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ON JACOBI FORMS OF REAL WEIGHTS AND INDICES
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Abstract
In this paper, we investigate weak Jacobi forms of real weights and indices, and show that they

have a very simple structure theorem even when their weights and indices are not integral. By
using this structure theorem, we can determine possible weights of Siegel paramodular forms.

1. Introduction

1. Introduction
On number theory, modular forms of integral or half-integral weights play very important

roles. Then how about modular forms whose weights are neither integral nor half-integral?
In case of elliptic modular forms, in 1999, Bannai, Koike, Munemasa and Sekiguchi [4]
investigated these modular forms. They showed that the ring of modular forms of weights
k/5 belonging to the principal congruence subgroup of level 5 is generated by two elements
of weights 1/5. This work has some connection with Klein’s work in the 19th century. And
then in 2000, Ibukiyama [9] rewrote their theory in a more general context, including the
connection between unitary reflection groups and covering groups. We remark that in case
of elliptic modular forms we can construct a modular form of real weight by using the real
power of the Dedekind eta function.

However, in case of modular forms of several variables, as far as the author knows, there
is no explicit example of modular forms whose weights are neither integral nor half-integral.
In this paper, we investigate weak Jacobi forms of real weights, which are a kind of modular
forms of two variables. Weak Jacobi forms are one of the basic and important examples
of modular forms of several variables and they have a very simple structure theorem when
their weights and indices are integers [3, 6]. Here we will show that the space of weak Jacobi
forms has a very simple structure even when their weights and indices are real numbers.

2. Elliptic modular forms

2. Elliptic modular forms2.1. Elliptic modular forms of integral weights.
2.1. Elliptic modular forms of integral weights. First of all, we review elliptic modular

forms of integral weights shortly. The group G := SL(2,R) acts on the complex upper half
plane

H := { τ ∈ C | Im τ > 0 }
by fractional linear transformations:
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H � τ �→ γ〈τ〉 :=
aτ + b
cτ + d

∈ H, γ =

(
a b
c d

)
∈ G.

The automorphic factor of weight k ∈ Z is defined by

jk(γ; τ) := (cτ + d)k.

This jk satisfies the cocycle condition

jk(γ1γ2; τ) = jk(γ1; γ2〈τ〉) jk(γ2; τ).

For a holomorphic function f on H, we define

( f |kγ) (τ) := jk(γ; τ)−1 f (γ〈τ〉).
Then we have f |k(γ1γ2) = ( f |kγ1) |kγ2, namely, for each k ∈ Z, G = SL(2,R) acts on the set
of all holomorphic functions on H.

Let Γ be a finite index subgroup of SL(2,Z). Let χ be a character of Γ, namely, a group
homomorphism χ : Γ → S 1 := {t ∈ C | |t| = 1}. Now we suppose that a holomorphic
function f on H satisfies the condition

f |kγ = χ(γ) f

for any γ ∈ Γ. Let γ0 ∈ SL(2,Z). As γ−1
0 Γγ0 is a finite index subgroup of SL(2,Z), there

exists b(γ0) ∈ N such that γ ′0 := γ0

(
1 b(γ0)
0 1

)
γ−1

0 ∈ Γ. Hence f |kγ0 satisfies the condition

( f |kγ0) (τ + b(γ0)) = χ
(
γ ′0
)

( f |kγ0) (τ).

Therefore, f |kγ0 has a Fourier expansion

( f |kγ0) (τ) =
∑

n

cγ0 (n)e(nτ),

where e(∗) := exp(2πi∗) (i :=
√−1) and n runs over the discrete set { n ∈ R | e(nb(γ0)) =

χ(γ ′0 )}.
Definition. We say a holomorphic function f on H is an elliptic modular form of weight

k with respect to Γ and its character χ if f satisfies the following two conditions:
(1) For any γ ∈ Γ, f |kγ = χ(γ) f .
(2) For any γ0 ∈ SL(2,Z), cγ0 (n) = 0 unless n ≥ 0.
We denote by Mk(Γ; χ) the C-vector space of all elliptic modular forms of weight k with
respect to Γ and its character χ. When χ is the trivial character, the identity map to 1 ∈ S 1,
simply we denote this space byMk(Γ) := Mk(Γ; 1Γ).

Our interest is the structure of Mk(Γ; χ) or Mk(Γ). By the general theory of modular
forms, for any Γ,

⊕
k∈Z Mk(Γ) is a graded ring. Especially, we have Mk(Γ) = {0} for k < 0

and M0(Γ) = C. For some Γ, the structure of Mk(Γ) is well known. For example, when
Γ = SL(2,Z), the structure is given by⊕

k∈Z
Mk(SL(2,Z)) = C[e4, e6],

where
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e4(τ) :=1 + 240
∞∑

n=1

⎛⎜⎜⎜⎜⎜⎜⎝∑
d|n

d3

⎞⎟⎟⎟⎟⎟⎟⎠ e(nτ) ∈ M4(SL(2,Z))

and

e6(τ) :=1 − 504
∞∑

n=1

⎛⎜⎜⎜⎜⎜⎜⎝∑
d|n

d5

⎞⎟⎟⎟⎟⎟⎟⎠ e(nτ) ∈ M6(SL(2,Z))

are Eisenstein series of weights 4 and 6, which are algebraically independent over C.

