cr er 0

BD I Grr,r+q, r = 2, 3 br e1 0
Gr4,4+q b4 e1; e4 0; 4q

Grr,r+q, r ≥ 5 br er rq

Gr1,1+q a1 e1 0
Gr4,8 d4 e1; e3; e4 0; 0; 0
Grr,2r, r ≥ 5 dr er−1; er 0; 0

D III SO(4r)/U(2r) cr er 0
SO(4r + 2)/U(2r + 1) bcr er 4r

E I (e6, sp(4)) e6 e1; e6 0; 0

E II (e6, su(6) ⊕ su(2)) f4 e4 16

E III (e6, so(10) ⊕ R) bc2 e2 16

E IV (e6, f4) a2 e1; e2 0; 0

E V (e7, su(8)) e7 e7 0

E VI (e7, so(12) ⊕ su(2)) f4 e4 32

E VII (e7, e6 ⊕ R) c3 e3 0

E VIII (e8, so(16)) e8 e1 64

E IX (e8, e7 ⊕ su(2)) f4 e4 64
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F I (f4, sp(3) ⊕ su(2)) f4 e4 8
F II (f4, so(9)) bc1 e1 8
G (g2, su(2) ⊕ su(2)) g2 e1 3

Table 4. Dimensions of the components of the antipodal set of irreducible
symmetric spaces of compact type and type I

Type M̃ or (g, k) Σ Γ dim A

A I SU(2r + 2)/SO(2r + 2),
r+1

2 even
a2r+1 Z2 0

SU(2r + 2)/SO(2r + 2),
r+1

2 odd
a2r+1 Z2 2r + 1

SU(r + 1)/SO(r + 1) ar Zr+1
r(r+1)

2

otherwise unknown

A II SU(4r+4)/Sp(2r+2), r+1
2

even
a2r+1 Z2 0

SU(4r+4)/Sp(2r+2), r+1
2

odd
a2r+1 Z2 8r + 4

SU(2r + 2)/Sp(r + 1) ar Zr+1 2r(r + 1)
otherwise unknown

A III Grr,r(C), r ≥ 2, r even cr Z2 r2

Grr,r(C), r ≥ 2, r odd cr Z2 r2 + 2r − 2

C I Sp(r)/U(r) r even cr Z2
1
2 r2

Sp(r)/U(r) r odd cr Z2
1
2 (r2 + 2r − 1)

C II Grr,r(H), r ≥ 2, r even cr Z2 2r2

Grr,r(H), r ≥ 2, r odd cr Z2 2r2 + 4r − 3

BD I Grr,r+q r ≥ 2 br Z2 rq

Grr,r r even dr Z2 ⊕ Z2
1
2 r2

Grr,r r odd dr Z4
1
2 (r2 + 2r − 3)

Grr,r r even dr {e, p1} 0; 0
Grr,r r ≤ 6, r even dr {e, pr−1} or {e, pr} 0
Gr8,8 d8 {e, pr−1} or {e, pr} 0; 1

2 r2

Grr,r r ≥ 10, r even dr {e, pr−1} or {e, pr} 1
2 r2

D III SO(4r)/U(2r), r even cr Z2 2r2

SO(4r)/U(2r), r odd cr Z2 2r2 + 4r − 5

E I (e6, sp(4)) e6 Z3 27

E IV (e6, f4) a2 Z3 24

E V (e7, su(8)) e7 Z2 35

E VII (e7, e6 ⊕ R) c3 Z2 49
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Table 5. Maximal corners of the Cartan polyhedron and the dimensions
of the components of the antipodal set of irreducible compact simply con-
nected symmetric spaces of type II

G Σ max(�′) dim A

SU(2r) a2r−1 er 0
SU(2r + 1) a2r er; er+1 0; 0

Spin(2r + 1) r = 2, 3 br e1 0
Spin(9) b4 e1; e4 0; 8
Spin(2r + 1) r > 4 br er 2r

Sp(r) cr er 0

Spin(8) d4 e1; e3; e4 0; 0; 0
Spin(2r) r ≥ 5 dr er−1; er 0; 0

E6 e6 e1; e6 0; 0

E7 e7 e7 0

E8 e8 e1 128

F4 f4 e4 16

G2 g2 e1 6

Table 6. Dimensions of the components of the antipodal set of irreducible
symmetric spaces of compact type and type II

G̃ Σ Γ dim A

SU(2r + 2) a2r+1 Z2 4r + 2
SU(r + 1) ar Zr+1 r(r + 1)
otherwise unknown

Spin(2r + 1) br Z2 2r

Sp(r) r even cr Z2 r2

Sp(r) r odd cr Z2 r2 + 2r − 1

Spin(2r) r even dr Z2 ⊕ Z2 r2

Spin(2r) r odd dr Z4 r2 + 2r − 3
Spin(2r) r even dr {e, p1} 0; 0
Spin(2r) r = 4, 6 dr {e, pr−1} or {e, pr} 0
Spin(16) d8 {e, pr−1} or {e, pr} 0; 64
Spin(2r) r ≥ 10, r even dr {e, pr−1} or {e, pr} r2

E6 e6 Z3 54

E7 e7 Z2 70
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5. Appendix

5. Appendix
In the sections above we have cited a few results that are not stated in the literature exactly

in the way we presented them. For Theorem 2.1, Theorem 2.5 and Theorem 3.2 this goes
back to the fact that we use a different definition of the restricted root system. While the
maximal corners we cited are not exactly given in the literature, they can be easily derived
as we show below.

