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Abstract
Reduced problems are elliptic problems with a large parameter (as the spectral parameter)
given by the Laplace transform of time dependent problems. In this paper, asymptotic behavior
of the solutions of the reduced problem for the classical heat equation in bounded domains with
the inhomogeneous Robin type conditions is discussed. The boundary of the domain consists of
two disjoint surfaces, outside one and inside one. When there are inhomogeneous Robin type
data at both boundaries, it is shown that asymptotics of the value of the solution with respect to
the large parameter at a given point inside the domain is closely connected to the distance from
the point to the both boundaries. It is also shown that if the inside boundary is strictly convex
and the data therein vanish, then the asymptotics is different from the previous one.
The method for the proof employs a representation of the solution via single layer potentials.
It is based on some non trivial estimates on the integral kernels of related integral equations
which are previously established and used in studying an inverse problem for the heat equation
via the enclosure method.

1. Introduction

Let Q be a bounded domain of R? with C? boundary. Let D be an open subset of Q with
C? boundary and such that D ¢ Q; Q\ D is connected. We denote by Ve, vy the unit outward
normal vectors at & € dD and y € 9Q on dD and 0Q respectively. For p; € C(0Q) and
02 € C(0D), we consider the following problem:

(A= w(; ) =0 inQ\ D,
(1.1) 0y + p1(x))w(x; ) = g1(x) on 0L,
0y + p2(0))w(x; ) = go(x) on oD,

where 9, = Z;zl(vx) j0x;- Note that in this paper, as written in w(x; 4) of (1.1), x expresses a
variable of functions in subsets of R?. On the other hand, to avoid confusion, for describing
points on 0D, &, n and ¢ are used, and, for points on JC2, notations y and z are used.

Ifa1eC, —n/2 < argd < 7m/2, for any pair (g;,92) € L*(0Q)xL*(0D), there exists
the unique L2-solution w(x; ) of (1.1). The purpose of the present paper is to study for
asymptotic behavior of w(x; 1) (Red > 0) as Re A — oo.
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It seems that the theme treated in this paper studied from 1960’s. In the case of the
Dirichlet condition, for any ¢ € Q \ D, Varadhan [6] obtained

1 ; - .
(1.2) lim 81PN i dist(q. 9Q). dist(q. OD)).
/J—)OO #
where dist(q, Q) = inf,cs0 Ig — yl, dist(q, D) = infeeop |g — €|, and ¢(x; p) is the solution of
(& = )P ) = 0 inQ\ D,
Al p) =1 on dQ U D.

In [6], Varadhan used (1.2) to give the short time asymptotics of the heat kernel. See also
[5] and references therein for the subject itself.
Throughout this paper, we use the following notations:

{Mag(q) ={y € 0Q|lg — y| = dist(g, OQ)},

(1-3) Man(q) = (& € 9D lq — €l = dist(q. aD)).

As is in the following theorem, for the solution w(x; A1), a similar asymptotic formula to
¢(x; p) holds.

Theorem 1.1. Let Q, D and p; (j = 1,2) be as above and take q € Q\ D. Assume that
g1 € C(0Q) and g, € C(OD), and there exists a constant Cy > 0 such that

(1.4) g1(y) =2 Co  (y € Maal(q) and g2(€) 2 Co (€ € Myp(q))-
Then there exists a constant 6y > 0 such that
1 ;A
‘}lim w = —d(q) uniformly in A € Ag,,

where d(g) = min{dist(g, 0Q), dist(g, dD)} and

As, ={1€C,[ImA| <y Red>e}.

logRe A’

Thus, when both g; and g, have the same sign, the distance from g € Q\D to the boundary
0Q U 9D determines the asymptotic behavior of the solution w(g;d) as u = Red — oo.
Theorem 1.1 shows that the value of the boundary data at all points of the boundary 0QU 0D
does not contribute to the asymptotic behavior. Only the values on the set Mo (p)UMap(p)
are important. Note that Theorem 1.1 holds without any geometrical condition on dD like
convexity.

RemARk 1.2. In the case of ¢ € Q\ D, if all points y € Msa(q) and & € Myp(g) are
non-degenerate critical points of the functions y — |y — ¢g| and & — | — g|, the set As, in
Theorem 1.1 can be replaced to Cs5, = {4 € C|[Im 4| < §pRe A} for any fixed 69 > O (cf.
Proposition 5.2).

For the proof of Theorem 1.1, we use a representation of the solution w(x; 1) via single
layer potentials (cf. Proposition 2.1). Note that the solution consists of the direct parts
derived from the data on each boundary and the “reflected parts” being the parts of reflected
solutions at the opposite boundary for each direct part. The solution is constructed in Section
2. In the case of Theorem 1.1, from the form of the solution giving in Section 2, the shortest
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distance from ¢ to the both boundaries Q2 and dD is simply dominant for the asymptotics.
There is no contribution of “reflected parts” since the shortest length of any broken path
connecting ¢, a point of one boundary and a point of the other boundary is larger than d(q)
(cf. Proposition 5.1).

Now, we turn to consider the case that g>(x) = 0 in (1.1), i.e. the following problem:

(& — Pw(x; ) =0 inQ\ D,
(1.5) 0y + p1(X)w(x; 1) = g1(x) ondQ,
@, + par(x)w(x; ) =0 on dD.

In this case, we can expect that different phenomena from one for (1.1) may occur since
(1.4) does not hold, and there are only signals from the direct part emanating from g; on 0Q
and its reflected part by the other boundary dD. For g € Q \ D, the shorter distance between
the direct part and reflected part is given by the former, i.e. dist(g, dQ), since the length of
any reflected broken path is larger than dist(g, 0Q2). But, when g € dD, the direct paths and
reflected paths coincide, which means that both the effects coming from the direct path and
the reflected one should be counted. Hence, further study is needed when we consider the
case g € dD. In what follows, we write the reference point g as p € D when the case g, = 0
is treated.
For any fixed p € dD, we divide Myq(p) into the following three sets:

Mo(p) = {y € Maa(p)| v, - (y — p) > 0},
Mo (p) =y € Maa(p) v, - (5 — p) = O}.

In what follows, for fixed g € Q \ D, we say that yy € Myo(q) is a degenerate critical point
of finite order for the function dQ > y — |y — ¢g| € R if there exist constants [y > 0, r; > 0
and C’ > C > 0 such that

(1.6) dist (¢, dQ) + Cly — yol*™ < |y — ¢ < dist (g, 0Q) + C’ly — yo[**"
(y € 0QNB(yo, 1)),

where B(yo, 1) = {y € 0Q||y—yo| < r1 }. Note that a point iy € Mya(q) is a non-degenerate
critical point of the function 0Q > y — |y — ¢g| € R if we can take [y = 0 in estimate (1.6) of
ly — g|. Asis in Section 4, g ¢ 9Q if (1.6) holds for some [y > O (cf. Proposition 4.4).

Theorem 1.3. Let Q, D and p; (j = 1,2) be as above and take p € 0D. Assume that

1) the domain D is strictly convex;

2) M3 (p) # 0 and Mgg(p) = 0 hold;

3) g1 € C(0Q) and there exists a constant Co > 0 such that gi(y) = Co (y € M (p));

4) Every point yo € M(p) is a non-degenerate or a degenerate critical point of
finite order for the function Q2 > y — |y — p| € R.

Then there exists a constant 6y > 0 such that
log lw(p; DI

|/%lim — - —dist(p, 0Q) uniformly in A € As,.

Note that if g, # 0 and (1.4) hold, then for any p € dD, Theorem 1.1 yields

1 -1
lim w = — min{dist(p, 90, dist(p, D)} = 0.
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Comparing this result with Theorem 1.3, the asymptotic behavior of the solution w(p; 1) of
(1.5) as || — oo is completely different from that of the solution of (1.1) with g, # 0.

Remark 1.4. When there exists a degenerate point yo € M, (p), assumption 4) can be
relaxed according to the degeneracy of yy. Assumption 4) in Theorem 1.3 is needed only
in the case that every point in M7, (p) is a non-degenerate critical point of the function
0Q >3y ly-pl

In Section 5, a proof of Theorem 1.1 is given. In this case, it has simple structure since
only the direct parts from both boundaries are dominant. The direct parts of the solution
w(x; A) can be simply reduced to some Laplace integrals. In particular, lower bound esti-
mates for them are essential. To get them, we need much more argument than usual, which
is given in Section 4.

Sections 6 and 7 are devoted to show Theorem 1.3. Even in this case, we need the rep-
resentation of the solution w(x; 4) used in the proof of Theorem 1.1. Since g, = 0, as is in
(6.2), the formula of w(p; A) consists of the direct part from the outside boundary and the
reflected part corresponding to this direct part. The both parts contribute as the main part.
For the direct part, it is the same as for Theorem 1.1. Hence, in this case, the problem is to
count for the contribution of this “reflection effects”.

For this purpose, we need to prepare non trivial estimates on the integral kernels of some
operators appearing in the reflected part. These estimates are previously established in [1]
and used in studying an inverse problem for the heat equation via the enclosure method (cf.
[2]). In the inverse problem of [2], the original problems are reduced to giving lower bounds
for some Laplace integrals. In this reduction procedure, we need the same type estimates of
the integral kernels as for Theorem 1.3. In Section 3, the necessary estimates for the integral
kernels are given.

In [1], the key estimate for the integral kernels are obtained if the boundary has €%
regularity for some O < @y < 1 and is strictly convex. This regularity assumption is needed
to apply the inverse problem developed in [2]. The estimates of the kernels themselves
can be given for C? boundaries, however, additional argument is needed. This argument is
condensed into the proof of Lemma 3.4 although the estimates given in Lemma 3.4 is just
the same as those in Proposition 2.1 of [1].

As is given (6.2), w(p; A) is given by

1 A
w(p; ) = fa e =4y (y: D) + A(y. p: D}dS .

ly = pl
where ¢;(y; A) is a continuous function on 02 uniformly positive near M;’Q(p) for A, and
A(y, p; A) is the amplitude function for the reflected part (see (6.3) for the details). Thus,
the reflected part is also written by the similar form to the direct part. As is Proposition 6.4,
the point is that for y € 9Q near M;Q(p) and M, (p), the amplitude function A(y, p; A) for
the reflected part given in (6.3) has different asymptotic behavior. Near M, (p), the main
term of A(y, p; A) is the same as the amplitude for the direct part, however, near M, (p), the
main term cancels out one for the direct part. Thus, in this approach, to find the asymptotic
behavior of A(y, p; A) is important, which is given in Section 7.

In the case of Theorem 1.3, the problem is finally reduced to investigating similar Laplace
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integrals to ones appeared in the case of Theorem 1.1. Thus, the arguments in Section 4
for Laplace integrals are also important to obtain Theorem 1.3. Our approach seems to
be simple, but, it gives a direct dependance for what contributes to the main part of the
asymptotics and how, which is the advantage of this method.

2. Construction of the solution w(x; 1)

In this section, the solution of w(x; A) is constructed by using the single layer potentials
on AQ and dD. For the function
~ A3 -
E,x,X)= ——, x # X, |largd| < —,
D)= e Y F v i< g

which satisfies the equation (A — AE(x) +25(x — %) = 0, we put
Voo = [ Eugds, xe 7\ 00,
Flo)
and

Vp(Dh(x) = f E (x,Oh({)dS ¢, x € R*\ dD.
aD
We construct w(x; ) in the form

2.1 w(x; ) = Va(Dy1(x; D) + Vp(Da(x; 1)

where 1(-; 1) € C(0Q) and Y»(-; ) € C(ID) are unknown functions to be determined.
In what follows, for Frechét spaces X and Y, B(X, Y) denotes the set of continuous linear
operators from X to Y. If X and Y are Banach spaces B(X, Y) is the set of bounded linear
operators from X to Y. We also write B(X) = B(X, X).

As is in [4], for example, Vq(A4) and Vp(A) satisfy the following properties:
o V(g satisfies (A — A2)Vq(d)g = 0in R? \ 0Q.
o Vp(A)h satisfies (A — A2)Vp(Dh = 0in R\ D.
These yield that w having the form (2.1) satisfies the equation (A — 2>)w = 0 in Q \ D.
e V() € B(C(OQ), C¥(R3\ Q)N C(R?)) and the Neumann derivative for Vo (1)g at y € 0Q

9 e d
— Va(Dglaaly) = lelf(r)l ;(vy)]‘ (a— Vg(ﬂ)g) (y —evy)

dv, X;

exists and is given by the formula

0 0
= Yoglat) = g(o) + f 9 iy 29(2)dS ., y € 9.
Vy 50 éh/y

e V(1) € B(C(AD), C®(R3\dD)NC(R?)) and the Neumann derivative for Vp(1)h at & € D

9 e d
0z VP Dlln() = lim ;wg)j (a—x] vah) (€ +evy)

exists and is given by the formula
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2y Dl @ = ~h) + f 9 B & OMOAS ., & € aD.
Vér oD 81/_5

We define Y;;(2) (i, j = 1,2) by

0
V(DY (y: ) = - f (a—Ea(y, 2+ PIWENY. )@ DdS . (y € 0Q),
0Q " 0Vy

0
Tawai ) == [ (G004 B Ol DdS; (0 < 50),

oD aVy

0
Vor(Dyn (& ) = fa . (a—nguf, 2+ P2A&ENE )z DdS . (£ € ID)

and

0
Yoo(Da(€: ) = fa (G B0+ prOEAE Ol DS (& € D)

From the form of Y;;(4), it follows that Y;1(1) € B(C(02)), Y22(1) € B(C(0D)), Y12(1) €
B(C(0D), C(0QY)) and Y>1(1) € B(C(0Q), C(dD)), and
(2.2) 1Y11(Dllscony) + 1Y22(Dllsc@opy + 1Y 12(Dllscop).con)
+ 1Y21 (Dllacon).copy < CRe )™ (1€ C,Red>0).
From the properties of the single layer potentials stated above, we can reduce original

problem (1.1) to a system of integral equations for the densities ¥ (-; 1) € C(0Q) and
Y(+; 1) € C(OD) given by

23) { Y105 ) = Y1 (D (6 0) = Yia(Dya(x; A) = g1(x) on 09,
. Ua(x; ) = Yo (DY (x5 A) = Yoo (Do (x; 1) = —ga(x) on dD.

If we choose a constant py > O sufficiently large, from (2.2), for any 4 with Re 4 > py,
the inverse (I — Y;1(1))~" and (I — Y»,(1))~" are constructed by the Neumann series. To solve
(2.3), we put

Zi() = Y (DU = Yoo (D)) Yo (DU = Y1 (D)™ (1€ C,Red = pp),
() = Y (DU = Y1 ()™ Y (DU = Y()) (1€ C,Red = o)

and define ¢;(x; A1) (j = 1,2), p12(x; 1) and ¢ (x; 1) by

@10 ) = (= Y ()) ' = Zy () g1(x),
@2(x; ) = =( = Yoo () (I = Z(2) ' g2(),
(24) P20 0) = (I = Y1 (D)™ Yia(Depa(x3 ),
@21(x; ) = (I = You () Va1 (D (x; ).
From (2.2), it also follows that (I — Z j(/l))‘1 (j = 1,2) exists for Re A > yy if we choose a

constant yo > O sufficiently large. Noting that uniqueness of the solutions of (2.3) holds for
A € C with large Re A, we get the solution (1 (x; A), ¥2(x; 1)) of (2.3) can be expressed as

iy D) = o1y D)+ e(y; D), Y254 = e21(E D) + (€5 D)
(1€ C,Red > up)
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for some fixed pp > O sufficiently large. This fact and (2.1) imply the following representa-
tion of the solution w(g; A):

Proposition 2.1. For any 6y > 0, there exists a constant uy > 1 such that the solution
w(q; ) of (1.1) with 1 € C, [Im A| < 661Re/l is represented as

(2.5) w(g; A) = Va(Dei1(g; ) + Va(Dei12(g; 1)
+ Vp(Dga(q; D) + Vp(Dgai(g; 1) (g € Q\ D).