2.2. Elliptic modular forms of real weights.
2.2. Elliptic modular forms of real weights. Next we discuss about elliptic modular

forms of real weights. Here let k ∈ R be a real number. In this case, to apply the previous
definition of elliptic modular forms, we need to fix the branch of jk(γ; τ) = (cτ+d)k. Namely,
we define jk(γ; τ) := (cτ + d)k := exp(k log(cτ + d)), where log(cτ + d) takes the principal
value of logarithm. However, we remark that this jk does not satisfy the cocycle condition,
if k is not integral. Let

Gk :=
{
γ̃ = (γ, J) | γ ∈ G, J(τ) = t jk(γ; τ), t ∈ S 1

}
be a group with its multiplication (γ, J) = (γ1, J1)(γ2, J2) defined by γ := γ1γ2 and J(τ) =
J1(γ2〈τ〉)J2(τ). This Gk is a central extension of G by S 1. For a holomorphic function f on
H, we define

( f |̃γ) (τ) := J(τ)−1 f (γ〈τ〉).
Then the group Gk acts on the set of all holomorphic functions on H.

Let Γ be a finite index subgroup of SL(2,Z) and we put

Γk := { γ̃ = (γ, J) ∈ Gk | γ ∈ Γ } .
Let χ be a character of Γk, namely, a group homomorphism χ : Γk → S 1. Now we suppose
that a holomorphic function f on H satisfies the condition f |̃γ = χ(̃γ) f for any γ̃ ∈ Γk. In
the same manner as described in the previous subsection, for each γ̃0 ∈ SL(2,Z)k. we can
show that f |γ̃0 has a Fourier expansion

( f |γ̃0) (τ) =
∑

n

cγ̃0 (n)e(nτ).

Definition. We say a holomorphic function f on H is an elliptic modular form with re-
spect to Γk and its character χ if f satisfies the following two conditions:
(1) For any γ̃ ∈ Γk, f |̃γ = χ(̃γ) f .
(2) For any γ̃0 ∈ SL(2,Z)k, cγ̃0 (n) = 0 unless n ≥ 0.
We denote by M(Γk; χ) the C-vector space of all elliptic modular forms with respect to Γk

and its character χ.

The group Γk is generated by two types of its elements:

(γ, jk(γ; τ)) (γ ∈ Γ) and (E2, t) (t ∈ S 1).

If M(Γk; χ) � {0}, the character χ should satisfy the condition χ (E2, t) = t−1. Hence, from
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now on, we assume this condition holds. We remark that this definition is a generalization
of the definition of elliptic modular forms of integral weights, which is defined in the pre-
vious subsection. Namely, if k ∈ Z, we have Mk(Γ; χ) = M(Γk; χ′), where χ′ is defined by
χ′ (γ, jk(γ; τ)) := χ(γ) and χ′ (E2, t) := t−1. This definition also contains the usual definition
of elliptic modular forms of half-integral weights and the definition of elliptic modular forms
of rational weights given by Bannai, Koike, Munemasa, Sekiguchi and Ibukiyama [4, 9].

One of the most important example of elliptic modular forms of real weights is the
Dedekind eta function

η(τ) := e
(

1
24
τ

) ∞∏
n=1

(1 − e(nτ)) ,

whose weight is 1
2 . This function η is holomorphic on H, has no zero on H and satisfies two

conditions

η(τ + 1) = e
(

1
24

)
η(τ) and

1√
τ
η

(
−1
τ

)
= e

(
−1

8

)
η(τ),

where we choose 0 < arg
(√
τ
)
< π

2 . From this eta function, we can construct a modular
form of an arbitrary real weight. Namely, we can define log η as a single valued function on
H by

log η(τ) :=
πiτ
12
−
∞∑

n=1

1
n

⎛⎜⎜⎜⎜⎜⎜⎝∑
d|n

d

⎞⎟⎟⎟⎟⎟⎟⎠ e(nτ),

and then for any k ∈ R, we can define η2k(τ) := exp(2k log η(τ)). This η2k is holomorphic on
H, has no zero on H, has a Fourier expansion

η2k(τ) = e
(

k
12
τ

)
− 2ke

((
1 +

k
12

)
τ

)
+ · · ·

and satisfies two conditions:

η2k(τ + 1) = e
(

k
12

)
η2k(τ) and

1
τk η

2k
(
−1
τ

)
= e

(
−k

4

)
η2k(τ),

where τk := exp(k log τ) on which we choose 0 < Im(log τ) < π. Now, for any γ̃ ∈ SL(2,Z)k,
we define χk (̃γ) := (η2k |̃γ)(τ)

η2k(τ) . Then, this χk is a character of SL(2,Z)k, because

χk (γ̃1γ̃2) =

((
η2k|γ̃1

)
|γ̃2

)
(τ)

η2k(τ)
=

((
χk (γ̃1) η2k

)
|γ̃2

)
(τ)

η2k(τ)

=χk (γ̃1)

(
η2k|γ̃2

)
(τ)

η2k(τ)
= χk (γ̃1)χk (γ̃2) .