5.1. Yangs theorems.
5.1. Yangs theorems. We want to derive Theorem 2.1 from Theorem 1.3 in [8]. As

Theorem 2.5 can be derived from Theorem 4.1 in [9] in a similar way, we leave that away.
Let M = G/K be an irreducible compact simply connected symmetric space. Let g = Lie(G)
and gC it’s complexification. In view of [6] p. 73 there is another way to define restricted
roots, namely by the following:

Definition 5.1. Let gC = kC + pC be the decomposition coming from the Cartan decom-
position g = k + p. Then hpC := hCp is a maximal abelian subspace in pC. Furthermore
let

gCγ := {X ∈ gC | adH(X) = γ(H)X ∀H ∈ hpC}.
Then γ ∈ Σ̂ if and only if γ ∈ h∗

pC
, such that gγ � {0} and γ � 0. The set Σ̂ is again called

restricted root system.

This is an equivalent description to the one Yang uses in [8] (see [6] p. 73). It is well
known that Σ̂ is an irreducible abstract root system. Let ΠΣ̂ be the simple roots of Σ̂ and ψ
the highest root of Σ̂. In the same manner as before in (5) and (6), let

�Σ̂ = {x ∈
√−1hp | γ(x) ≥ 0 for γ ∈ ΠΣ̂ ∧ ψ(x) ≤ 1},

while hp and hence also
√−1hp are naturally R-subspaces of hpC . The edges that do not

contain 0 are denoted by

�′
Σ̂

:= {x ∈ �Σ̂ | ψ(x) = 1}.
Now we are able to cite the theorem by L. Yang.

Theorem 5.2 (see [8] p. 689). Let M = G/K be a compact simply connected symmetric
space. Then CT (eK) = Ad(K)(π

√−1�′
Σ̂
).

To get that version we wrote in Theorem 2.1 we need to show that �′ = √−1�′
Σ̂
. Since

�′
Σ̂
⊂ √−1hp it is clear that

√−1�′
Σ̂
⊂ hp. We use the following:

Lemma 5.3 (see [6] p. 58, 60). Let G/K be a symmetric space and Σ ⊂ h∗p, Σ̂ ⊂ h∗pC the
corresponding restricted root systems described above. Then

√−1Σ̂ = Σ.

This lemma in particular implies that if γ ∈ Σ̂, then
√−1γ ∈ h∗p. Having given a set of

positive roots Σ+, the simple roots are those positive roots that can not be written as the sum
of two others. This implies that if we take a set of positive roots Σ+ and put Σ̂+ :=

√−1Σ+,
then the sets of simple roots are related by ΠΣ =

√−1ΠΣ̂, while it is routine to show that



584 J. Beyrer

√−1Σ+ is a set of positive roots. We denote the Weyl chambers of Σ+ and Σ̂+ by CΣ+ and
CΣ̂+ , respectively. Let

√−1H ∈ CΣ̂+ ⊂
√−1hp and γ ∈ ΠΣ̂. Then

γ(
√−1H) > 0 ⇐⇒ √−1γ(H) > 0.

As
√−1γ ∈ ΠΣ, all elements in ΠΣ can be won in this way, and γ was an arbitrary simple

root, it follows H ∈ CΣ+ . With another argument of that form it follows CΣ+ =
√−1CΣ̂+ . Let

ψ ∈ Σ̂ such that
√−1ψ is the highest root of Σ, γ ∈ Σ̂ and H ∈ CΣ+ . Then
√−1ψ(H) ≥ √−1γ(H) ⇐⇒ ψ(

√−1H) ≥ γ(
√−1H).

This implies that ψ is the highest root of Σ. In particular it follows that �′ = √−1�′
Σ̂
.

5.2. Maximal corners of irreducible non-simply connected symmetric spaces.
5.2. Maximal corners of irreducible non-simply connected symmetric spaces. We

shortly explain how the maximal corners of PΓ can be derived from [9]. For each of the
9 cases Yang has considered we give the approach to determine the maximal corners out of
his results.