To show Theorem 1.1, the above formula (2.5) is enough, however, for Theorem 1.3,
i.e. the case g, = 0, which gives ¢, = 0 and ¢, = 0, we need to decompose the term
Vp(D)g21(g; A) to pick up its main part. By using the transposed operator ' Y2,(1) and "Y1 (1)
of Y5,(4) and Y12(A) defined by

fa D(’Yzz(/l)g)(f)h(f)dS £= fa . gOXY(Dh)(&dSe  (g,h € C(OD))

and
fa D(’Yn(/l)g)(f)h(é“)dS £= j(; 5 g)(Y12(Dh)(y)dS , (g € C(62) and h € C(OD)),

respectively, we obtain

(2.6) Vp(Dp21(g; D) = f(;D Ex(q: U = Yo ()™ Y21 (D1 (& DdS ¢

= LQ lel(/D(l((I — Yzz(/l))*l)E/l(q’ ‘))(!/)<P1(y; /l)dSy

Hence, to give the decomposition, the integral kernel representation of /Yy (21)/((I-Y2,(2))™")
is needed. Since this term contains the integral operator (I — Y»>(1))~! which is constructed
by the Neumann series - ,(Y22(4))", we need estimates of the repeated kernel. This is
given in the next section after preparing estimates for boundary integrals.

3. Estimates of boundary integrals and integral kernels

In the proof of Theorems 1.1 and 1.3, many boundary integrals appear. Many of them are
treated in [1] in the case that dD is strictly convex and C>® for some 0 < @ < 1, however,
this regularity assumption can be relaxed to C2. In this section, we give the outline of this
procedure. In addition, we also prepare basic estimates for treating these integrals.

We begin by recalling the following well known facts on compact and C? surfaces. We
denote B2(R?) by the set of C? functions f in R? such that the norm || f]| B2(r2) 18 finite, where
the norm is defined by || f1|52r2) = Maxy <z SUP g2 |05 f(X)].

Lemma 3.1. Assume that 0D is of class C2. (i) There exists a positive constant C such
that, for all ¢ and { € 0D

Ve — vl < CIE= L, Ive - (€= DI < ClE - 1%

(ii) There exists O < ry such that, for all & € dD, 0D N B(&,2ry) can be represented as a
graph of a function on the tangent plane of 0D at &, that is, there exist an open neighborhood
Ug of (0,0) in R* and a function g € B*(R?) with g(0,0) = 0 and Vg(0,0) = 0 such that the
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map
Ugs 0= (01,02) = E+0re) +032er — g(o1,02)ve € 0D N B, 2ro)

gives a system of local coordinates around &, where {ey,e;} is an orthogonal basis for
T¢(OD). Moreover the norm ||gl|g2(r2) has an upper bound independent of & € dD.

In this paper we call this system of coordinates the standard system of local coordinates
around &.
First, estimates of the boundary integrals needed to show Theorem 1.1 is given.

Lemma 3.2. Assume that 0Q is of class C*. Then it follows that

ds, _
3.1) f <C (geQ\D)
o0 lg —yl

Proof. Since € is compact, from (ii) of Lemma 3.1, there exist constant 6 > 0 and r;; > 0
such that for any yo € 0Q, B(yo, 20) N 0 has the standard local coordinate
U>so="(o1,02) 1 (o) =yo+ Tie + 02ez + g(0)(—vy,) € Byo,26) N IQ,
lg(o)| < Clol> (0 €U c{oeR?*||o] < rp}, uniformly in yo € 6Q),
and B(yo, 26)NQ C {x € R3| Vy, - (x—yo) < 0}. Note that |g—y| > 6 (y € 0Q) if dist(g, 0Q) >
6. Hence, in this case, (3.1) holds. When g € Q \ D satisfies dist(g, 9Q) < 6, we can choose

a point yo € dQ in the above coordinate as it satisfies |g — yo| = dist(g, Q). For this y, it
follows that (g — yo) - e; = 0 (j = 1,2) since

2

17 =yl <lg= 5@ =lg =yl =2 Y (g =y0) - ej0;+ O(oP)  near o =0.
=1

Noting that ¢ € QNB(yo, 26), we have ¢ — yo = —|g — Yolvy,» which implies that
(32) lg = s = (g = yol = g(@)* + o > o (o€ V).

Note also that y € 0Q with y ¢ B(yg, 20) N0Q satisfies |g—y| > lyo—yl—yo—¢q| = 26 -0 = 6.
Hence it follows that

1 1
f ——dS, < 5-1f 1dS, + cf —do < Csp < 0o,
o0 lg —yl 90 v lol

which shows Lemma 3.2. O

Remark 3.3. Similaly to showing (3.1), it follows that for any constant ¢y > 0, there
exists a constant C > 0 such that

e—Coll|§—§| C
fa WdS{S —2 k'u—(Z—k) O<k<2,u>1,écaD).
D - —

It also holds that

f dSe¢ +f By o € em\D0<k<2)
wid - Julg—yf " 2-k 1 e ‘

These are used to show Theorem 1.3 frequently.
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The estimates introduced above are enough to show Theorem 1.1. Thus, strict convexity
for 0D does not need to obtain Theorem 1.1. This is used to get Theorem 1.3. We also
need to care for uniformity in g of the standard local coordinate around ¢ € dD, which may
depend on . From (ii) of Lemma 3.1, there exists a constant R; > 0 independent of & € 9D
such that

(3.3) lg(o)| < Rylo?

holds for any o € Us. Note that (3.3) is also given by taking ry < 1/(4C), where C > 0 is
the constant given in (i) of Lemma 3.1. To check it, for o € Ug, take { = £ + o€y + 02e3 —
g(o)ve € OD. Since g(o) = —({—&)-vg, Lemma 3.1 implies that |g(c)| < Cle—£P < |2 —-¢€1/2
for | — & < 2rg < 1/(2C). Noting | — & = |o]> + |g(o)* < |o> + | — €]*/4, we obtain
| — £ < 4]a?/3, which yields |g(o)| < C|¢ — &P < 4C|o*/3. Thus, (3.3) holds if we take
Ry =4C/3 and ry < 1/(40C).

As above, the constant rp in (ii) of Lemma 3.1 can be chosen as small as possible if
necessary. In what follows, to show main theorems, we need to take r( sufficiently small
with finite many times. The same notation ry is used even when ry is changed to smaller
one.

Next we show U contains a ball with a radius independent of &. For { = & + oje) +

o263 — g(0)ve € ODNB(E,2ry), o] < 1& = & = o> + g(0)? < |oly/1 + R3(2rp)? holds,

which yields o € Ug for o with |o| < ry if we take

2
(3.4) r=—0 o,

1+ R2Q2rp)?

Note that this 7; > 0 does not depend on & € dD.

To obtain the same estimates as in [1] for C? boundary case, we have to go back to give
the estimates of the length of the broken lines |¢ — £| + | — p| (&, <, p € OD) in Proposition
3.1 in [1]. Here, strict convexity is needed. Strict convexity is described by the principal
curvatures, i.e. the inverse of the eigenvalues of the Weingartain map A, defined by

2 2
o 4
(Agv,w:—];vf 5o gy O ©= ;]aj 2 (0).a1.a, € ).

Geometrically, dD is strictly convex if and only if all of the principal curvatures of 9D at
any point & € 9D are positive. Since dD is C?> and compact, from strict convexity of D it
follows that there exists a constant R, > 0 such that

2 2 2

3 3
(3.5) - Z Ve o gak(O)ajak, >R (v= Za, 50 ¢ -(0),a1,a €R).

Jik=1 J j=1

Note also that strict convexity of dD is equivalent to ({(0) — &) - v¢ < 0 (o~ # 0) for any
standard local coordinate { = {(o). This fact and the compactness of D imply

—(£ =8 - ve

Ry = in 2
£geaD g+l | — €]

> 0,

which yields
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(3.6) —({ &) ve 2 RlL & (£,L € 0D).

Note that estimate (3.6) implies g(o) > Rslo]?> (o € Ug, & € 0D) for any standard local
coordinate.

Let ryp be the same constant as (ii) of Lemma 3.1. Take any points & € dD and n €
0DNB(¢,2rg) with  # &. Note that (7 — €) - v < 0 since 0D is strictly convex. For these
Eandn, weputey = (=& — (= &) - veve)/In — & — (1 = &) - ve)ve| and take e, € R’ s0
that the pair {e, e>, v¢} consists of an orthonormal basis of R3. This pair can be determined
since n — & — ((n — &) - ve)ve # 01if ry is chosen small if necessary. From the definition,
(n — &)-e; > 0 holds. Since {ej,e,} is an orthonormal basis of T¢(dD), we can choose
a standard system of local coordinates around ¢ satisfying n = & + 0'(1)61 - g(a’?,O)vf €
0D N B(x,2ry), (o'?)2 + g(o-?, 0)? < (2r9)* and 0'(]) > 0. Note that any point { € dDNB(&, 2rp)
is represented by { = £+01e1+02e2—g(0)ve with o € R? satisfying o7 +03+g(0)* < (2r)>.

The standard local coordinate mentioned above is used to show the following lemma:

Lemma 3.4. Assume that D is of class C? and strictly convex.

(i) It follows that
1 o3
|§—§|+|§—UIZI§—UI+§|§_€I ({ € 6D N B(&, 2ry)).
(ii) If ry is chosen small enough, it follows that
E=Q+1—nl = 1€ -l + MC_Ogl (@0? + 02

for all o = (o1,0%) and o° = (0'(1),0) with o < 20'(1)/3, lo| < r, and |0°| < r|, where

r o= 2ro/+/1+ R%(Zro)2 is given in (3.4), and cy is a positive constant depending only on
oD.

RemARK 3.5. When 0D is C>®, Lemma 3.4 is the same as Proposition 2.1 in [1]. This is
the only part which is required C>® regularities for D in [1]. Hence from Lemma 3.4, all
estimates in [1] can be obtained in the case that dD is strictly convex with C? regularity.

Proof of Lemma 3.4. For { = & + oie; + 026y — g(0)ve € 0D N B(&,2ry), we put

' =&+01er —g(o)ve. Since (m—§&) e =0,ie. (=6 - -8 = -8 -(n—-§&),it
follows that

AN ok SN SPSN. k- SUPRNR RN (Sl DAL bk )
n=&=0=0- 3 =g+ €= =g <h=8+=— =
which yields
6D le-d+k-nl-ln-gzl0-g- S0 10

(&P -1~ o
C =&+ —¢€ 20— ¢
This shows (i) of Lemma 3.4. Note that this proof is just the same as in [1].
Next we show (ii) for the C? surface 0D of strictly convex. The estimate (ii) is given by
the fact that there exists a constant ¢y > 0 depending only on dD such that

2|0-&l -1 - ¢l =
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-9 -9
In — &l1& = &l
for sufficiently small ry. From (3.7) and (3.8), it follows that

_@-0-@-9), col@IE ~ ¢
In—¢lg—-¢1 7 I£ =&l
This implies (ii) of Lemma 3.4 since | — &| > |o7| > |o1|. Thus, it suffices to show (3.8).
We put 0¥ = (0'(1), 0). By the standard local coordinate, the right side of (3.8) is expressed
as

(3.8) 1 > co(a)? (o <209/3,|01] < 1, |07 < )

€=+ —nl—n—é =1 -4

B ooy + g(o)g(o) ___flol+ (g(0®) /o)) (g(o)/lo])
\/(((f?)2 + 900> + g(0)?) \/(1 +(g(@) /D)1 + (g(o)/lo)?)

Since 1/V1+X <1 -X/2+3X?/8 (X > 0)and g > 0, from (3.3), there exists a constant
C > 0 such that for all o and oy with |o7| < r; and || < rq

1

€-00-9, o _g@) o) 1oyge

39 1- >
G = -4 ol o0 ol 200l

glo )2)
(N ol

— C(lo* + 101

= (1 — 2)(1 _ 1(9(0'0) N @)2)

Fa A ANy

(1 2252 - 2

+ —
4 o]t o o]

o

2
) = Clot* + 1091

CORNC))
ey AL

o, o]
where the constant C does not depend on ry given by (3.4) with 0 < ryp < 1.

From (ii) of Lemma 3.1, we can take a constant M > 0 independent of ¢ € dD with
SUPgey, 105, 0-,9(c)| < M for i, j = 1,2. For this M and R given in (3.6), we choose & =
min{1/4, (R3/(240(M + R;))*} > 0, and divide the case 1 — &y < o /|o| and 1 — &y > o /|0,
In the latter case, (3.9) implies

- @-9

>(1- ﬂ)a —-R) + }1(1 +

2
o ) = Clot* + 101,

> go(1 — RIr}) - Crf,

In — &1l - &
which yields
Gy 1= B0 8 (ol <ot < rand 1= > o o)
if we take r; < min{1/(2Ry), &)/*/(4C)'/4).

Next we consider the case 1 — gy < o1 /|o|. In this case, oy > 0. Since 1 = (o /|o])? +
(02/10))? = (1 = £0)? + (02 /|0)? > 1 = 2&y + (02 /|o])?, it follows that

(0)5) 280 3280

2
&) <dar o

(3.11) (o2/lo])? < 2é&, <dg) < 1.

This estimate implies lo? = o’%(l + (02]01)?) < 20‘% < 8(0'(1))2/9 for oy < 20'(1)/3. This
estimate and (3.9) yield



128 M. IKEHATA AND M. KAWASHITA

@ =8-m=8& _1gd go)y2
' -9H--¢£ 2_(9 i 9 ) - 20109
m—dli—-& ~ 4 o ol
for any o and o with |o| < ry,|0°| < ri, 0 < 20/3 by taking ry > 0 sufficiently small to
be rR; < 1.
For treating the main term of the right side of (3.12), we divide the inside of the square

(3.12)

term as

g(@®) g0) _g(@®) g(o1,0) . o901, 0) = g() + (o] — |1 Dglo)

3.13 =
G T T T T e o1l

From (d,,9)(0,0) = 0, it follows that
1l
g(o) —g(01,0) = 0'10'2f f (0, 00,9) (5071, 50072 )d 5dO
0 Jo

1l
+ (r%f f 9(8(2,2g)(s0'1, s00)dsdb,
0 Jo
which yields
lg(o) — g(o1,0)] < Mloa|(lo1] + |oal),

where M > 0 can be chosen independent of & € dD. The above estimate and |o|— |07y < |0,
(3.11), (3.3) and (3.13) imply

9@’) _g(@) _ 9@ _g(@1,0) M+ Rlollo] + o)

o o~ o o |omi|
L 900" 9(@1,0) 8vaM+R) |,
=T T ol 3 !

for any o~ and o with |o| < ry,|0°| < 1,01 <20V/3 and 1 — & < oy /|or].
Now we show

g(@)  g(g1,0) B o

z —0
A ol T 9

(3.14) (ol < ri,10% < 11,0 < oy < 209/3).