Consequently, we have η2k ∈ M(SL(2,Z)k; χk).

Here, at the end of this section, we mention the structure of the space of all elliptic
modular forms of real weights when Γ = SL(2,Z). Let χ be a character of SL(2,Z)k, where
we fix a real weight k ∈ R. As mentioned above, we assume χ (E2, t) = t−1. We label two
elements of SL(2,Z)k:
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S k :=
((

0 −1
1 0

)
, τk

)
and T :=

((
1 1
0 1

)
, 1
)
.

Easily we can see

S 2
k = (S kT )3 =

((−1 0
0 −1

)
, e
(

k
2

))
,

and then we have χ(S k) = χ(T )−3 and χ(T )6 = e
(

k
2

)
. This means that χ is determined only

from the value of χ(T ). Let f ∈ M(SL(2,Z)k; χ) be a nonzero modular form and we choose
k′ ∈ R such that 0 ≤ k′ < 12 and χ(T ) = e

(
k′
12

)
. We remark that k−k′ ∈ 2Z, because χ(T )6 =

e
(

k
2

)
. As f (τ + 1) = e

(
k′
12

)
f (τ), f has a Fourier expansion f (τ) =

∑∞
n=0 c(n)e

((
n + k′

12

)
τ
)
.

Hence f can be divided by η2k′ and its quotient is an usual elliptic modular forms of weight
k − k′ ∈ 2Z with respect to SL(2,Z) with trivial character. Namely, we have the following
theorem.

Theorem 1. Let f ∈ M(SL(2,Z)k; χ) be a nonzero modular form of real weight. We
choose k′ ∈ R such that 0 ≤ k′ < 12 and χ(T ) = e

(
k′
12

)
. Then this k′ satisfies the condition

k − k′ ∈ 2Z and we have

f ∈ η2k′
Mk−k′(SL(2,Z)).

Remark. The author has not yet seen this theorem in another literature, however, the au-
thor considers this theorem has already known for some experts on modular forms. Actually,
Ibukiyama [9, Proposition 2.4] determined the the structure of the space of elliptic modular
forms of weight k ∈ 2

7Z. Freitag [7, Theorem 5.1] gave the dimension formula of modular
forms of any real weight, and we easily can induce this theorem from his dimension formula.

3. Jacobi forms

3. Jacobi forms3.1. Jacobi forms of integral weights and indices.
3.1. Jacobi forms of integral weights and indices. Jacobi forms of integral weights

and indices were first studied by Eichler and Zagier in their book [6]. In their book, they
mainly treated Jacobi forms with respect to the full modular group SL(2,Z)J. According to
their way, easily we can generalize most part of their results to any finite index subgroup of
SL(2,Z)J, as far as we treat integral weights and indices.

We define a group

GJ :=
{
g = (γ, x, u) | γ ∈ G, x ∈ R2, u ∈ R

}
with its multiplication

(γ1, x1, u1)(γ2, x2, u2) := (γ1γ2, x1γ2 + x2, u1 + u2 + det
(
x1

x2

)
),

where we regard x as a row vector. This group acts on H × C by

H × C � w = (τ, z) �→ g〈w〉 :=
(
aτ + b
cτ + d

,
z + λτ + μ

cτ + d

)
∈ H × C,
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γ =

(
a b
c d

)
∈ G, x = (λ, μ) ∈ R2.

The automorphic factor of weight k ∈ Z and index m ∈ Z is defined by

jk,m(g;w) := (cτ + d)k e

⎛⎜⎜⎜⎜⎜⎜⎝−m
(−c(z + λτ + μ)2

cτ + d
+ λ2τ + 2λz + λμ + u

) ⎞⎟⎟⎟⎟⎟⎟⎠ .
This jk,m satisfies the cocycle condition

jk,m(g1g2;w) = jk,m(g1; g2〈w〉) jk,m(g2;w).

For a holomorphic function ϕ on H × C, we define(
ϕ|k,mg) (w) := jk,m(g;w)−1ϕ(g〈w〉).

Then we have ϕ|k,m(g1g2) =
(
ϕ|k,mg1

) |k,mg2, namely, for each k,m ∈ Z, the group GJ acts on
the set of all holomorphic functions on H.

Let Γ be a finite index subgroup of SL(2,Z). Then

ΓJ :=
{
g = (γ, x, u) | γ ∈ Γ, x ∈ Z2, u ∈ Z

}
is a finite index subgroup of SL(2,Z)J. Let χ be a character of ΓJ. We suppose that a
holomorphic function ϕ on H × C satisfies the condition ϕ|k,mg = χ(g)ϕ for any g ∈ ΓJ. In
the same manner as described in the previous section, for each g0 ∈ SL(2,Z)J, ϕ|k,mg has a
Fourier expansion (

ϕ|k,mg0
)

(τ, z) =
∑
n,l

cg0 (n, l)e(nτ + lz).