In the cases II, VII, VIII and IX he determined all the corners of PΓ, thus the results given
in table 2 can be easily verified. Case VI was described above and case III is similar to that.
In case I Yang proves that the there is only one maximal corner and it is straight forward to
verify that the given one is the right one. Let’s consider case IV and V. As the diameter of
PΓ is given we can easily check that the given points in table 2 are maximal corners. All
the information for doing that is given in section 5 and 6 of [9]. Thus we need to show
that those are all maximal corners. We do this exemplary for case IV. Yang showed that
x =

∑r
i=1 λixi ∈ PΓ if and only if

λ1 − λ2 ≥ 0, . . . , λr−1 − λr, λr ≥ 0 λ1 ≤ 2
(ψ, ψ)

,

r∑
i=1

λi ≤ r
(ψ, ψ)

.(11)

We set D = {λ1, . . . , λr ∈ [0, 2
(ψ,ψ) ] |

∑r
i=1 λi ≤ r

(ψ,ψ) }. In the proof of Lemma 6.1. in [9] it is
shown that for every (μ1, . . . , μr) ∈ D with

∑r
i=1 μi =

r
(ψ,ψ) the intersection {μi | 1 ≤ i ≤ r} ∩

(0, 2
(ψ,ψ) ) has at most one element. If we take into account that by (11) the elements λi should

be arranged in decreasing order and that e r
2
=

∑ r
2
i=1

2
(ψ,ψ) xi, 1

2 (e r−1
2
+ e r+1

2
) =

∑ r−1
2

i=1
2

(ψ,ψ) xi +
1

(ψ,ψ) x r+1
2

, the uniqueness of the maximal corner follows.

5.3. Crittendens theorem.
5.3. Crittendens theorem. Here we want to derive Theorem 3.2 from Theorem 3 in [2].

Let e· be the exponential map in G and P := ep. Then P is a symmetric space and there is
a diffeomorphism μ : G/K → P defined by μ(gK) := g(σ(g))−1, where σ is the involution
on G (see [2] p. 321). It is well known that (dμ)eK : TeKG/K � p → p is of the form
(dμ)eK = 2 · Id. Furthermore the following diagram is commutative (see [2] p. 321)

TeKG/K
dμ−−−−−→ p

expeK

⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�e·

G/K −−−−−→
μ

P

In the paper [2] roots are defined as those elements ᾱ ∈ h∗p, where a non-zero, 2-
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dimensional invariant subspace Vᾱ exists, such that for a suitable basis

adg(hp)|Vᾱ =
(

0 2πᾱ
−2πᾱ 0

)
.

We denote by Σ̄ the set of these roots. Let Vᾱ :=
∑
β̄=±ᾱ Vβ̄, while for β̄ there might exist

more than one Vβ̄.

Lemma 5.4. Notations as before. Then Vᾱ = g(2πᾱ) and Σ̄ = Σ/2π.

Proof. Since

adg(hp)2
|Vᾱ =

(−4π2ᾱ2 0
0 −4π2ᾱ2

)
, adg(hp)2

|V−ᾱ =
(−4π2ᾱ2 0

0 −4π2ᾱ2

)

it follows that Vᾱ ⊆ g(2πᾱ). The root space decomposition of g and the decomposition of g
into eigenspaces of ᾱ ∈ Σ̄ (see [2] p. 322) are of the form

g = g(0) ⊕
⊕
α∈Σ+
g(α) and g = g(0) ⊕

⊕
ᾱ∈Σ̄+

Vᾱ,

respectively. By dimensional reasons it has to be Vᾱ = g(2πᾱ). This gives 2πΣ̄ = Σ or
Σ̄ = Σ/2π. �

Since Vᾱ = g(2πᾱ), it follows from the definition of p(α) that Vᾱ ∩ p = g(2πᾱ) ∩ p =
p(2πᾱ) = p(α) for α ∈ Σ with α = 2πᾱ. Furthermore let n : T0p → p denote the natural
identification. We cite the theorem which we want to apply to our situation.

Theorem 5.5 (see [2] p. 325). Let H ∈ hp. Then the Euclidean parallel translate of

n−1(
⊕

ᾱ(H)≡0 mod 1 ; ᾱ(H)�0 ; ᾱ∈Σ̄+
Vᾱ ∩ p )

to H constitutes the kernel of the differential e· at H.

Now we are able to derive Theorem 3.2.
Proof. Since μ is a diffeomorphism, we have ker((d expeK)H) = ker((dμ ◦ d expeK)H).

With the commutativity of the diagram above it follows

ker((d expeK)H) = ker(d(e· ◦ dμ))H) = ker((de2·)H).

If we apply Theorem 5.5, it follows that those spaces Vᾱ ∩ p constitute to ker((de2·)H),
where ᾱ ∈ Σ̄+ with ᾱ(2H) ≡ 0 mod 1 and ᾱ(2H) � 0. In view of Lemma 5.4, we can write
ᾱ = α/2π with α ∈ Σ. Hence

ᾱ(2H) =
2α(H)

2π
≡ 0 mod 1 ⇐⇒ α(H) = 0 mod π.

In the same way ᾱ(2H) � 0 is equivalent to α(H) � 0. As Vᾱ ∩ p = p(2πᾱ) = p(α), we get

ker((d expeK)H) = ker((de2·)H) =n−1(
⊕

ᾱ(2H)≡0 mod 1 ; ᾱ(2H)�0 ; ᾱ∈Σ̄+
Vᾱ ∩ p )

=n−1(
⊕

α(H)≡0 mod π ; α(H)�0 ; α∈Σ+
p(α) ),
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for α ∈ Σ+ with 2πᾱ = α. �

For simplicity the natural identification n was omitted in the sections above.
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