Once we obtain (3.14), from the above estimates, it follows that

0
R
g(o(')) _9@) > _30-(1) (ol < r1, 10 < 11,0 < oy <20'(1)/3)
o, lor] 10

since &y < (R3/(240(M + R})))>. Hence (3.12) imples
L -om-o K R’

3 2 4

ag-a > a0 T2 = g5

for o and o with || < ry, 10| < ry, 0 < 20/3 if we choose ry defined in (3.4) satisfying

r1 <R3/ (40\/6). From the above estimate and (3.10), we obtain (3.8). Thus, it suffices to
show (3.14) to finish the proof of (ii) of Lemma 3.4.

Let ¢ be the plane defined by 7z = {z € R[(z = ¢) - e = 0}. Weputl = &+ 0jey —

g(o1,0)vgand gy = & + 0'(1)6 1. Take the curve y on D defined by y(¢) = & + tey — g(t,0)vg

(=r1 < t < ry). Note that this curve is the section of dD with respect to the plane .

(@)
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The point ¢ crossing the line £ and 71 is given by ¢ = & + o-?el - (a(l)g((fl,O)/a'l)vsc,
and the point ¢’ crossing the tangent line /(1) = y(oy) + ty’'(01) (t € R) of y at £ and the
line nro is given by ¢’ = & + oy — (g(01,0) + (07 — )8, g(01, 0))ve. Hence we obtain
In—q'l = 1g(c¥,0)=(g(c1,0)+ (0¥ —01)ds, g(o1, 0)| and [n—g| = |g(c9, 0)— (g0, 0) /o).
Since 0D is strictly convex, the curve y is also strictly convex as the curve on the plane .
Hence, it follows that

1,0 g(?,0) - g(c1,0)
990 4, g01,0 < LT ,
(%81 o -0

which yields
=4l = g(0,0) = (g(01,0) + () = 1), (01, 0)) < g(07,0) = (@ g(0r1,0)/c1) = I = gl.
From the above estimate, o} > 0, (3.6) and | — ZI > 0'(1) -0 > 0‘1)/3, it follows that

9@) _g@1.0) =g _ infiegly — 1O e pvpm0ln ~ A

ol o1 o ol a o
=0 Rin-IP Rl
o -ogr T 9
Thus we obtain (3.14), which completes the proof of Lemma 3.4. m|

Next, we recall various estimates given in [1] for integrals on strictly convex boundary
0D.Foré e 0D andr > 0, weputS (&) ={{ € dD||{-¢& <rfand S, (&) ={{ € OD||{ €| >
r}. The following estimates are given in Ikehata and Kawashita [1].

Lemma 3.6. Assume that 0D is of class C* and strictly convex. Then it follows that there
exist constant C > 0 and (small) constant ry > 0 such that
3/2

(3.15) f o HUE=LI+1g~ nl)dS < CeHoo mln{p— 1 }

S 0o (DNS 5y &) \/_ H PO

(&,n€0D,py < ro, 2> 1),

(3.16) f et g < Ce o (6,m € OD, po = ro,p > 1),

S po (NS (€)
where py = |é — n|. Further, it also follows that

(1€=Z1+1E—nD
(3.17) f ud& < Ce Mo mm{ 1 ,,11_2/3}
S,y mnS,© <=l HpPo

Eneab.yu>1),
f e HUE=LI+IE—n)
87, UGS oS, @) 16 =11l

Proofs of (3.15) and (3.16) are given in Proposition 3.1 of [1]. The estimates (3.17) and
(3.18) are also shown by the same argument as for (5.6), (5.8) and (5.10) in Lemma 5.1 of
[1]. Note that (3.15) and (3.16) yield

(3.18) dS; < Cu'e™ (¢£,me€dD,u>1).



130 M. IKEHATA AND M. KAWASHITA

1
(3.19) u LD e_“(l‘f_»{H'g_”DdS( < Ce_“po(l + min {p(ypg)l/z, E})
0

since D = (S,,(mM NSy, (f))US/;0 (f)US;O(n) implies

f (ML G < gt f LGS, + o0 f e HHGS
oD 570 5700

+ f e—ﬂ(lf—{lJrlg“—nl)dS{‘
S po (NS (1)

We also need the following lemma:

Lemma 3.7. Assume that 0D is of class C* and strictly convex. Then, there exist constants
o > 0 and C > 0 such that

—(E=¢+1¢—n]) 1 —
f e—ng < Ce e min{ —— 7B T -+ €=l }
op 1C—mnl Mg =l U

(&,m € 0D, & # m, 1 > o).

Lemma 3.7 can be shown by using the similar argument to the proof of Lemma 3.6 given
in [1]. Here we only give a proof of Lemma 3.7, and omit showing Lemma 3.6.

Proof of Lemma 3.7. For &, € 0D, we put pg = |£ — n|. First we show

e HUE=L1+IZ—nl) .
(3.20) f —————dS; < Ce mln{po,u‘l/zp(l)”}
S0 NS © 1€ =11

(&,m € 0D, & # m, 1 > o).

For ry > 0 in Lemma 3.6, we put p; = min{po, ro } > 0. Since it follows that

e HUE=LI+IE=nl) e HUE=LI+E—nl)
f s, < f ¢ s,
Sy 0S,© 1€ =1 s 20D0S 5, @) I& —nl

e HUE=CIg=n)

+f S dS,=hL+h,
S oS g 2 NS 0© 1€ =7l

we give estimates for /; and /5.

For I;, we use the similar argument to showing (3.15) as in the proof of Proposition 3.1
in [1]. Take a standard system of local coordinates { = n + oje; + 02e; — g(0)v, around
n € 0D satistying & = n + 0'(1)61 - g(O'(l),O)v,,. Note that g > 0 holds since dD is strictly
convex. For € S n(m)NS p,(§), it follows that (& — 1) - (£ = n)/I€ — 1l < p/2, which yields
o100 /po < & —m) - E—=m/IE =1l < py/2 < po/2. This and (3.3) imply

2 0 2 2
o1 < 202 T (g0, 000y < o0 L RICRS
207] 2 2
Note that this is the same as (3.8) of [1]. Thus, choosing ry small enough to be R%(Zro)2 <
1/3, we obtain o = (r cos 0,r sin §) € B'(0, 20'(1)/3) = {0 € R?||o] < po, o1 < 20'?/3}.
This fact and (ii) of Lemma 3.4 yield

€ = Z1+ 1 =l = po + r(co(po)® + c1£()),
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where ¢g > 0 and ¢; > 0 are constants, and f(6) is given by

|, if 6| < n/2,
JCOERY SR ifr/2 <6<,
|7+ 0, if -1<0<-m/2.

As is in (3.10) of [1], using this coordinate, we obtain

/2 g=pr(co(pp)’+ei6?)
I, <Ce ”p(‘f f ——rdrdf
—/2

B2 0
< Ce™ ”pof —Heor(pp)? f e d6 —dr < Ce™*ou~ 172 f ’ r2ar,
0 0 \ur 0

which yields I; < Ce™(p}/u)"/?. Note that this is the idea to show Proposition 3.1 of [1]
(i.e. (3.15) in Lemma 3.6). Thus, (3.15) can be shown similarly. For the detail, see the proof
of Proposition 3.1 of [1].

For I, if pg < ro, (3.15) implies

3/2 1/2
L<2 emleengs, < 2 Cpy” _Cho”
Py IS0 @) PO VM VH
If po > 1o, (3.16) yields
2 —pE~¢1Hig-n) 2 . 2
L<— e TGS . < —Cu= < Cp
Py J$ 1S 1 ©) ST

The above estimates of /; and I, implies that
oHg=d+HZ -1
f ———dS; < Ce‘”pou_l/zpé/z,
S 0S,© 1€ =11

which yields the half of (3.20).
For the rest, the simple triangle inequality |£ — £| + | — n| > |¢€ — | implies

e~ HUE=dI+1g=D 1
f T s, < e f s,
S,y mnS,© ¢ =1l ’ S (NS 5 (© 1€ =111

P P

Since

1
f ———dS; < C min{p, ro},
8 (008, (© 1€ =111

and min{py, ro} < ry < po when pg > r, it follows that

e HUE=LI+E—nl)
f —————dS; < Cpoe #,
Sy 0S,© 1 =1

Thus, we obtain (3.20).

Since we can divide 8D as 9D = S, (£)U(S p,(5INS , (MU (S 5, (EINS (1)), from (3.17),
(3.18) and (3.20), we obtain Lemma 3.7. ]

Next we turn to give estimates for the integral kernel of Yz, (A)(I — Yor()™' = (I -
Y25(2))"'¥2(2). The integral kernel of the integral operator Y»,(A) is denoted by Y2,(&, £ )
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(&,£ € 0D, & # ). From the definition of Y»,(A), the kernel is given by
0
Y2o(&, 85 A) = —E/l(f 0 + p2AEEAE, D).

The operator (I — Y»(1))~! is constructed by the Neumann series Y o(Y22(2))". The n-th
power (Y2,(A4))" of the operator Y»,(A1) is also an integral operator with the kernel Y. (")(5 g A).
This kernel is called the repeated kernel, which is inductively given by

YO ) = L e GOV Emdse =230

and Y (€, 1) = Yoo (&, 3 A).
ForxeR3 £€ 0D and x # £, we put

e V=8 g e e (x =8 pa(é)
e K =T )

From the definition of Y;,(A) and (i) of Lemma 3.1, it follows that Y»,(&,17; 1) = K (€,1m) +
K, (&,n) for &, n € 0D with & # 1, and there exist constants Cy, C > 0 such that

(B2 K& x) = 2

(3.22) IKa(&m) < Cope™ M (£,n€dD, & #n, 1€Cy),
- —plE=nl
(3.23) K& ml < C &= (§,nedD, &+n, 1€Cs).
Note that from (3.22) and (3.23), it follows that
o~/
[Y22 (&, 75 D) SCW (§,medD, & #n, 1€ Cy).

Hence, using Remark 3.3 inductively, we can see that there exists a constant C > 0 such that
Y& 5 Dl < C'u™" (£,m € D, A € Cs, n = 2,3,...). This implies that Y2, Y2 (£,17; 1)
is uniformly convergent for &, € D, ¢ # n, A € Cs, with Re A > ug for some constant py >
1/(2C). Thus, the integral kernel of Y»,(A)(I — Y2,(2))~! is given by YO n) =Yl n )+
Yo Y(”)(f n; 1) with the estimate

(3.24) REm) < Ctr e s )

(faﬂ € 6Da§¢ rl’/l € C(S()’Re/l 2#0)'

This is a simple and primary approach for getting the integral kernels, however, the ob-
tained estimate (3.24) is too weak to find the points on Q2 and dD contributing the asymp-
totic behavior of w(p; A) for fixed p € dD. Hence, we need to use more accurate estimates
of the repeated kernels, which is established by [1].

Theorem 3.8. Assume that dD is of class C* and strictly convex. Then there exist positive
constants C and po > 1 such that for all A € Cs, with u = Re A > o, the kernel Y (€,7) is
measurable for (£,1) € OD X 0D, continuous for & # 1 and has the estimate

YPEml<C (u + )e‘“"f"" (€ mnedD, & +n).

€ —nl

Note that the estimate for Y}°(£,7) obtained in Theorem 3.8 has the exactly same expo-
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nential factor e #€~" as is in estimates (3.22) and (3.23) for the original kernel Y5, (&, 7; A).
This is the advantage of Theorem 3.8, and is useful for applying problems which never al-
low losing exponential factors in each steps for estimating integral kernels. This type of
problems originally arises in some inverse problem for the heat equation with the enclosure
method developed by [2]. Note that Theorem 1.3 has the same structure. Theorem 3.8 is
the same as Theorem 1.1 in [1]. In [1], for the boundary dD, C% regularity with some
0 < ap < 1 is assumed, however, this restriction put in [1] comes from getting the estimates
stated in Lemma 3.4. Thus, regularity assumption can be reduced to C? since Lemma 3.4 is
given for dD with C? regularity.

To show Theorem 1.3, we need to estimate the integral kernel of 'Y, ()('(1 = Y2,(2))~},
which is given by

Yo (DU = Yo D) f) = fa MO (€ CoD)

by using the integral kernel M (&, y) (y € 0Q, & € OD) of (I — Y2(1))'Y2;(1). Since
(I = Yo (D) ' Y21(A) = Ya1(A) + Yoo (DU = Y22 (D) Y21 (), Ma(€, y) is of the form

(3.25) My, y) = Your(&,y; D) + faD YPEmYa(n, y; DdS
(y € 0Q,& € 0D, A € Cs,Re A > py),
where
0
(3.26) iy ) = a—vax(f, y) + p2AEENE, y)

=K (&, )+ Ki(é.y) (6 € 0D,y € 0, A € Cy))

is the integral kernel of the integral operator Y;1(A).
From (3.26) and (3.21), it follows that

(3.27) Y21, y; D] < Cue Y (£ € 0D, y € 0Q, A € Cy, u = po),
which yields
(3.28) IMy(€,y)l < Cpte ™0 (£ € 0D,y € 3Q, A € Csy, > o)

by (3.25), Theorem 3.8, Remark 3.3 and triangle inequality |£ — | + | — y| = |€ — yl.
The right side of (3.28) contains the term of order 2 in u. The term providing this order
surely contribute to the main term. To pick this up, we need the following estimate:

Proposition 3.9. Assume that dD is of class C* and strictly convex. Then there exist
positive constants C and po > 1 such that for all 1 € Cs; with p = Re A > p, the kernel

Y,({o(é‘:’ 77) - K/l(é:’ 77) satisﬁes

oo e 1 . 1
Y€1) = Ka(&, )l < Ce (1 + + min {u(ulf -2, —3})
€ —nl & =l
for & nedD with & 1.
Proof. As is in Lemma 3.6, we put pg = [£ — nl. From Y7(&,n) = Yau(§,m; 1) +
320, Y&, 75 0), and Yao(&, 7 A) = K€, m) + Ka(&, 1), it follows that
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on(f’ 77) - K/l(f’ 7]) = k/l(é:a 77) + f Y/Cl)o(é‘:a {)Y22(§’ ; /l)dS(

D
Hence, it suffices to show

1 1
—u(|E=L1+E-nD)
. |l;e” gcn(”+w—500”wg—m%”4

1 1
< Ce™ |1+ — + min u(,upg)l/z’ S
Lo P

0

since (3.23), (3.22) and Theorem 3.8 hold. Noting |{ — &| = pg/2 for | — 5| < po/2, and
I —nl = po/2 for [{ — & < po/2, we have

1 1
o M=+ ('u " )(ﬂ " )dS <1 f o HE=CI+Ic= g g
|1; ¢ - € & =7l 4 oD ¢

2 1 1
= —p(lE=L1+|E-nl) ds -
+O”*m—§ol;e (M—nr“w—a) ¢

This estimate, (3.19), (3.17) and (3.18) give (3.29), which completes the proof of Proposition
3.9. ]

Note that Proposition 3.9 implies that

(3.30) Y7 (€ n) — Ka€,n)l < C(,U + _) o M=

& =l
since min {va,a"'} < 1 forall a > 0.