Definition. We say a holomorphic function ϕ on H×C is a weak Jacobi form of weight k
and index m with respect to ΓJ and its character χ if ϕ satisfies the following two conditions:
(1) For any g ∈ ΓJ, ϕ|k,mg = χ(g)ϕ.
(2) For any g0 ∈ SL(2,Z)J, cg0 (n, l) = 0 unless n ≥ 0.
We denote by Jwk,m(ΓJ; χ) the C-vector space of all weak Jacobi forms of weight k and index
m with respect to ΓJ and its character χ̃. When χ is the trivial character, simply we denote
this space by Jwk,m(ΓJ) := Jwk,m(ΓJ; 1ΓJ ).

In the book of Eichler and Zagier [6], they constructed nonzero weak Jacobi forms ϕ−2,1 ∈
J

w
−2,1(ΓJ), ϕ0,1 ∈ Jw0,1(ΓJ) and ϕ−1,2 ∈ Jw−1,2(ΓJ). (In their book, they denoted by φ̃−2,1, φ̃0,1 and
φ̃−1,2.) The structure of weak Jacobi forms of integral weights and indices has already been
known.

Theorem 2 ([6, Theorem 9.4], [3, Proposition 6.1]). Let Γ be a finite index subgroup of
SL(2,Z). Then we have⊕

k,m∈Z
J

w
k,m(ΓJ) =

⎛⎜⎜⎜⎜⎜⎝⊕
k∈Z
Mk(Γ)

⎞⎟⎟⎟⎟⎟⎠ [ϕ0,1, ϕ−2,1
] ⊕ ϕ−1,2

⎛⎜⎜⎜⎜⎜⎝⊕
k∈Z
Mk(Γ)

⎞⎟⎟⎟⎟⎟⎠ [ϕ0,1, ϕ−2,1
]
.
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3.2. Jacobi forms of real weights and indices.
3.2. Jacobi forms of real weights and indices. Here we define Jacobi forms of arbitrary

real weight and index in the same manner as elliptic modular forms.

Like the definition of elliptic modular forms of real weights, let

GJ
k,m :=

{
g̃ = (g, J) | g ∈ GJ, J(w) = t jk,m(g;w), t ∈ S 1

}
be a group with its multiplication (g, J) = (g1, J1)(g2, J2) defined by g := g1g2 and J(w) =
J1(g2〈w〉)J2(w). This GJ

k,m is a central extension of GJ by S 1. For a holomorphic function ϕ
on H × C, we define

(ϕ|̃g) (w) := J(w)−1ϕ(g〈w〉).
Then the group GJ

k,m acts on the set of all holomorphic functions on H × C.

Let Γ be a finite index subgroup of SL(2,Z). Then

ΓJ
k,m :=

{
g̃ = (g, J) ∈ GJ

k,m | g = (γ, x, u), γ ∈ Γ, x ∈ Z2, u ∈ Z
}

is a finite index subgroup of SL(2,Z)J
k,m. Let χ be a character of ΓJ

k,m. We suppose that a
holomorphic function ϕ on H×C satisfies the condition ϕ|̃g = χ(̃g)ϕ for any g̃ ∈ ΓJ

k,m. In the
same manner as described in the previous section, for any g̃ ∈ SL(2,Z)J

k,m, ϕ|̃g has a Fourier
expansion

(ϕ|̃g) (τ, z) =
∑
n,l

cg̃(n, l)e(nτ + lz).

Definition. We say a holomorphic function ϕ onH×C is a weak Jacobi form with respect
to ΓJ

k,m and its character χ if ϕ satisfies the following two conditions:
(1) For any g̃ ∈ ΓJ

k,m, ϕ|̃g = χ(̃g)ϕ.
(2) For any g̃ ∈ SL(2,Z)J

k,m, cg̃(n, l) = 0 unless n ≥ 0.
We denote by Jw(ΓJ

k,m; χ) the C-vector space of all weak Jacobi forms with respect to ΓJ
k,m

and its character χ.

Remark. We say a weak Jacobi forms ϕ is a Jacobi form if cg̃(n, l) = 0 unless 4nm−l2 ≥ 0.
Our definition of (weak) Jacobi forms is a generalization of the definition of (weak) Jacobi
forms of integral weights and indices.

The aim of this paper is to give a basis of the C-vector space Jw(ΓJ
k,m; χ) explicitly. In this

paper, we assume −E2 ∈ Γ.

3.3. Examples.
3.3. Examples. Theta functions are important examples of Jacobi forms. Let

θab(τ, z) :=
∑
n∈Z

e
⎛⎜⎜⎜⎜⎜⎝1

2

(
n +

1
2

a
)2

τ +

(
n +

1
2

a
) (

z +
1
2

b
)⎞⎟⎟⎟⎟⎟⎠ ,

be the Jacobi theta function, where we choose a, b ∈ {0, 1}. It is well known that Jacobi theta
function satisfies the following translation formulas:

θ00(τ, z) = θ00(τ,−z), θ01(τ, z) = θ01(τ,−z),

θ10(τ, z) = θ10(τ,−z), θ11(τ, z) = −θ11(τ,−z),
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θ00(τ, z) = θ00(τ, z + 1), θ01(τ, z) = θ01(τ, z + 1),

θ10(τ, z) = −θ10(τ, z + 1), θ11(τ, z) = −θ11(τ, z + 1),

θ00(τ, z) = e
(
τ

2
+ z

)
θ00(τ, z + τ), θ01(τ, z) = −e

(
τ

2
+ z

)
θ01(τ, z + τ),

θ10(τ, z) = e
(
τ

2
+ z

)
θ10(τ, z + τ), θ11(τ, z) = −e

(
τ

2
+ z

)
θ11(τ, z + τ),

θ00(τ, z) = θ01(τ + 1, z), θ01(τ, z) = θ00(τ + 1, z),

θ10(τ, z) = e
(
−1

8

)
θ10(τ + 1, z), θ11(τ, z) = e

(
−1

8

)
θ11(τ + 1, z),

θ00

(
−1
τ
,

z
τ

)
=
√
τ e

(
z2

2τ
− 1

8

)
θ00(τ, z), θ01

(
−1
τ
,

z
τ

)
=
√
τ e

(
z2

2τ
− 1

8

)
θ10(τ, z),

θ10

(
−1
τ
,

z
τ

)
=
√
τ e

(
z2

2τ
− 1

8

)
θ01(τ, z), θ11

(
−1
τ
,

z
τ

)
=
√
τ e

(
z2

2τ
− 3

8

)
θ11(τ, z).

Hence these four theta functions θ00, θ01, θ10 and θ11 are (weak) Jacobi forms of weights 1
2

and indices 1
2 with respect to suitable finite index subgroups of SL(2,Z) with characters.

From these theta functions, here we construct weak Jacobi forms of lower weights. On
the values of these theta functions on z = 0, the following formulas hold:

θ00(τ, 0) =
η( τ+1

2 )2

e
(

1
24

)
η(τ)

, θ01(τ, 0) =
η( τ2 )2

η(τ)
,

θ10(τ, 0) =
2η(2τ)2

η(τ)
, θ11(τ, 0) = 0,

1
2πi

∂

∂τ
θ11(τ, 0) = e

(
1
4

)
η(τ)3.

Hence, as the eta function does not vanish on H, we can define four holomorphic functions
on H × C by

ϕA(τ, z) :=
2θ00(τ, z)
θ00(τ, 0)

, ϕB(τ, z) :=
2θ01(τ, z)
θ01(τ, 0)

,

ϕC(τ, z) :=
2θ10(τ, z)
θ10(τ, 0)

and ϕD(τ, z) :=
θ11(τ, z)

e
(

1
4

)
η(τ)3

.

Let

ΓA :=
{
γ ∈ SL(2,Z)

∣∣∣∣ γ ≡ E2 or γ ≡
(

0 1
1 0

)
(mod 2)

}
,

ΓB :=
{
γ ∈ SL(2,Z)

∣∣∣∣ γ ≡ E2 or γ ≡
(

1 0
1 1

)
(mod 2)

}
, and

ΓC :=
{
γ ∈ SL(2,Z)

∣∣∣∣ γ ≡ E2 or γ ≡
(

1 1
0 1

)
(mod 2)

} (
= Γ0(2)

)
be finite index subgroups of SL(2,Z). Then easily we can see these four functions ϕA, ϕB, ϕC

and ϕD are weak Jacobi forms of weights 0, 0, 0 and −1 and indices 1
2 with respect to

ΓA, ΓB, ΓC and SL(2,Z) with characters, respectively. We define characters χA, χB, χC and
χD of (ΓA)J

0, 1
2
, (ΓB)J

0, 1
2
, (ΓC)J

0, 1
2

and SL(2,Z)J
−1, 1

2
by
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ϕA ∈ Jw((ΓA)J
0, 1

2
; χA), ϕB ∈ Jw((ΓB)J

0, 1
2
; χB),

ϕC ∈ Jw((ΓC)J
0, 1

2
; χC) and ϕD ∈ Jw(SL(2,Z)J

−1, 1
2
; χD)

respectively.

Weak Jacobi forms ϕ0,1, ϕ−2,1 and ϕ−1,2 in Theorem 2 are given by

ϕ0,1 = ϕ
2
A + ϕ

2
B + ϕ

2
C , ϕ−2,1 = ϕ

2
D and ϕ−1,2 =

1
4
ϕAϕBϕCϕD.