Lemma 3.10. Assume that 0D is of class C?> and strictly convex. Then there exist con-
stants C > 0 and po > 0 such that

(3.31)
faD(IY}"’(f’ I+ K& ml + 1K€ ml)

e_/'llé:_pl

€ — pl
. 1

+ min {(,U|'7 - P|)]/2, m})

(n,p € 0D,n # p,A € Csy, 1t > o)

ds.;

< Ce_’””_p'(l + | |
M= p

and
(3.32)

ijﬁ@m—m@w
oD

e_/ll‘f_pl

€ = pl

1 1
dS g < Cetnrl (1+ 5)
’ In - pl In—p
(n,p €dD,n # p, A € Cs, 1 2 o).
Proof. From Theorem 3.8, (3.22) and (3.23), the left side of (3.31) is estimated by

—ug-nl+g=p) 1y 1
[, b e
for some constant C > 0. We denote by /; the above integral. We put pg = | — p|. Note
that | — & = po/2 for |€ — p| < po/2, and |€ — p| = po/2 if |¢€ — 1| < po/2. Thus, either
|€ = pl = po/2 or |€ — 1] = po/2 hold. This and Lemma 3.7 imply
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I < f e—#(ln—§|+|§—p)( P2 2 ) ds,
oD € =pl pol&—nl polé—pl) ~
1

_ _ _ 4 S
< Ce™H0 {,u-(,u ! +u 1/2/)(1)/2)+ —(u ! +p0)} <Ce “’0(1 +;11/2p(l)/2 + —)
o e

Using Lemma 3.7 again, we also obtain

f e HUn=€l+1g=ph H dS < Ce’“'"fpl,u 1 = Ce Hin=rl 1 )
aD & - pl pln — pl In — pl
These estimates yield (3.31).

Next we show (3.32). From Proposition 3.9, for |£ — n| > po/2, it follows that
1 1
n—&  m-r
We put the left side of (3.32) I,. The integral I is divided into two integrals on S, 2(1) and

S o /2(7]). Since & € S, /2(n7) implies [ — p| > po/2, (3.30) and the above estimates yield

|ﬁma—mmﬂsaﬂwﬁ+ )s@wwm+%q

L < Cu f o HIn=¢l+1é=pl) (ﬂ N 1 ) 2 05,
Spor2(m) |77_éf| 00 é

o—Hn-¢l+ig=p)
+Cuf ————(1+pp°)ds:
720 € = pl

2

sc{”— f o Hn=EiE=P) g,
Lo S por2(m) »

e Hn=¢1+lE=p)  p=ulln=El+lE=pl)
+u(l+p° f + ds ¢,
(00 |, =7 e

where we used p,' < 1+ p;*. Here we note that (3.15), (3.16) and Remark 3.3 imply

f e—p(ln—fl+l§—pl)dsf < f e—/l(ln—§|+|§—pl)d5n + f e—ﬂ(ln—fl+\f—pl)dSSf
S po/2(m) S po (MNS oo () Spo(P)

< Ce_”poy_2p63 + ¢ HPo f e—uln—f\ds‘f < Ce—llpolu—2(1 +P63)-
Spo(P)

Combining the above estimates with Lemma 3.7, we obtain

e ~HpPo

2
1
I < C{/;—Oe_"pou_z(l +pa3) +,u(1 +p53)e_”p°—} <C (1 +p53).

Hpo Po
This completes the proof of Lemma 3.10. |

4. Estimate of Laplace integrals

The proof of Theorems 1.1 and 1.3 is reduced to estimating asymptotic behavior of inte-
grals of Laplace types. In this section, we treat these integrals.

For g € Q \ D, yo € Mpa(q), which is defined in (1.3), and sufficiently small ry > O,
we choose a standard local coordinate U > o +— s(o) € dQNB(yo,2ry) around a point
Yo € Mua(q). Let h(o, 1) be a continuous function in o of the form:
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o, D) = hy(o) + ' hy(0,2) (0 € U, A eCsppu=Red > )

for some py > 0. We put S (o) = |¢g — s(0)| and take a function 7 € Cg(U) withO <n <1on
U and n(0) > 0. For these functions, we consider the following integral of Laplace type:

4.1) 1) = f e WEh(m do.
U S(o)

Proposition 4.1. For Laplace integral (4.1), assume that there exist constants C, > 0 and
C| > 0 such that

4.2) hi(o) = Cy, |hi(o, )| < C] (oceUAeCs,u = pup).
Then, there exist constants 6o > 0, C; > 0 and uy > 0 such that

Re {' POV} > Clu™' (1€ Agpopt = Re d > pp).

RemaRrk 4.2. For oscillatory integrals given by changing e =5 to #5() (u >> 1) in the
definition of /(A), as is in Section 7 of [3], asymptotic behavior as u — oo is studied even
in degenerate cases (i.e. the case that the Hessian matrix of S (o) does not regular at some
critical point of S (07)). To obtain Proposition 4.1, the basic idea given in [3] can be used for
treating degenerate cases although it does not directly work for the integrals /(1) of Laplace

type.

Proof of Proposition 4.1. We put 7_o, = infy,ey S(0) and 7o, = sup,.y S(0), and E; =
{oc € U|S(0) < 1} for T € R. Note that 7_o, = |g — yo| = dist(g, 0Q2). We introduce the
function $,(7) defined by

Barr) = fE, %h(o’, Dd o (t €R).

From (3.2), n(0)/S (o) > 0 is integrable in U, which yields that 5,(7) is a function of
bounded variation, 5,(t) = 0 for 7 < 7_» and B,(7) = Bi(7») for T > 7. Note also
that 3, is a right continuous function in 7 € R. Indeed, for any 79 € Rand o € U, o ¢
E:\NE, ={0c€Ul|ty) <S(0) <7}holds if 0 < 7 — 79 is small enough. This means that
lim; 70 xE.(0) = XE, (o), where yg_ (o) is the characteristic function of the set E;. From
this fact and Lebesgue’s convergence theorem implies that 5, is a right continuous.

Thus, using Stieltjes integral with respect to 5, for any 7_ < T_, We obtain

I(A) = f e <‘T>@h(a, do = f - e dB(1),
U S(o) 7

—o0

which implies that
43) Q) = ey (te0) + A f "B ().

We put

Bo(7) = fE , ;7((‘;)) h(do  (teR).

Since n(0)/S (o) = 0, from (4.2), it follows that
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1BA(T) = o(0)] < fE | %w%(m Dido < ¢! fE T %hl(wda

which means that

4.4 Bu1) = Bo(D] < Gl Bo(x)  (x € R, A € Cy 1 2 pro).

where C, = C/C;' > 0.

From now on, we divide the proof into the following three cases: Case 1. T_, = T, Case
2. T_oo < Teo and By(T-) > 0, and Case 3. T_o < To and Bo(7-) = 0.

Case 1: In this case, note that 5,(7_«) = 81(7«) > O since E.__ = E;_ = U. Hence, from
(4.3) it holds that /(1) = e ™=B(Te) = e 1" =B1(T_o0), and from (4.4) it follows that

ReBi(T-co) = (1 = ColA™)Bo(Towe) = 27 Bo(T-e) (A € Cs,pt > p1y),

where 1y = max{ug,2C,} > 0. Hence we obtain Re {e7™~1(1)} > 27'8y(1_0) > 0 (A €
Cs,u =Red = ).
Case 2: Since T = |g — yo| = S(0), it follows that e - (¢ — yo) = O for any e € R3

perpendicular to v,,, which yields ¢ — yo = —|g — yolv,,. Hence similarly to (3.2), we obtain
4.5) (S©@)? = (lg = yol = g(0)* +loP 2 o> (o€ V).
Since (4.5) implies

0 < () < f ol h(@)do < 0o (r €R),
U

from (4.4), one gets |B,(7) — Bo(1)| < Cu~! for A € Cs, with u > pp.
Take any ¢y > O fixed. In this case, there exists ¢’ > 0 such that

1Bo(7) = Bo(T-co)l < Bo(T-c0)/2(1 + b0) O<7-710<d)
since Sy is also right continuous and By(7_«) > 0. Hence it follows that

_ Bo(T-x)
2(1 + 6¢)

for0 <7—-17_ < ¢ and A € Cs, with £ > po. Combining this with the fact that
BA(T) = Bo(T-c)l < € (Tt € R, A € Cyp, pt 2 o)

for some constant C > 0, we obtain

f "B (x)dr - f ) e_MﬁO(T—oo)dT| = f "B () — Bolr o)l

T oot Teo
< (—'BO(T_OO) + g)f e ™Mdr + Cf e "Mdr
2(0+60) w'Je Tt

Bo(T-w) _ 2 - -1 - 5
< HTw 4 C HT-oo 4 (T +0") .
= 201+ oo (et e )

IBa() = Bo(T-c0)| < [Ba(T) = Bo(T)| + [Bo(7) = Bo(T-o0)| < Cpt

Hence, it follows that
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Re ('™ 1 f " 1(1)d7) 2 Re (€' Bo(T_e0) f - e™dr)

|4 A
T2 1 o) _C(ﬂ +et
> B(T-)(1 = Ree 7)) — zﬁo(too) —Cu '+ e
,3(72_00) Clu™ + e 4 o)) (1 Cy)

since |A]/u <1+ [ImA|/u < 1+ 6 for any A € Cy,. This implies that

Re (¢'™1(1)) > Re (e f - eTBa()dT) — TR (1)

T
L BE-w)
-2
Hence taking po > O sufficiently large if it is necessary, for any 6y > 0, we can find constants
C > 0 and pg > 0 such that Re (e7™=1(1)) > C (1 € Cs,s it = Re A > ).
Case 3. In this case, T_o < Too and By(7_o) = 0. Note that 7_, = inf,cy S(0) > 0. We
need the following lemma: O

- C(/J_l +e M 4 e_“(T“’_T*‘”)).

Lemma 4.3. There exists a constant C > 0 such that for T_«, = 0, it follows that
f n(oydo > Cr? 0<7<710),
E'r
and for T_«, # 0, it follows that

no)do =2 C(t — T_w) (Tooo £ T < Too).

Proof. Since 7(0) >E6, we can choose r, > 0 satisfying o € U and n(o) > n(0)/2 for
|o| < r,. First, consider the case 7_,, = 0. In this case, it follows that 0 < dist(p, 0Q) <
T_o = 0since 0 < S(0) = |g — yo| = dist(g, Q) < |g — s(0)| = S(0) (o € U). Hence (4.5)
yields o] < S(0) = |o? + (9(0))? < Cylo| (o € U). From these estimates, o € E; holds
for |o| < 7/Cy and 7 < r,Cy. This implies that

Ln(a)dazfl ; noydo > T do=""w/c O<r<ncy.

. < lorl</Cy

Thus, for 7_, = 0, Lemma 4.3 is obtained if nC; > 7. If nC; < 7., We note that

(T/C1)? > (r2/7e0)*7* (0 < T < 1C)) and 2> (r2/70)* 7 (nC1 < T < To). The above
estimates and the fact that fE n(o)d o is non-decreasing function in 7 imply

77()

(rz/‘roo) 0 <1< 10).

fE n(o)do > 7r772(0) min {(T/Cl)z, r%}

T

Hence, we obtain Lemma 4.3 for 7_o, = 0.
Next, we consider the case of 7_,, > 0. In this case, from (4.5), there exists a constant
C, > 0 such that for o € U

(S (@)* = (Ip = yol = g(0))? + lo* = 72, = 27-00g(0) + [0 + (g(0))*
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<2 + 2007l < (Too + Calo)?,
which yields
S(@) =T < Colo? (o€ D).

Hence, if |0 < V(T — 7_o)/Cr with 7 — 7_, < r%Cz, then we have |o| < r, and S (o) —
Too < Colol* € 7= 7w, . 0 € E;. Since n(o) > 1(0)/2 for 0 < 7 - 7_o < r3C, and
o] £ V(T — T_0)/C>, it follows that
0 0
f n()do > f nodo > T do="10
E. <N IC: 2 Joieva=ore 26,

If r%Cz < Too — T—oo, as 18 In the case of 7_,, = 0, we also obtain

B 2C2 (Too - T—oo)

This completes the proof of Lemma 4.3. O

0 2
f n(oydo > M(T —T_ ) > zm](—)rz(T — T o) (Tioo £TLToo).
E;

Since E; = {o € U|S(0) < 71}, from (4.2) and Lemma 4.3, it follows that

C
4.6)  Bo(r) = f —n(o-)hl(o')do' > -1 f No)do>C(T—Tow) (Toe ST < To)
£ S(0) T JE,
for both cases 7. = 0 and 7_, > 0. Using this estimate, we give an estimate of

Re (e*™~1(2)). From (4.4) it follows that

4.7) Re(e"=1 f - e ™B(r)dr) = Re (1 f - T, (7))

— —o0

> Re(1 f e Ty dr) - € f e Ty ()

— —0c0

:,ufw 7 e Mhy(t; DBo(T + T_oo)dT,
0

where hy(1; 1) = cos(Im A7) + p~'(Im A) sin(Im A7) — Cu~'. Choose 0 < ¢y < 1. From now
on, we consider A € C satisfying [Im A|] < dou(logu)~!' (ie. A € As,). Note that 69 > 0
should be chosen small enough as is determined later.

Take 0 < 6y < m/2 with ¢y < cosby. Then, choosing o > 0 large enough, we obtain
ha(T;2) > ¢o (A € As,, 1 > o, 0 < 7 <), where y = min{6y/|Im A|, 7o — T-o}. Then from
(4.6) and (4.7), it follows that

Y

T oo
Re (e“*”"/l f e B /I(T)dT) > u f e HeoCrdr — u(2 + 60)C' (Teo — T_o)e™ *
Toco 0

> Ceop{u™(1 — ) = ' ye ™} = C'u(2 + 60)(Teo — T-o0)e .

From the above estimates and (4.3), there exist constants C > 0 and C” > 0 such that for any
6o > 0, we can find py > 0 satisfying

Re (e"=I(1)) > Cu™" = C'(1 + So)ue™ (1> o, A € Agy).

If Im A| < 0p(Too — T—oo)™ !, it holds that y = 7o, — T_«, Which yields
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3
T
M = HTeoT-) > H(Teo

- Tw)® 20+ 50)ﬂ2
6 C
12C7(1 + 69)
> _— .
(u > max{C(Tm — T_oo)yllo})
Thus, one gets

12C7(1 + 60)
Cra - P

If Im A > 6y(Teo — T—oo)~ ", it follows that y = 6y/[Im A|. Since for any A € C with [Im ] <
Sou(log )", we have yu = Gopt/|Im A| > 68, log u = log(u®?%"). Hence for 6y < 2716, it
follows that

Re (e"™1(1) > 27'Cu™" (1 > max |

e > % > 2071C (1 + Sy (= max{(2C C(1 + 6o))@% =27 by,
Thus if we choose 0y < 0y/2, we obtain
Re (e7™=1(1)) > 27'Cu™" (u > max {(2C~'C’(1 + 60))@%' 27 o},
Hence, there exist 69 > 0, gy > 0 and C > 0 such that
Re (e'™1(1)) > 27'Cu™! (A € Agyopt = Re A > )

is shown, which completes the proof of Proposition 4.1. O

Next is non-degenerate case, which is for Remark 1.2. First, we check the following fact.

Proposition 4.4. Ifyo € Mpsa(q) is a non-degenerate or degenerate critical point of finite
order for 0Q 3 y — |y — gl € R, then dist(q,0Q) > 0, i.e. T_« > 0 holds.