As ϕ2
A, ϕ

2
B and ϕ2

C are weak Jacobi forms of weights 0 and indices 1 with respect to ΓA, ΓB and
ΓC with trivial characters, these three weak Jacobi forms can be represented by ϕ0,1, ϕ−2,1

and ϕ−1,2 (Theorem 2). Well-known formulas

θ00(τ, z)2θ00(τ, 0)2 =θ01(τ, z)2θ01(τ, 0)2 + θ10(τ, z)2θ10(τ, 0)2,

θ11(τ, z)2θ00(τ, 0)2 =θ01(τ, z)2θ10(τ, 0)2 − θ10(τ, z)2θ01(τ, 0)2

induce two relations

ϕA(τ, z)2θ00(τ, 0)4 =ϕB(τ, z)2θ01(τ, 0)4 + ϕC(τ, z)2θ10(τ, 0)4,

4ϕD(τ, z)2η(τ)6θ00(τ, 0)2 =
(
ϕC(τ, z)2 − ϕB(τ, z)2

)
θ01(τ, 0)2θ10(τ, 0)2.

Hence, by using another well-known formulas

θ00(τ, 0)4 =θ01(τ, 0)4 + θ10(τ, 0)4,

θ00(τ, 0)θ01(τ, 0)θ10(τ, 0) =2η(τ)3 = −1
π

∂

∂τ
θ11(τ, 0),

we have

3ϕA(τ, z)2 =ϕ0,1(τ, z) −
(
θ01(τ, 0)4 − θ10(τ, 0)4

)
ϕ−2,1(τ, z),

3ϕB(τ, z)2 =ϕ0,1(τ, z) −
(
θ00(τ, 0)4 + θ10(τ, 0)4

)
ϕ−2,1(τ, z),

3ϕC(τ, z)2 =ϕ0,1(τ, z) +
(
θ00(τ, 0)4 + θ01(τ, 0)4

)
ϕ−2,1(τ, z).

4. Space of Jacobi forms

4. Space of Jacobi forms4.1. Characters.
4.1. Characters. In this section we investigate possible characters of ΓJ

k,m. Here, for
simplicity, we label some elements of ΓJ

k,m:

U := ((E2, 0, 1), e(−m)), W := ((−E2, 0, 0), 1),

X := ((E2, (1, 0), 0), e(−m(τ + 2z))), Y := ((E2, (0, 1), 0), 1)

and

V(γ) :=
(
(γ, 0, 0) , jk,m

)
, γ =

(
a b
c d

)
∈ Γ.

We denote the identity of GJ
k,m by

I := V(E2) = ((E2, 0, 0), 1).
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Let χ be a character of ΓJ
k,m such that Jw(ΓJ

k,m; χ) � {0}. We denote by

ε0 := χ(U), ε1 := χ(W), ε2 := χ(X) and ε3 := χ(Y).

Proposition 3. ε0, ε1, ε2, ε3 ∈ {1,−1}.
Proof. As W2 = I, we have χ(W)2 = 1. Hence ε1 = χ(W) ∈ {1,−1}. In the same way, as

(WX)2 = I and (WY)2 = I, we have ε2, ε3 ∈ {1,−1}. As XY = YXU2, we have ε0 ∈ {1,−1}.
�

Proposition 4. ε0 = e(m). Hence m should be integral or half-integral.

Proof. Let ϕ ∈ Jw(ΓJ
k,m; χ) be a nonzero function. As ϕ|U = χ(U)ϕ, and (ϕ|U)(τ, z) =

e(m)ϕ(τ, z), we have ε0 = χ(U) = e(m). As ε0 ∈ {1,−1}, m should be integral or half-
integral. �

Proposition 5. If ε2 = ε3 � ε0, Γ should be a subset of ΓA. If ε0 = ε2 � ε3, Γ should be a
subset of ΓB. If ε0 = ε3 � ε2, Γ should be a subset of ΓC.

Proof. The way of the proof is just same as previous two propositions. For γ =
(

a b
c d

)
∈ Γ,

we have two equations XV(γ) = V(γ)YbXaUab and YV(γ) = V(γ)YdXcUcd. Hence we have
εa−1

2 εb
3 = ε

ab
0 and εc

2ε
d−1
3 = εcd

0 , which induce the statement of the proposition. �

We recall that χ be a character of ΓJ
k,m such that Jw(ΓJ

k,m; χ) � {0}. As ΓJ
k,m is gen-

erated by U,W, X, Y and V(γ) (γ ∈ Γ), the character χ is determined by its value on
V(γ) and four parameters ε0, ε1, ε2, ε3 ∈ {1,−1}. Here we classify characters under 16
kinds by the parameters ε0, ε1, ε2, ε3 ∈ {1,−1}. For example, ϕ−2,1 and ϕ0,1 belong to the
case (ε0, ε1, ε2, ε3) = (1, 1, 1, 1) and ϕ−1,2 belongs to the case (ε0, ε1, ε2, ε3) = (1,−1, 1, 1).
ϕA, ϕB, ϕC and ϕD given in §3.3 belong to the case (−1, 1, 1, 1), (−1, 1,−1, 1), (−1, 1, 1,−1)
and (−1,−1,−1,−1), respectively. The following Table 1 is a list of examples of weak Ja-
cobi forms of each kind of characters. On all of the 17 examples on the list, χ(V(γ)) = 1 for
any γ ∈ Γ.

4.2. Estimation.
4.2. Estimation. In this subsection, our story proceeds just similar to the case of integral

weights and integral indices, given in the book of Eichler and Zagier [6, Section 9].

Let χ be a character of ΓJ
k,m such that Jw(ΓJ

k,m; χ) � {0}.
Proposition 6 (c.f. [6, Theorem 1.2]). Let ϕ ∈ Jw(ΓJ

k,m; χ) be a nonzero weak Jacobi form
of real weight and index. Then for a fixed τ ∈ H, the function z �→ ϕ(τ, z) has exactly 2m
zeros (counting multiplicity) in any fundamental domain for the action of the lattice Z + τZ
on C.

Proof. Regardless of the values of ε2 and ε3, we have

e(4m(τ + z))ϕ(τ, z + 2τ) = ϕ(τ, z) and ϕ(τ, z + 2) = ϕ(τ, z).

Hence we have
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1
2πi

∮
∂P

∂
∂zϕ(τ, z)

ϕ(τ, z)
dz = 8m,

where P is a fundamental domain for C/2Z + 2τZ. Namely, the function z �→ ϕ(τ, z) has
exactly 8m zeros in a fundamental domain for C/2Z + 2τZ. Because

ε2e(m(τ + z))ϕ(τ, z + τ) = ϕ(τ, z) and ε3ϕ(τ, z + 1) = ϕ(τ, z),

the number of zeros in a fundamental domain for C/2Z + 2τZ is just four times that in a
fundamental domain for C/Z + τZ. Therefore the function z �→ ϕ(τ, z) has exactly 2m zeros
in a fundamental domain for C/Z + τZ. �

Table 1.

ε0 ε1 ε2 ε3 example weight index Γ

ϕ0,1 := ϕ2
A + ϕ

2
B + ϕ

2
C 0 1 SL(2,Z)

1 1 1 1 ϕ−2,1 := ϕ2
D −2 1 SL(2,Z)

1 1 1 −1 ϕAϕC 0 1 ΓB

1 1 −1 1 ϕAϕB 0 1 ΓC

1 1 −1 −1 ϕBϕC 0 1 ΓA

1 −1 1 1 ϕ−1,2 := 1
4ϕAϕBϕCϕD −1 2 SL(2,Z)

1 −1 1 −1 ϕBϕD −1 1 ΓB

1 −1 −1 1 ϕCϕD −1 1 ΓC

1 −1 −1 −1 ϕAϕD −1 1 ΓA

−1 1 1 1 ϕA 0 1/2 ΓA

−1 1 1 −1 ϕC 0 1/2 ΓC

−1 1 −1 1 ϕB 0 1/2 ΓB

−1 1 −1 −1 ϕAϕBϕC 0 3/2 SL(2,Z)

−1 −1 1 1 ϕBϕCϕD −1 3/2 ΓA

−1 −1 1 −1 ϕAϕBϕD −1 3/2 ΓC

−1 −1 −1 1 ϕAϕCϕD −1 3/2 ΓB

−1 −1 −1 −1 ϕD −1 1/2 SL(2,Z)

Here, for s ∈ Z, we define a character of Γk+s by

(ps(χ))(γ, J) := χ((γ, 0, 0), J̃ ), J̃(τ, z) := (cτ + d)sJ(τ)e
(

mcz2

cτ + d

)
.

Proposition 7. We have

J
w(ΓJ

k,m; χ) = {0} (m < 0)

and
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J
w(ΓJ

k,0; χ) =

⎧⎪⎪⎨⎪⎪⎩M(Γk; p0(χ)) (ε1 = ε2 = ε3 = 1),

{0} (otherwise).

Proof. When m < 0, Proposition 6 induces Jw(ΓJ
k,m; χ) = {0} immediately. When m = 0,

Proposition 6 induces that ϕ ∈ Jw(ΓJ
k,0; χ) does not depend on z. Therefore, since

ϕ(τ, z) = ε1ϕ(τ,−z) = ε2ϕ(τ, z + τ) = ε3ϕ(τ, z + 1),

ϕ should be zero unless ε1 = ε2 = ε3 = 1. In the case ε1 = ε2 = ε3 = 1, easily we can see
J

w(ΓJ
k,0; χ) = M(Γk; p0(χ)). �

For any non-negative integer s, we define an operator Ds by Ds := ∂s

∂sz |z=0. Let

J
w(ΓJ

k,m; χ)[s] :=
{
ϕ ∈ Jw(ΓJ

k,m; χ) | Dt(ϕ) = 0 for 0 ≤ t < s
}
.

From Proposition 6, we have Jw(ΓJ
k,m; χ)[2m + 1] = {0}. By definition, we have an exact

sequence

0 −→ Jw(ΓJ
k,m; χ)[s + 1] −→ Jw(ΓJ

k,m; χ)[s]
Ds−→ M(Γk+s; ps(χ)).