Proof. Note that from (1.6), there exist [y > 0 and C’ > C > 0 such that

dist (g, ) + Cly = yol**™ <y - ¢l < dist (¢, 9 + C'ly = yol"™  (y € IQNB(yo, 2r0))
for sufficiently small ry > 0. The above estimate implies that
(4.8) Teoo + Clo™ < S(0) < 7o + |0 (0 € V).

In this case, one gets 7_, > 0. Indeed, if 7_o, < 0, 1i.e. T_« = 0, then from the above estimate
and (4.5), it follows that

lol* + (g(0))? = (S(0))* < (C'|lo)? (0 € U),

which yields 1 < (C’|or|'**)? for 0 # o € U. Since [y > 0, this leads a contradiction. This
completes the proof of Proposition 4.4. O

For the non-degenerate case, as is in the below, the order of the lower bound estimates is
the same as for Proposition 4.1. The sets belonging the parameter A for which the estimate
valid are different. In the non-degenerate case, it is given by Cs,, while we can only take a
smaller set Ay, for general cases as Proposition 4.1.

Proposition 4.5. Assume that the same assumption as for Proposition 4.1 holds, and
qg € Q\ D and yy € Mya(q) is non-degenerate. Then there exist constants 6y > 0, C; > 0
and poy > 0 such that
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Re {e" PV () > Clu™" (A € Cypopu = Red 2 o).

Proof. For r; > 01in (1.6), we choose ry > 0 in the standard local coordinate U > o
s(o) € 0QNB(yy, 2ry) as 2ry < ry. From (1.6) and g € Q \ D, for Proposition 4.4, it follows
that S(0) = 7_o = dist(g,0Q) > 0, S(0) > T_ (00 € U \ {0}). Since S (o) is a class of C?,
there exist constants 0 < rs, uy, t» > 0 and an orthogonal matrix P € O(2) such that

S(0) = Tooo + (0] + DN+ K@) (0} + 053 < 13,5 = Po),

where k(G) is a function satisfying lims_,0 k(6) = 0. Note also that for this ;3 > 0, there

exists a constant ¢y > 0 such that S(o) > 7_, + ¢ (0 € U, ,/m&% +,uz&§ > r3). Noting
these facts and changing variables, we can see that there exist constants C > 0 and 79 > 7_«
with T_o, < 79 < T such that

1 (o)
= — d
Ba(1) i L 5 o
B <C (to<7,4€C5,u21),

(Tooo ST < T0(S To), A € Csp 2 1),

where S (0) = T + lo*(1 + k(K0)) with Ko = (o1/+f1, 02/\2), E- = {0 € R?||o]| <
2,8 (o) < 7} and 7, is defined by (o) = n(P~'Ko)h(P~' Ko, A).

Since T_o > 0, it holds that 1/S (o) is also continuous on E~T0. Hence for 1/3 > & > 0,
there exists a constant 0 < ¢, < r, such that

1 fio(o)  fjo(0)
VIR S(o) T

where 7jg(0) = n(P~'Ko)h (P~ 'Ko).
We put 7, = min{rg, 7_e + (1 — 27'£)62}. Note that £, C {0 € R?||o| < §, } since

<g, [|k(Ko)l<e (lo| < 6,),

T+ (1 = &) < Towo + 0P + k(Ko)) = S(0) < Tp S T_oo + (1 = 27'6)52
implies o> < (1-2"'e)(1 - 8)_153 < 5§. From (4.2), there exists a constant C > 0 such that
(o) = fjo(o)| < Cu™' (P7'Ko € U, A € Cspopu = 1).

Hence we obtain

770(0) f f 1 f 174(0) — 770(0)|
- d d ~ d
lﬁA(T) TocoVHIM2 JE, 0-| =¢ E. 7T VHIM2 JE, S(o) v

SC(s+,u_])fda' (T ST ST, A€ Copou = 1).
E.

We put E? = {0 € R?||o> < t}. Since o € E. implies |o| < 6, for any 7 < 7, it

holds that (1 — 8)|O'|2 < |0'|2(1 + k(Ko)) < 7 — 7_w, Which yields Er - E?T_T_w)/(l—g)' We

c E, for T < 1,. Indeed, for o € E? it follows that

0
can also show E (T=T—00)/(1+€)°

(T-T-)/(1+€)
o2 < (1 + &)1t — 7_o) < Te — T_oo < 62, which yields that

S(O0) = Teoo +0PA +(Ko) € Teco + 01 +8) € Tooo + (T = Tooo) = T
Hence we obtain

0 » 0
Er e CEr CEar jams  (T-e0 STSTo).
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We put T = 7 — 7_. The above properties imply that

|fd0'—fdo'|sf
E. E? E?

since fEO do = nr. Summarizing the above estimates, we see that there exists a constant
C > 0 independent of 0 < £ < 1/3 such that

1 1 2ent B
} = < 3met

d0'=m~'{ =1_ 2

0 1-¢ l+e
/(1*5)\E?/(1+8)

gar) - O )| < Clop -7
TocoVHIM2

(Teoo ST LT, A €Cy, i = 1).

The above estimate and (4.3) imply that
Axipp(0) (T

|I(/l) -
Ty Jr

e (1 - T_Do)dT|

TE
< ClAle™ ™ + C(e +u HiA| f e Mt —1_o)dr,
T

which yields

7ijo(0) AT

1
< Clle™ + Cle+pu)—e ™
AT_co\JH12

]
0<e<1/3,1€Cs,u=Red>1).

(4.9) |1(/1) -

Hence choosing & > 0 sufficiently small and uo > 1 sufficiently large, we get

nij(0) e
Re (¢'™1(1)) > Re (=———"F——) — Cue #T77) A € Cgypo it > o).
(€' I() > Re(73——) - Cpee (1€ Copopt 2 1)
Noting Re (1/2) = u/|A1> = u~'(1 + 89)~2 for A € Cy,, we obtain
7(0
Re (¢"1() > 71O (leCapu=Red 2 )

4(1 + 80)* 7o V12

if we choose g > 1 sufficiently large again. This completes the proof of Proposition 4.5.
O

RemMark 4.6. When yy € Mya(q) is a non-degenerate critical point of the function 0Q >
y — |y — p|l € R, from (4.9), we can also obtain

) < Cu'e™™  (1eCs,u=Red=1)
for some constant C > 0. In Section 6, this is used to show Theorem 1.3.
Last, we consider the case of the degenerate case of finite order.

Proposition 4.7. If yo € Mya(q) is a degenerate critical point of finite order for 02 >
y — |y — gl € R, then for any ro > 0 sufficiently small, there exists a constant ly > 0 such
that the following estimates hold:
1) there exist a constant C > 0 and a sufficiently small constant 69 > 0 such that

CTl e ™ <Rel(l) (1€ Agyopt=Red> o),
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2) for any 6o > 0, there exists a constant C > 0 such that
_2
(D] < Cu o2e T (1 € Csp,u = Re A = ).

Proof. From Proposition 4.4, 7_., > 0. Note also that |0 < (C""' (7 = T_w))"/“*? for any
o € E; with T_,, < 7 < 7., since (4.8) implies 7_o, + Clo|** < (o) < 7. From these facts
and

e el I T
E. S(o) E, T-co T .

there exists a constant M > 0 such that
B < M(7 = 7o) (1 € Cpopt 2 oy Tooo < T < Too)

Combining the above estimate with (4.3), we obtain
Too
le' ™= 1(D)] < 1Al f e TTHB (DT + TR (1)
T

/l 00
<M (2 0+2) f e T2 gr g M Tt (g g P 02)
M 0

which yields
e 1)) < Cu ™ (1€ Cyyo 1 2 pro)

for some constant C > 0.

Next, we show the estimate of Re /(). Take r, > 0 satisfying o € U and n(c) > 1(0)/2
for |o] < rp. Note that if |o] < ((7 — T_oo)/C’)l/(l°+2) with T — 7_o < ré°+2C’, then from (4.8),
we have |o] < 7 and S(0) — T < C’|or0*? < T — 7_,, which yields (o) > 17(0)/2 and
o € E.. Hence as is in the proof of Lemma 4.3, we obtain

f N(o)d o > C(T — T_go)* 02 (T—oo €T < Too).
ET
Using the above estimates and tracing the argument showing Proposition 4.1, we obtain

Re (e'™1(2) = Cu "% (1 e As,,u = Re A > o)

for some constants 99 > 0, C > 0 and ug > 0 since

v min{@odglﬂo,(Tm—T—m)/Io}
f WD g 5 12004 f e T g
0 0

(1 = po, € Cs).

This completes the proof of Proposition 4.7. m|

5. Proof of Theorem 1.1

We begin with showing the terms Vo(A)@12(p; ) and Vp()es1(p; A) are negligible com-
paring to V()1 (p; ) and Vp()ea(p; 4) when both g, and g, are positive.

We put dy = inf(,gepaxop ly — &l > 0, and recall dist(g, Q) = inf,cs0lg — y| and
dist(g, D) = infeeop lq — €| for g € Q\ D.
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Proposition 5.1. For any 6y > 0, there exists constants C > 0 and uoy > 1 such that the
following estimates hold uniformly in g € Q \ D:

[Va(Dg12(g; V)| < ClAle” ReDVISGID gmdoReA) 50 o (1 € C,Re A 2 pp),
IV (D)ga1(g; )] < ClAje”ReDVIs@ID) p=doReA) 5o (1 € C,Re A > po).
Proof. From (2.4) and the definition of V(A4), it follows that

—Hlg—yl

e _
Va(Der12(q; D] < Cf (7 = Y1 (D)) llacoapllY12(De2(; DlicwonydsS 4

a0 lg =yl
where u = Re A. Since the kernel Y1,(&, y; A) of Y12(A) is also given by

0
Yio(y, 3 ) = gEa(y, O +p1WENY, D),
Y

similarly to (3.26), (3.21) implies

e 1
s D1 < € [ M+ a(Es 1S,
oD & -yl
< ClAle™®lloa(; Dllc@py (¥ € 92,4 € C, = Re A > 0).
Note that (/ — Y;(2))~! € B(C(6Q)) and (2.2) yields
I = Y1 (D) Mlgcwoay <C - (A€ C,Red > pp).

These estimates imply

- —udis 1
(5.1 IVa(D1a(g; V)] < ClAle™®]pa (5 Dlicapye 14 f ds,.

Note also that
(5.2) llp2(+; Dlicny < Cligallcwon) (1€ C,Red = p)
since 2(x; ) = —(I = Yoo ()™ (I = Z5(2))"'g2(x) and

(I = Yoo (D) Mlsccopy + I = Zo(A) llpcopy <C - (1€ C,Red > pg)

holds as is in Section 2. From (5.1), (5.2) and Lemma 3.2, we obtain the estimate of
Va(De12(g; 4). We can show the estimate for Vp(A)¢1(g; A) similarly. m]

To show Theorem 1.1, we need to obtain estimates of |w(g; 4)| from the above and below.
For the estimate from the above, note that we also have

(5.3) llo1 (5 Dllcony < Clligillcea) (1€ C,Re 1> )

which can be shown similarly to (5.2). Thus Lemma 3.2 and definition of Vo(d)gi(g; 1)
imply that

—Re Alg—yl

1
G4 Vallei(g: Dl =5 f e o IS, < Cllgrllcome

—(Re A)dist(¢,0Q)
oo lg—yl

Since we can get [Vp(Dg2(q; V)| < Cllgallcope”®ePUs@ID) similarly, from these estimates
and Proposition 5.1, we obtain
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(5.5) lw(g; Dl < Cllgilico + Igallcon)e ™Rt (g € Q\ D, A € C,Red > ),

where d(q) = min{dist(g, 0Q), dist(q, dD)}.
To finish the proof of Theorem 1.1, it suffices to show the following estimates of
Va(De1(g; A) and Vp(D)ea(g; A) from the below:

Proposition 5.2. Let Q, D and p; (j = 1,2) be as in Theorem 1.1 and take q € Q\ D.
Assume that g1 € C(0Q) and g, € C(0D) satisfy (1.4). Then there exist constants 6y > 0,
Ho > 0 and C > 0 such that

Re{e' M@ Vo(Dpi(g; Dy = Cu™' (A€ Agy, = Red > p),
Re {" 4PV (Dpr(q; D} > Cu™t (1€ Ay, u=Red > py),
where A5, = {4 € C|[ImA4] < dp(Re A)(log Red)™',Red > e}. Further, ifq € Q\ D, and

all points y € Mya(q) and x € Myp(q) are non-degenerate critical points of the functions
y =y —qland & — |€ — ql, the set As, can be replaced to Cs, for any fixed 6o > 0.

Here, we proceed to finish the proof of Theorem 1.1. From Propositions 2.1 and 5.1, it
follows that

Re {¢"Dw(g; )} > Re {e" P (Va(Dpi(g; ) + e PVip(Dea(g; 1))
— "D Va(Dera(g; D] = "D Va(Dgai (g; D
> R e { e(d(q)—dist(q,ﬁQ))/l e/ldist(q,c')ﬂ) VQ ( /l) 01 ( q; /1)}
+Re {e(d(q)—dist(q,ﬁD))/le/ldist(q,(?D) VD(/l)SDZ(q; /l)}

-C eﬂd(q) { u e—,udo e—ﬂdist(qﬁﬂ) +u e—ﬂdo e—udist(q,BD)}‘

Thus, if dist(g, D) < dist(g, 0Q), i.e. d(g) = dist(g,dD) and d(q) < dist(g, 0€), estimate
(5.4) and Proposition 5.2 for Vp(A)¢s(g, 4) imply that

(5.6) Re {e“Pu(g; )} > Cu™" = " DA _ 7y mheo
>Cu' (A€ Ag,pu=Red 2 p),

when we choose py > 0 large enough if it is necessary. If dist(¢g,dD) > dist(g, 0Q),
ie. d(g) = dist(qg,0Q) and d(q) < dist(qg,dD), or dist(g, Q) = dist(g,dD), i.e. d(g) =
dist(g, dD) = dist(g, 0Q), the same argument as above also gives estimate (5.6). Hence in
any case, we get estimate (5.6). Combining (5.6) with (5.5), we obtain

Cule™ D < |uw(q; D) < Ce™ ™ P* (1€ Agyo i = Re A = ),

which implies Theorem 1.1.
In what follows, we show the estimate of Vq(1)¢i(g; ) in Proposition 5.2. Note that
Vp(Dea(g; A) can be treated similarly to Vo(A)e(g; A). For 7 > 0, we put

Moa(q) = {y € 0Q||q — y| < dist(q, 0Q) + 7}.

Lemma 5.3. For any open set W satisfying Mya(q) C W, there exists a constant 51 > 0
such that Mg (q) € W (0 <7< 9y).

Proof. Assume that Lemma 5.3 does not hold. Then for any / € N, we can find 0 < 7; <
1/1 satistying Mpq 7,(q) ¢ W. Choose y; € Myq -, (q) withy; ¢ W. Since 02 is compact, we
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can assume that y; — y as [ — oo for some y € JQ. This implies y ¢ W since W is a open
set.
On the other hand, noting that y; € Myq 7,(g), we obtain

dist(g, 0Q) < |g — y| < dist(g, 0Q) + 7; — dist(g, IQ) (I » o).

Hence dist(g, 0Q) = |g—y| holds. This means that y € Myq(g) C W, which is a contradiction.
This completes the proof of Lemma 5.3. O

From continuity of 0Q 5 y  |g — y| € R, it follows that Msq(g) is compact. Hence (ii)
of Lemma 3.1 implies that there exist finitely many points yy, 2, ..., yy € Mya(q) and the
standard local coordinates U; 3 o + sY(c) € 0QNB(y;, 2ro) around y; (j = 1,2,...,N)
such that Myqa(q) C UJ;’ZIB(yj,rO) and dQNB(y;,2ry) = s(U;)) (j = 1,2,...,N). From
assumption (1.4), we can take {U,};-1 . n satisfying gi(y) > Co/2 for all y € QN U?’zl
B(y;,2ry) since ro > 0 in Lemma 3.1 can be chosen as small as necessary. Lemma 5.3
implies that Mo -(q) C U?’: B(yj,r0) (0 < 7 < 61) holds for some 6; > 0. We put
U; =0QnBly;,r) (j=1,2,....,N) and Uys1 = {x € 0Q]|lg — y| > dist(q, Q) + 61}.
Since {Uj}j:m ,,,,, N+1 1S a open covering of JQ, we can choose functions ¢; € Cg(f]j)
(j=12,...,N + 1) satisfying 0 < ¢; < 1 and Z?’:ll Y =1 on0Q. We put

lju):fe—ﬂlq—w%%(y;z)dsy (j=1,2,....,N+1).

Definition of Uy, 1, (5.3) and (3.1) imply that

J

P 1
Ini1(D)] < eHole “dlS“"’m)Cllglllaaﬂ)f —dS,
o0 lg =yl
< Ce#01 g HIS@0D 5 - ooy (1€ C,Re > py).

From this fact and Vo()e1(g; ) = Z]Jy: +11 1;(1), it follows that

N
(57 Re(e™@MVo(pi(g; D) = ) Rele ™ POVI())-Ce
j=1
(1€ C,Red > up).

For I;(A) (j=1,2,...,N), each I;(1) is reduced to the following integral:

1) = f eSO PRI Do (j=1,2,...,N),

Uj
where S (o), néj)(a) and 8Y)(c, A) are defined by
¥ i(s9(0))

Ip - sO(o)|
B, ) = ()1 (s9(0); ) = TP()g1(s(0) + A7 T (0)G1 (s (0); D).

SV =Ip-sUo), 1) =

In the above, J(c") denotes the volume elements of dQ and §;(-; 1) € C(0Q) is the function
given by

g1y A) = Y1 (DOU = Y1) ' = Zi() ' g1(y) + Zi(DUT = Zi(D)) g1 ()}
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Note that §;(-; 1) € C(9Q) are bounded in A € C, Re A > g for some py > 0 large enough.
From assumption (1.4), it follows that there exist constants C; > 0 and C| > 0 such that

J2)gi1(s V(@) = C1,  [TV(@)g1(sP(); D < C; (o€ Uj, A € Coyot > o).

Thus these Laplace integrals /;(1) (j = 1,2,...,N) are of the form (4.1), and satisfy (4.2).
Hence, Proposition 4.1 yields that there exists a constant C; > 0 such that Re {e4is(P9D 1 (D}
> Cou~! holds if we take 6y > 0 and y > 0 sufficiently small. Combining this estimate with
(5.7), we obtain

Re ("™ DVo()gi(q; D)} = CNu! = Ce™ > 271 Copr™!

for any p > max{ug, 4C (6%6'2)‘1}. Thus, we obtain the estimate of Vq(A)¢;(g; A) in Propo-
sition 5.2. Note that Vp(d)p2(g; A) can be treated similarly, which completes the proof of
Theorem 1.1.

6. Proof of Theorem 1.3

For the solution w(x; A) of (1.5) (i.e. g2(x) = 0in (1.1)), it follows that ¢,(x; A1) = 0 and
p12(x; 1) = 0 for g, = 0. Hence Proposition 2.1 implies that

(6.1) w(g; A) = Va(Dei(g; D) + Vp(De21(q; A) (g € Q\ D).

First, we show that (6.1) still holds even for g € dD. This gives a kernel representation of
w(p; A) for p € D, which is a basis of the proof of Theorem 1.3.
From the definition of Vo(2)¢;(g; A), it is continuous in g € R?. To obtain

Jim Vo(De21(p + hvpi ) = Vp(De21(p; )
for any p € 9D, it suffices to show the following lemma:

Lemma 6.1. There exist constants C, > 0 and 6 > 0 such that for any 0 < a < 1, it holds
that

[Vo(D@21(p + hvp; ) = Vp(D)e21(p; D] < Co(1 + 1) e h®
(p€0D,0 <h<65,1€Cy).

Proof. We put g = p + hv, with 0 < h < 1 small enough. From (i) of Lemma 3.1, it
follows that

lg = &7 = > +|p — &7 = 2hv, - (€ = p)
>|p—&f(1-2Ch) 22726 —pI*  (£,p€dD,0<h<3/(8C))
for some constant C > 0. Thus we get
€-ql=227~pl  (&pedD,0<h<0)
if we choose 6 = min{1, 3/(8C)}. From this estimate, it follows that

1 1 p—qgl o, 1 I\l lp—ql”
- < <C————.
-4l |§—p|’ L ) N (e R) B e

Noting that |eX — | < |X — Y]em¥*(ReXReT) e also get e~ e=dl — = AE=PI| < | A|etheHEPl p —
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ql < (SUP&«E@D € = ]| A|ethe =Pl p — g|* /& — p|* for p, & € OD. These estimates yield

|Ex(q, &) — Ex(p, )| < C(1 + |A])ee 7! (& pedD,0<h<o).

€ — pl+e
From (2.6), (3.25), estimate (3.28) and the above imply that
[Vp(D@21(p + hvp; A) = Vp(Dea1(p; D)
< 1 (y; D f IMy(& PIENG, ) — Ea(p, OIS «dS
aQ oD
h(l

SCA+AY | los Dl | e eHethe P ———ds,
o0 oD €= pl'+e
1 3 phth o =pudist(p.0D) . de
< CA +]A) A% e lerGs Dllcoy | w5
ap € — Pl
This estimate, Remark 3.3 and (5.3) show Proposition 6.1. ]

Thus, (6.1) still holds for p € dD. From this fact with Propositions 2.1 and (2.6), for any
p € 0D, the solution w(p; A) of (1.5) are represented as

1
62) wpi ) =5 [ A S,
0Q -
where A(y, p; 4) is given by
o~ AE=pl
(6.3) Ay, p; ) = e [ M€, y)——dS.,
oD E-pl

since (3.25) implies that the integral kernel of Y51 (1)'((I — Y22(A))™!) is My(&,y) (y € 09,
& € dD). From (3.28) and Remark 3.3, we obtain

HIE-p

(6.4) Ay, p; Dl < CpeP™ f eHE
ap € = pl

This rough estimate tells that only the points belonging to My (p) surely contribute to the
main term of (6.3) as |1 — oco. Hence, to pick up the main part of A(y, p; 1), we need to
study for structures of Myq(p). Here, we recall the definitions of Mya(p), M:;’Q(p) and
Mgg( p), which are introduced in Introduction. Note that they are also written by

Mzo(p) =y € Mao(p) [P €G*(y)),  Mjo(p) =y € Maa(p) | p € G},
where for y € 0Q, G(y) and G*(y) are defined by

Gy) ={&£€dD|v:-(y &) =0}, G ={£€dD| £ve-(y—&) >0}

Since dD is strictly convex, for any point y € Mpya(p), only the following three cases
occur: the line segment py has a single common point p in dD, the line segment py has a
single different point p* = p*(y, p) from p in dD, and the line segment py tangent to dD.
The first case and the second one correspond to M3, (p) and M, (p), respectively. From
assumption 2) of Theorem 1.3, there is no point for the third case, i.e. Mgg(p) = 0.

For 6 > 0 and y € 0Q, we put

Gs(y) = (¢ € OD|dist (£,G(y)) > 6}, G5(y) = Gs(y) N GE(y).

dSe < Cu’.
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As below, M3, (p) are disjoint to each other if Mgg(p) = (.

Proposition 6.2. Assume that 0D is of class C* and strictly convex. For a fixed p € 0D,

assume that Mgg(p) = 0. Then M3,(p) C 0Q are closed sets. Further, there exist a

constant 6, > 0 and open sets U*(p) C 0Q such that Mz, (p) C U=(p), U(p)NU'~(p) =0
and U=(p) have the following properties:

(6.5) p € Gs,(y) forany y € U*(p).

Proof. We set 6. = inf +v,-(y — p)/ly — p| and show 6. > 0. If this is not true,
yeMz,(p)

there exists a sequence {y;;} C M3,(p) such that +v, - (y; — p) = 0 (n — ). Since 9Q is
compact, we may assume that {y;’} itself converge to some point y; € dQ as n — co. Hence
it yields that +v,, - (g — p) = 0 and yi € Mya(p) since Mya(p) is closed. This means that
y; € Mgg(p), which is a contradiction.

We put U=(p) = {y € 0Q| +v, - (y — p)/ly — pl > 6./2}. Then U*(p) are open

set in 0Q, U*(p)NU'~(p) = 0 and M3,(p) C U*(p). From these facts, it follows that

M (p) = Moaa(p) N U*(p), which implies that M, (p) are closed.
Next we show (6.5) by using contradiction argument. Assume that (6.5) does not hold,
then for any n € N, there exists jj;, € U'*(p) with p ¢ gf/n(g;), i.e. dist(p, G(7;)) < 1/n or

+v,-(J; —p) <0hold forany n = 1,2, .... From ij; € U*(p), it follows that +v,, - (7; — p) >
2716.l5F — p| > 0. Hence dist(p, G(7*)) < 1/n holds for any n € N, which implies that
lZr — pl < dist(p, G(7,,)) + 1/n for some Z; € G(7,). Thus we obtain Z; — p (n — o). Since
0Q is compact, we can choose a subsequence {g;j} such that g:j — i as j — oo for some
j; € 0Q. Thus, jj € U*(p), i.e. £v, - (§; — p) > 0 since U*(p) is closed. On the other
hand, we can get v, - (§; — p) = 0 since Z; € () means vz - (§, — Z,) = 0 forany n € N,
which is a contradiction. Thus we obtain Proposition 6.2. |

We also use the following property:

Lemma 6.3. Assume that dD is of class C* and strictly convex. Then, the function defined
by (&,y) € 0D x 0Q w dist (¢, G(y)) is Lipschitz continuous on 0D X 0Q.

Proof. We put F(¢,y) = dist (£,G(y)) (¢ € dD,y € 0Q). It suffices to show that F' is
Lipschitz continuous in y since the definition of F' easily implies |F (&', y) — F(&,y)| < |€ —¢€]
(é,& € 0D,y € Q). We choose a bounded open set U C R? satisfying 9Q ¢ U and
D N U = 0. For the purpose, we need the following claim:

Claim: there exist 6 > 0 and C > 0 such that for any y,y’ € U with |y’ — y| < §, and any
EeCw), {neCW)lin-&<Cly —yl}+0.

If the claim is true, we can get Lipschitz continuous property of F as follows: Take any
& € 0D and any y,y’ € 0Q(c U) with |y’ — y| < 6, where § > 0 is the constant in the claim.
Since G(y) c dD is a bounded closed set, there exists a ¢ € G(y) such that F(&,y) = |€ — £].
From the claim in the above, we can find n € G(y’) satisfying |n — {| < Cly’ — y|. Hence, it
follows that

FEY)-FEy <lE-n-1E-d<I{-n<Cly -yl
This implies |[F(&,y') — F(&,y)l < Cly’ —y| (y, iy’ € 9Q, & € dD) by changing the role of y
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and y'.
To show the claim, we take y € U and ¢ € G(y), and choose a standard system of local
coordinates around x given by

Uso="o,0) - s(0) =&+ 0161 +00ey + g(o)(—=ve) € B(£,2r9) N AD,

where ry > 0 depends only on dD (cf. (ii) of Lemma 3.1). Here, we can take ¢; = (y —
E)/ly — &l and e = ey X ve. For the frame {e;, es, —ve}, we put y’ = y + 71e; + o + 1(—Vg)
(t = (11, 72) € R%, t € R), and define

G(o,7,1) = vy - (Y — 5(0))
=(y =&+ 11 —01er vy + (T2 — 02)er - Vo) = (t = g(O))Ve - V(o).

Since e;-vg = e3-vg = 0 and g(0) = 0, we have G(0,7,0) = 0 and 9,G(0,7,0) = —vg-ve = —1,
the usual implicit function theorem implies that there exist a constant y > 0 and a function
(0, 1) defined for |o| < dp and |7] < &y such that ¢(0,7) = 0 and G(o, 7, (0, 7)) = 0 for
lo] € 69 and |1| < §p. Since

2

avs((,) 0°s
- —(ly =&l +T)ve - @(0),

0,,G(0,71,0,0) = (ly = &l + 11)ey - 3
o1 lo= 1

estimate (3.5), being strict convexity of 9D, yields

> i — .
80’1 G(0,71,0,0) > R2( yeag,lgfeﬁD ly =<l +TI)

Hence it follows that there exists a constant Cy > 0 such that

_801 G(o,1,¢(0, 7)) > Co (o] < 6. 1] < 60)

0Go. gy — 0 TS
if we choose ¢y > 0 sufficiently small if it is necessary. From this estimate and ¢(0,0,7) = 0,
it follows that ¢(01,0,7) > Coo; (0 < 01 < dp) and ¢(01,0,7) < Cooy (0 > o1 = —dp).
Hence for any |f| < Cydp and |7] < dy, there exists |o7;| < dg such that p(o1,0,7) = 1.

We choose 6 = min{dg, Codo} > 0. Then, for y' = y + 11e; + Taes + H(—ve) € R3
with |y’ — y| < ¢, there exists |oj| < dp such that ¢(01,0,7) = t. We putn = s(o1,0) =
&+ oier + g(01,0)(—ve) € dD. From the property of ¢, it follows that € G(y’) since
vy (' —1n) =G(01,0,7,0(01,0,7)) = 0. Further, (3.3) implies that

O 0(0,7) =

1+ R0
I — & < |o1] + lg(a1, 0)| < |oy] + Rylory [P < ﬁw(m,o, 7)
1+ R0 1+ R0
= P < 20y —yl.
Cy Co

Note that the above 0y > 0, Cyp > 0 and 6 > 0 can be chosen as constants independent of
y € 0Q and ¢ € G(y) since as is in Lemma 3.1, the function g in o belongs to B*(R?) with
the norm ||g||52z2) having an upper bound independent of & € dD. This shows the claim,
which completes the proof of Lemma 6.3. |

In what follows, we fix p € dD. For the sets U'*(p) introduced in Proposition 6.2, we put
U~(p) =D\ {U"(p) U U~ (p)} and decompose w(p; ) into the following three parts:
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(6.6) w(p; ) = w" (p; ) +w (p; ) + w = (p; A),
where

1 Ay
w'(p; ) = —f P, (y; )]
Vi)

+ Ay, p; DJdS,  (y=+—,—).

2n ly — pl

First we show the term w™(p; A) in (6.6) is negligible. Note that there exists a constant
c1 > 0 such that

ly — pl > dist(p, 0Q) + ¢/ (y € 0Q\ (U (p)UTU~(p))

holds since Mga(p) € UH(p) U U~ (p), U*(p) are open sets in 9Q, and Mya(p) is a closed
set as is in Proposition 6.2. Combining the above estimate with (6.4) and (5.3), we obtain

(6.7) w™(p; V| < Cu’ f e Py (y; DS, < Cle e HINPOD),
U==(p)
To obtain estimates for w*(p; 1), we need the following facts:

Proposition 6.4. Assume that 0D is of class C* and strictly convex. For a fixed p € 0D,
assume that Mgg(p) = (. Then the term A(y, p; A) satisfies

Ay, p; A) = +O0W™") as|A = oo (uniformly iny € U™*(p), 1 € Cy),

1
ly — pl

and

Aly,p; ) = — +0W™") as|d — o (uniformlyiny € U~ (p),A € Csy)-

1
ly = pl

Proposition 6.4 is the key estimates for Theorem 1.3. The proof will be given in the next
section. Here we proceed to show Theorem 1.3 by using Proposition 6.4.

Proposition 6.4 leads an upper bound estimates of |[w(p; 4)| easily. Since Proposition 6.4
yields

lw*(p; DI < C f e o1 (y; DA, p; IS, < Ce PO,
V)

decomposition (6.6) of w(p; A) and (6.7) imply that
(6.8) lw(p; V)| < Ce PPV () e Cs 1 > o).

Thus we obtain an upper bound for |w(p; A)|.

Next, consider estimates of |w*(p; A)| from the below. For the constant Cy > 0 in as-
sumption 3) of Theorem 1.3, we put W = {y € 0Q|gi(y) > Cy/2} so that W c 0Q
is open and Mgg(p) C W. From assumption 2) of Theorem 1.3, and Proposition 6.2, it
follows that Mya(p) € WUU ~(p). Since WUU~(p) is open, Lemma 5.3 implies that
Mo -(p) € WUU(p) (0 < 7 < §;) for some constant 6; > 0. Noting U (p)NU~(p) = 0,
we obtain

91y) 2 Co/2  (y € Mo (P)NU™(p),0 < 7 < 6)).

Hence from the same argument as in the proof of Proposition 5.2, we get constants C > 0
and o > 0 satisfying



152 M. IKEHATA AND M. KAWASHITA

(6.9) Re [¢" Pyt (p; )] 2 Cu™' (= po, A € Ag).

Next, let us consider w™(p; 4). Since Proposition 6.4 implies ﬁ + Ay, p;A) = 0w

as || — oo uniformly in y € U™ (p) and 4 € C,, from (6.2), it follows that

(6.10) lw™(p; )| < Cu™! f eHPgs o (> o).
U=(p)

Note that using assumption 4) of Theorem 1.3 and applying Remark 4.6 or Proposition 4.7
in Section 4, we obtain

2
f PGS, < CuT TP (s 0 e Cy)
v

with some constants C > 0 and /y > 0. This estimate and (6.10) yield
™ (p; D)) < Cp~ "o e HEPAD (s g e Cs,)-
From the above estimate, (6.7), (6.9) and (6.6), it follows that
Re [Py (p: )] > Clu™" = C'u 5% — Clpe™ )
>27'Cu" (u = o, A € Agy)

if we choose a constant uy > 0 sufficiently large. Combining the above estimate with (6.8),
we obtain Theorem 1.3. |

Concluding this section, we give a proof of Remark 1.4. If there exists a degenerate
critical point yo € M, (p), from Proposition 4.7, one gets

Rew* (pip) = Cp 02 e P800 (e Ay i > o)

for some constants C > 0 and [y > 0. This estimate is better than (6.9). Note also that from
(6.10) and

f PGS, < Cule PRI (s oy
U-(p)

it follows that
w(p: V)| < Cule M EPID (> ).
Combining these estimates with (6.7), we obtain
Rew(p; p) = Ce P52 (> p1g)

if we choose a constant yy > 0 sufficiently large. This shows that Remark 1.4 holds.

7. Asymptotic behavior of A(y, p; 1)

In this section, we show Proposition 6.4 giving the main terms of A(y, p; 1). We need the
following properties of the broken path in the boundary integrals:

Lemma 7.1. Assume that dD is of class C* and strictly convex. Choose (¢, y) € D X 0Q.
If € € G"(y) U G(y), then the function |¢ — n| + |n — y| in n € D attains the minimum only
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atn = p. If ¢ € G (y), then the points on dD that attain the minimum are given by only two
points n = & and & = &' (y, £)(# &), which are the cross points between the line segment py
and 0D. Moreover the following statements holds:

1) Given 6 > O there exists a positive constant Cg such that

€ =l + 17—yl > |€ =yl + Cslé =7l (é € G5(y),n € OD).

2) Given 6 > 0, there exists constant 0 < 6, < 6 such that | — &*| > 26, for &€ € G (y).
Further, for any 0 < ¢’ < 6, there exists a constant Cs > 0 such that

E=nl+m—ylzlE—yl+Csln—¢& (€ GsW),n€dD,In-E& 1y, > 0).

3) Given 6 > 0, there exists constants Cs > 0 and C}; > 0 such that for any 0 < 6" < Cj, it
holds that

E—nml+n—yl 2 1E—yl+Csln—E W OF (€ €G5w),nedD,n—& Wyl <.

Proof. Lemma 7.1 is shown by the same argument as for Lemma 5.2 of [2]. To adjust
Lemma 7.1, we need to replace p to y, x to p and z to 7 in Lemma 5.2 of [2]. Here we give
a brief explanation for the proof.

First, note that similarly to (3.7), we get

n-¢& y-¢
7.1 - - - (1 - —= - —=
(7.1) €=l +In =yl = |E—yl +1¢ = [ = Iy—fl)
since it follows that
. Y€ . y—€ L= y-9
ly—&l=w-mn ly_§|+(n &) |y_(ﬂsly nl + e

For & € G5 (y), ve - (y — &) > 0 holds. Since 0D is strictly convex, (7 — &) - v¢ < 0. Hence it
follows that

((y—f)-V§)2S|(y—§ "_f).v§‘2< y—¢& n-¢&p

ly — &l ly =&l In—€l Sy =€ In—¢€
Sz_zn__f.y__g_
=&l ly—¢l

The above estimate and (7.1) yield

A2
|f—n|+|n—y|z|§—y|+7“|§—n| (€ € Gi(y),n € OD),

where As = inffegg(y)((y — &) - ve)/ly — &|. From Lemma 6.3, for any ¢ > 0, the set {(£,y) €
0D x 0Q| ¢ € Gi(y)} € dD x 0Q is a closed set. Hence we have A; > 0, which yields 1) of
Lemma 7.1.
The former part of 2) can be obtained by showing Bs = infeeg; () I€ — £*| > 0. The latter
part is given by (7.1) and
Ds = sup sup Lf-f_§<l
£€6,0) neop\ien)\BEs 11~ &1 167 = ¢
since (" — &)/|E" — €] = (y — ") /ly — &7|. From Lemma 6.3, for any ¢ > 0, the set {(£,y) €
0D x0Q & € G5(y)} € OD x 0 is a closed set. Note also that the mapping (€, y) = &£*(y,&)
is continuous. Using these facts and tracing the argument for showing Lemma 5.2 of [2], we

bl
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can obtain Bs > 0 and Dy < 1, which yields 2) of Lemma 7.1.

For 3), we also follow the argument of [2]. We take y € 0Q, n € dD and & € G~ (y) C D
and put L(x) = |x — n| + |x — &| for x € R?, and z = p — &*. Since |y — &| + |¢* — €] = |y — &),
it follows that
P42 -z RP+2E -8z

L(y) L) '

ly—ml+In—¢él—ly—&l=

Note that for any x € R3, x # &7,
-z -0z {x=-&-2" 1PE-»-z

Lx)  2—&1 (L2 —&1 2Lx0))>%x—&
and (y — &) /ly — €|+ (€ — £9)/|€ — £°| = 0 holds. Since y € G~ (p), we obtain
1 s ly—€1 E-¢ >
— - Q-
y-nl+n-€-ly-&=(+— o L@)| 2 - 2 Tyt @ é3))2)< 2)
- 2( P 1 )IZI29~Z,

(L)  (L#)?
where 6 = (§ — £)/1€ - &7

By the same argument as for As > 0 and Bs > 0, it also follows that

inf ly—nl+|y—&1>0, inf p =&+ & —€ >0,
(€ meG; (y)xaD m+ly=¢ (& me G5 (y)xaD (IR

Sk

inf |y—&1>0, inf | | >0, inf
fegg(wy ¢ Gy &= Gy ly — &

* Ve > 0.

Hence, there exist constants C > 0 and C’ > 0 such that

ly—nl+—&-ly-&>Cz* =@ -ClzP (&€ G;y),ne D),

where we used 1/L(y) = 1/Q2ly — &*]) + O(|z]) and 1/L(¢) = 1/(2|¢ — £€]) + O(|z]) uniformly
in&€G(y). Since (y —&) - ve = —(ly—&1/IE=ENE—-E) - ve >0and (n— &) ve <O,

the same argument for 1), we obtain

Y- f* 2 2 7113
ly —nl+In—&l—-ly—¢&l = nf Ve ) 12l = Clzl
y—n+n-¢&-ly-¢ 2(§g§(y)|y el )
(é‘: € g(s (!/)J] € aD)7
which implies 3) of Lemma 7.1. This completes the proof of Lemma 7.1. m|

From Proposition 6.2 and Lemma 7.1, it follows that for p € dD given in Proposition 6.2,
there exist constants C; > 0, 6, > 0 and &, > 0 with 5, > &, such that

(7.2) lp—nl+m—yl=lp-yl+Cilp—pl (€U (p),neaiD),

(7.3) lp = p*(y, p)l > 26:(> 25%) yeU (p),

(7.4) lp=nl+-yl=lp-yl+Ciln-pl (yeU (p),nedD,ln-p’=d),
(7.5) lp=nl+In—yl>Ip—yl+Ciln-pT (ye VU (p)nedD,n-p’l <)

Note that in (7.2)-(7.5), ¢, > 0 can be chosen as small as necessary.
Now, we treat the case y € U""(p). In this case, the main part Aj(y, p; A) of A(y, p; A) is
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given by
e~ =l

—dS
E—pl ¢

Ay, p: ) = V7 f K&, y)
oD
as is in the following lemma:

Lemma 7.2. There exist constants py > 0 and C > 0 such that

—plg=pl

IMa&,y) — K&, dSe < Cu e Pl (y e U*(p), A € Csyo it > o).

aD € - pl
Proof. Since y € U'*(p), estimate (7.2) holds. From (7.2), (3.25), (3.26), (3.21), (3.31)
and (3.27), it follows that

~ulé=pl
lng < C f IRa&.p)I

e~ HIE=pl

e e

e~ HIE=pl
EpdSera. y; D)

f IMAE) = Kl s

f asc | e 0I5
oD
—p(lE—yl+lg-pl)
Sc{f 6—ng
oD € — pl ‘
1
. oH=plei- (] 4 + (¢ = pD'7?)ds
“j;a (mgl(ﬂfp)i}

SCe_“y_”lf e HCIE=pI2( |, 4 d4s
- e |) ¢

Note that in the last inequality, e #*C16=P/2(y¢ — p|)!/2 < 1 + 2C|" is used. Hence, Remark
3.3 implies

faD e—ycnf—puz(lu n = I)dsf < (,u 2 ﬂ,—l) =20u7",

which completes the proof of Lemma 7.2. m|

From (6.3) and Lemma 7.2, it suffices to show

1
(7.6) ALy pi ) = = +OW™) asl - o

(umformly iny e U (p), A €Cs,)

to obtain the estimate of A(y, p; 2) for the case y € U (p) in Proposition 6.4. For p € D, we
choose sufficiently small standard local coordinate U > o — s(o) € dDNB(p, 2ry) around
p € 0D. Take y € C*(0D) with 0 < y < 1, x(2) = 1 for z € DNB(p, ry) and y(z) = 0 for
z€ 0D\ B(p,4ry/3). From (3.21), (7.2) and Remark 3.3, it follows that

e HIE=p| e~ HC1lE=pl

€ - Ip — ¢l
< Crglyfa e HCOkPlgs . < Cry'ut (Y e U(p), A € Csyo 1t > o).
D

(7.7) eﬂ"/ l f (1 = Y(E)K (& y) > dS$|<C.U f (1 = x(@) —n ds ¢

Thus, by using the above standard coordinate, the main term of (7.6) is given by
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e~ Alp=¢l
(7.8) [ voREnT—zdse=a [ ern B,
lp =&l U ls(o) — pl

where (o y) = ly — pl = |p — s(o)| = |s(0) — yl, and H(o; y) is defined by

V(o) (y - S(O-))

1
H(o:y) = 5-x(s(0)G(o) 5@) — 4P

with G(o) = det(a—( o) - 7(0’)) Note that H(-;y) € Cy(U) since D is C? boundary.
o

Thus, the main term of (7.6) is deduced by the following Lemma:

Lemma 7.3. Assume that D is of class C? and strictly convex. Then for any h € C(l)(U ),
the integral J(A;y) defined by

o h
(7.9) J(y) = f ey _Mo) do
U Is(o) = pl
has the following property:
’ ly -l
Vp* (p - y)
uniformly iny € U*(p), where p(c3y) = ly — pl — Ip = s(o)| = |s() — yl.

J(y) =21 ’h(O)/l‘l +OW?)  (as |4 — o)

Note that Lemma 7.3 is also valid for the case y € U"~(p), which is used to treat the case
y € U™ (p). The proof of Lemma 7.3 is given in the last part of this section.
We apply Lemma 7.3 to (7.8). Noting G(0) = 1, v, - (y — p) > 0 for y € U*(p), we obtain
—/Up—cﬂ — 1 v, . —
S = /1(27r ly—pl 1 v-(y 2p)
Ip fl ' vp-(y—=p)2r |y —pl

+0w™)

(7.10) e'vr! f XEKNEy) o)

" ly-pl
as || — oo uniformly in y € U (p), which yields (7.6). Thus, the case of y € U*(p) in
Proposition 6.4 is shown.

Next lemma is for the case y € U™ (p) where the main part A;(y, p; 1) of Ay, p; ) is
given by

i i o=l
A pi0 =0 [ (K s | KiEmKinpds, ) s
oD oD i€ - pl
Lemma 7.4. There exist constants py > 0 and C > 0 such that
e HE=pl
aan [ e - ke~ | ek s |T—ase
oD oD

<Cu e (yeU(p).ade Cao,u > ).
Proof. From (3.25), the left side of (7.11) is estimated by
(7.12)

e HE=pl e~ HIE=pl
IKa(f y)l dse +f IY &, n)l dS K, )
€ - pl oD i€ = pl

K (n, e HE=pl
v [ as) it 2O [ e - Kielt—dse.
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From (7.3), if y € U~ (p) and & € 0D satisfies |n — p*(y,&)| < 85, then |np — p| = |p — p*| —
In — p*l = 26, — &) = ¢,,. Hence, (3.31) and (3.32) yield

L

e HE=p|

|§ | fmnY € - Kie.ni—

1 1 1 1
< Ce‘“'”‘f"{l + + + (1+ 3l
Hn—=pl In=pl  In-pl In—p
< Ce#mrl (€ dD, |- p*| < 8,4 € Cs, i = Re A > up).

ds.;

From the above estimate, (3.31), (3.21), (7.4), (7.5) and Remark 3.3, it follows that (7.12) is
estimated by

1 .
Cu f e V(1 + + (ulé = p?)dS e + C f e CHEPT g,
- 28, Hlé — pl ’

l§=p*|<d,

<Cu™' (= po),

which completes the proof of Lemma 7.4. |

From (6.3) and Lemma 7.4, to obtain the estimate of A(y, p; A) for the case y € U~ (p) in
Proposition 6.4, it suffices to show

(7.13) Ay p; ) = +0@u™") as|l - oo

-1
ly = pl
(uniformly iny € U (p), A € Cs,).

To treat A (y, p; 1), we need to get an asymptotic behavior of the integral given by replac-
ing y € U™ (p) with a point & € 9D satisfying |v,, - (£ — p)| > 3ry in (7.9), where ry > 0 is the
constant appeared in the standard local coordinate U > o +— s(o) € dDNB(p, 2ry) around
p € 0D used to define (7.9) in Lemma 7.3.

Lemma 7.5. Assume that D is of class C? and strictly convex. Then for any h € Cé(U ),
the integral J(A; &) given by (7.9) has the following property:

If pl

J6) =21 | |h(0)/l +OWD)  (as A — )

uniformly in & € D with |(¢ — p) . vpl > 3ry.

The proof of Lemma 7.5 will be also given in the last part of this section. Using Lemma
7.5 and Lemma 7.3, we first show the case of y € U""(p) in Proposition 6.4.
For the case y € U""(p), we need the following properties of the broken lines:

Lemma 7.6. Assume that 0D is of class C? and strictly convex. Given § > 0 there exists
a positive constant cy such that
(i) forall £,¢, p € D with |¢ — p| = 26, [ — €] = 6, and | — p| = § we have

I& = 21+18 = pl = 1€ = pl + co;
(ii) for all €, ¢, p € OD with |€ — p| > 20, |{ — p| < 6 we have
& = {1 +1& = pl 21§ = pl + cold — pl.
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Note that these estimates are given by simple properties of the Euclid distance. Hence we
show Lemma 7.6 although Lemma 7.6 is given as Proposition 2.2 of [1].

Proof of Lemma 7.6. For (i), ¢y is given the infimum of |£ — | + | — p| — |€ — p| > O taken
on the set {(£,Z, p) € 0D X dD X dD||¢ — p| = 26,| — €| = 6,| — p| = 6}. Note that since dD
is strictly convex, | — | + | — p| — |€ — p| is positive for these three points &, £ and p.

For (ii), if the estimate of (ii) does not hold, for any n € N, there exist points &,, {,,
Pn € 0D such that |&, — p,| > 20, |, — pal < 0 and |, — Lul + 18 — pal < €n— pal + n! &0 — Pnl-
Note that £, # p, (n € N) since n™'1{, — pul > 1€, = &ul + 14y = pal — €4 — pal > 0. Hence
we can put 8, = (&, — pu)/|én — pul- Since dD is compact, we can assume that &, — &,
Ly — Lo, pn = po and 6, — Gy as n — oo respectively. Then &y — po| = 20, [{o — pol < 6 and
|0 — Lol + 1¢o — pol = |0 — pol hold. Since dD is strictly convex, the points pg, ¢y and & do
not on a line. This implies py = . Here we note that

|§n - pn|2 + |§n - pn|2 - 2|§n - pnlen : (gn - pn)
1
= |‘§:n - édnl2 < (l‘fn - pnl + (Z - l)lgn - Pn|)2,
which yields

20, G p) <2 = = pl + (o5~ i il

Taking n — oo, we obtain 6 - (€9 — po) = |€o — pol, which implies 6y = (&9 — po)/Iéo0 — pol.
Further, from (i) of Lemma 3.1, it follows that |v,, - 6,| < C|{, — p,| — 0 (n — o0), which
yields v, - 8y = 0. These facts mean that 0 # & — po € T),(9D), and &, € D, however this
does not occur since dD is strictly convex. Thus we obtain Lemma 7.6.

From Lemma 7.5 and Lemma 7.6, we show the following property:

Lemma 7.7. For any 6 > 0, it holds that

—/l\f—pl -1
M f K6 FOW™) as A — oo
oD 1€ - pl Ip ul

(n,p € OD,|(n—p) - vpl 2 6,4 € Cy)).

Proof. Asisin (7.7), we choose a standard local coordinate around p € dD. Since 9D is
compact, we can take ry > 0 independent of p € 9D and arbitrary small if it is necessary.
Thus, for any fixed 6 > 0, we choose ry > 0 as ¢ > 3r( and consider the case that , p € dD
with |( — p) - v,| > 6. If this is the case, since [ — p| > 6 holds, Lemma 7.6 implies

=&l +1E—-plzn=pl+co (.6, pedD,ln-E&26/2and|p - & 2 6/2),
In—&l+1§—pl=In—pl+coln—¢ (&, p€dD,ln—El<6/2),
=&l +1&=plzln—pl+clp-& (.6, pedD,|p-£<6/2)

for some constant ¢y > 0 depending only on D and 6 > 0. We take y € C*(0D) with

0<xy <1, x() = 1for|€ - p| <rp/2 and (&) = 0 for |¢€ — p| > ry. These properties of the
broken line, (3.22) and Remark 3.3 yield that

el PI

(7.14) ”"’ 7 f (1—)5(5))19(77,6)'f | Se
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< Cl|4 {e—llco|§—P| + e Heolé=nl e_”CO}dS§
oD

<Cu™' (A€ Cspu = po).

Next, note that as is in (7.8), using the standard local coordinates, we have

_ e ! . Hosn)
Aln=p| K\(n, ds . = f )] do,
€ f X(EK(n f) €~ pl &= Ue I5(0) — pl g

where (o3 y) = [n— p| — |p — s(o)| — |s(0) — n| and H(o; n7) are given by replacing y with n
in (7.8). Note that H(:;n) € C(l)(U) since |s(07) — p| < 2ry foro € U and | — p| = 6 > 3rp.
Noting G(0) = 1, v, - (n — p) < 0 forn € D with |[(n — p) - v,| > 6, from Lemma 7.5 we
obtain

e~ m—pl 1 vy (- P)
[ MoK s = a(on L 0
& Mflf ploe ( vp-(p—m2r In-pP U )
2
=~ ” +0(,u) (as || — o).
n-p
Combining the above result with (7.14), we obtain Lemma 7.7. ]

Using Lemma 7.7, we show (7.13). Choose a standard local coordinate U 3 o +— s(0) €
dDNB(p, 2ry) around p. Note that for 6, > 0in (7.3)-(7.5), we can choose ry > 0 and 0, >0
in (7.3)-(7.5) satisfying ¢/, < ry < 5,. Note that there exists a constant 0 < ¢’ < 0, such that

(7.15) (7 —p)-vyl=¢ for all n € D with |n — p| > &5.

Indeed, from strict convexity of D, it follows that (7 — p) - v,| > 0 for any n € dD, n # p.
Since D 3 i+ |(n — p) - v,| € R is continuous and {n € dD||n — p| = ¢} } is compact, we
obtain (7.15).

From (7.15) and Lemma 7.7, it follows that

e =l =An=p|
(7.16) | f Ka(n,&)———dS ¢ + < CuteHin-rl
oD € - pl In — pl

(n € 0D, In - pl = 65,4 € Cs, pt > o).

Take ¢ € C*(OD) with 0 < ¢ < 1, y(n) = 1 for y € dDNB(p,5,), y(n) = 0 forn €
OD\B(p, 46,,/3). Using ¢ and (7.16), we can show that the main part of A (y, p; 4) is given

by
p e E- P|
(7.17) - ”'f WEKE y)~ = | Se.
To check it, we estimate the following integral:
A e pl
@18 |- [ sk nT—ds

e~ A= p\

= et f (1= vK . 9) s,

o= p\

4 f ds f K, &)K. y)——dS ¢
" e—p®
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I 2
—/1|f 7l
+euy—1ﬂlf ,70(,7)|f KA(’]af) dS§||K/1(77 ldS .

—An=pl e~ AE=pl
<evt [ a-umikinn|t—r+ [ KinoT—asdas,

& -
From (7.16), (3.21), (7.4), (7.5) and Remark 3.3, the first term of (7.18) is estimated by
(7.19) Ceuly—p\{ f e—u(\n—yl+ly—p\)d§T7 + f e—#(ln—yl+ly—pl)dsn}
S s (p)NS ;2(17*) Sa, ()

< C{f e—Clﬂl’]_PldS” +f e—Cl,uln_P*lzdSn} < C/J_l (y e U-—(p))
S5, () S (P

From (3.22), (3.31), (7.4) and Remark 3.3, the second term of (7.18) is estimated by

(7.20) Ce#ly—Plluf e—#(lﬂ—yl+|y—l7l)(1 + + (uln - P|)1/2)d577
S (P)

pln = pl
1
< Cf e—C1|77_P|/2(ﬂ " _)dS77 <Ccu' WeU (p).
Sos (P) |77 - p|

From (7.18), (7.19) and (7.20), it follows that

e~ =l

1€~

To obtain asymptotics of (7.17), we use Lemma 7.3 for the case y € U (p). Since
supp ¥ C B(p,2ry) C B(p,26;) and v, - (y — p) < 0 for y € U~ (p), the same argument as for
(7.10) implies that

720 A pi ) - e f WEKE T ng\ Cu' (e U (p).

A=l el pl —1
r f WEOKE )~ Se = +0u™)
[ | ly = pl
as |[A] — oo uniformly in y € U~ (p). Combining the above fact with (7.21), we obtain the
case of y € U~ (p) in Proposition 6.4, which completes the proof of Proposition 6.4. m|

The last of this section, we give a proof of Lemma 7.3 and 7.5. These lemmas are unified
to give an asymptotic formula for the integral J(1; ¢) given by

J(A:q) = f P LICORP S O
’ v |s(c) = pl ’

where s(o) is a standard local coordinate
U0 s(0)=p+oie +0e, —g(o)v, €D N B(p,2ry)

around a fixed p € D with an open set U c R? and ry > 0. In the integral J(1; ), ¢(07; q) is
given by ¢(07; q) = lg — p| — g — s(o)| — |s(o) — p| for some g € R3. Note that Lemma 7.3 is
the case of ¢ = y € U*(p), and Lemma 7.5 is for g = £ € 0D with |(¢ — p) - v,| = 3rg. Thus
it suffices to show the following lemma:

Lemma 7.8. Assume that dD is of class C? and strictly convex. Then for any h € C(I)(U ),
the integral J(A; q) stated above has the following property:
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Iq pI

J(Aq) =21 | |h(0)/r1 LoD (as A = o)

uniformly in q € U*(p) or g € 0D with (g — p) - v,| = 3.

Proof. For the polar coordinate oy = rcos 8 and 0, = rsin 6, we put §(r,6; q) = ¢(0; q),
h(r,0) = h(o), §(r,0) = s(rcos 6, rsin @) and g(r,0) = g(rcos @, rsin §). Then it follows that

2 h(r, 0)
/l (r,6;q)
“")‘ff e -

Since @(r,0;q) = lg — p|l — g — s(rcos @, rsin@)| — ry/1 + r2(g(r,0))? and §(r,0) is a C>
function with §(r,0) = O(r*) near r = 0, we obtain 9,%(0,60) = —(1 + a; cos f + @, sin ),
where @ = (p— ) ¢;/lg — pl (j = 1,2).

First, we consider the case of ¢ € U*(p). Weputas = (p—¢q) - v,/lg — pland B =

,/a/f + a%. From the proof of Proposition 6.2, there exists a constant 0 < ¢ < 1 such that

[(g—p)-v,l/lg—pl = 6 for all g € U'*(p). Hence we obtain |a| cos @+, sin ] < \/a? + a2 =
P 1 T

1-a? < V1 -6 < L. Thus, 3,3(0,6;9) < —(1 - 1 —a}) < —6%/2 < 0 holds for any
6 € [0,2x], which implies that 9,((r, 0; q) < —6°/4 for (r,0) € [0,r] x [0, 27] with some
constant 0 < r; < 2ry independent of g € U*(p). Take y € C*(R) with 0 < y < 1
and y(r) = 1 (r < r/3) and y(r) = 0 (2r;/3 < r). Noting that (7.2) and (7.4) yield
-@(r,0;q) > C1|5(r,0) — p| > Cyr,and r; /3 < r < |5(r, 0) — p| < 2rp for x(r) # 1, we obtain

270 fZﬂ —Clurrdrde

< Ce—3“C1rm
r1/3

(7.22) /(A 9) = Jo(li 9l < C R

27
Jo(A;q) = f f Py |(h(0) )plrdrde

For Jy(4; q), noting r/|35(r, 0) — p| = 1/4/1 + r~2(g(r, 0))? is C'! function near r = 0 and
)((r)fl(-, 0) e C(l)([O, r1)), we use integration by parts and obtain

where

27 00
Jo(d:q) = f f L ereay XD
0 0o A0,¢(r,6;q) 1+ ’”_Z(Q(}’, 9))2

. fz" 1 h(r,6)
B o A40,(0,6;9) /1 + 2(g(r, 6))2 =0

27 7
1 f f AP q) ‘9 1 h(r,0) )drd@.
rso(r 0:9) \J1 + r-2((r, 0))*

Noting that @(r,6; q) < —Cr, §(r,0) = O(r*) and h(0,6) = h(0) in the above equality, and
combining them with (7.22) we obtain

1 27
7.23 J(A;q) — =h(0 — do|<Ccu?
(7.25) (L9 1 ( )fo 9,9(0, 6; q) | K
(g € U*(p),A € Csp,p = Re A > )

for some constant py > 0.
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Here we also consider the case ¢ € D with |(q — p) - v,| > 3rg. In this case, (7.23) also
holds. Indeed, since |g — p| > 3rp > 0, it follows that

I(g — p)-vpl

in =6>0.
l(g-p)vpl>3r0.q€dD  |q — pl

Hence, as is in the case of y € U*(p), we obtain 0,&(r,6; q) < —6°/4 for (r,6) € [0,r] X
[0, 27] with some constant O < r; < 2rj independent of ¢ € dD with |(g — p) - v,| > 3ry.
Note that

lg—s(@@)|=lg—pl—lp=s@)|=l(g=p) vpl—Ilp=s(@)|=ry (ce€U)

since o € U implies |p — s(0)| < 2rg. From these facts, and (i) and (ii) of Lemma 7.6 as
0 = ryg, we obtain —@(r,0;q) > cor. Hence, we can show (7.23) similarly to the case of
q € U*(p).

We choose 6 € [0, 27) satisfying cos 6y = 8~ 'a; and sin 6y = 8~ a,. Then 9,$%(0,0; q) =
—(1 4+ Bcos(f — 6p)) holds. Thus, from (7.23) to obtain Lemma 7.8, it suffices to show

27 2
-1 1 2 2
(7.24) — 4h= f do= " _ -
o 0,8(0,6;q) o 1+pBcos(d—6h) -2 ol

If 8 = 0, it is obvious since |a3| = 1. If 0 < 3, using cos 8 = (e + ¢%)/2, we can reduce the
integral in (7.24) to

21 27
1 1 1 2
[ Y R S T
o 1+ pBcos(@— 06 o 1+pBcosé i Jig=1 BC+20+ B

We write the roots y, = =7 + 2 —10f 2+ 28712+ 1 = 0. From 0 < 8 < 1 it follows
that y_ < —1 <y, < 1. Hence residue theorem implies that

1[ 2 =l - X
i Jm BE+20+B7 BT vy 1-B

which yields (7.24). This completes the proof of Lemma 7.8. O
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