The following lemma is immediately induced from ϕ(τ, z) = ε1ϕ(τ,−z).

Lemma 8. The image of Ds satisfies the following properties. When ε1 = 1, the image
Ds

(
J

w(ΓJ
k,m; χ)[s]

)
= {0} if s is odd. When ε1 = −1, the image Ds

(
J

w(ΓJ
k,m; χ)[s]

)
= {0} if s is

even.

This lemma induces an upper bound of the dimension of the space of weak Jacobi forms.
We have

dimC Jw(ΓJ
k,m; χ) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�m�∑
t=0

dimC M(Γk+2t; p2t(χ)) (ε1 = 1),

�m− 1
2�∑

t=0

dimC M(Γk+2t+1; p2t+1(χ)) (ε1 = −1)

where �m� means the largest integer not greater than m.

The above estimation seems to be rough, however, surprisingly, in the case of ε0 = ε1 =

ε2 = ε3 = 1, this coincides with the true dimension of the space of weak Jacobi forms. As
D0(ϕ0,1) = 12 and D0(ϕ−2,1) = 0, two weak Jacobi forms ϕ0,1 and ϕ−2,1 are algebraically
independent on the ring of all holomorphic functions on H. Hence we have the following
theorem.

Theorem 9. Let ϕ ∈ Jw(ΓJ
k,m; χ) and we assume ε0 = ε1 = ε2 = ε3 = 1. As ε0 = 1, here

m ∈ Z. Then we have the following:
(1) If m < 0, ϕ = 0.
(2) If m = 0, ϕ does not depend on z and ϕ ∈ M(Γk; p0(χ)).
(3) If m > 0, there exist f j ∈ M(Γk+2 j; p2 j(χ)) ( j = 0, 1, . . . ,m) such that

ϕ =

m∑
j=0

f jϕ
m− j
0,1 ϕ

j
−2,1.



Jacobi Forms of RealWeights and Indices 581

Remark. This theorem is a generalization of Theorem 2, which gives the structure of
weak Jacobi forms of integral weights and indices.

In another 15 cases, we need a bit more investigation to obtain the true dimension of the
space of weak Jacobi forms. Again let ϕ ∈ Jw(ΓJ

k,m; χ). As

ϕ(τ, z) = ε1ϕ(τ,−z),

ϕ(τ, z) = ε2e(m(τ + 2z))ϕ(τ, z + τ),

ϕ(τ, z) = ε3ϕ(τ, z + 1),

and ε0 = e(m), we have the following properties:
(1) If ε1ε2 = −1, then ϕ vanishes at z = τ

2 .
(2) If ε1ε3 = −1, then ϕ vanishes at z = 1

2 .
(3) If ε0ε1ε2ε3 = −1, then ϕ vanishes at z = 1+τ

2 .
These conditions decrease the possible multiplicity of zero of ϕ at z = 0. Then we have a bit
more sharp upper bound of the dimension of the space of weak Jacobi forms.

To avoid complication, for a while we treat only the case ε0 = ε1 = ε2 = −1 and ε3 = 1.
In this case, ϕ ∈ Jw(ΓJ

k,m; χ) vanishes at z = τ
2 ,

1
2 ,

1+τ
2 . Hence, from Proposition 5 and

Proposition 6, we have⎧⎪⎪⎨⎪⎪⎩ J
w(ΓJ

k,m; χ)[2m − 2] = {0} (Γ ⊂ ΓB),

J
w(ΓJ

k,m; χ) = {0} (otherwise).

Therefore, when Γ ⊂ ΓB, we have

dimC Jw(ΓJ
k,m; χ) ≤

m−3/2∑
t=0

dimC M(Γk+2t+1; p2t+1(χ)).

Now, we recall that ϕAϕCϕD ∈ Jw(ΓJ
−1, 3

2
; χAχCχD) is an example of weak Jacobi forms of

this case, given in the previous section. Since

dimC Jw(ΓJ
k,m; χ) ≤

m−3/2∑
t=0

dimC M(Γk+2t+1; p2t+1(χ))

= dimC Jw(ΓJ
k+1,m−3/2; χ (χAχCχD)−1),

we have

J
w(ΓJ

k,m; χ) =

⎧⎪⎪⎨⎪⎪⎩ ϕAϕCϕD J
w(ΓJ

k+1,m−3/2; χ (χAχCχD)−1) (Γ ⊂ ΓB),

{0} (otherwise).

Here we remark that the character χ (χAχCχD)−1 has a parameter ε0 = ε1 = ε2 = ε3 = 1.
Therefore, the structure of Jw(ΓJ

k+1,m−3/2; χ (χAχCχD)−1) has already been given in Theorem
9.

Not only in this case, but also in all another cases, we can determine the structure of
J

w(ΓJ
k,m; χ) in the same manner. Consequently, we have the following our main theorem.
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Theorem 10. Let Γ be a finite index subgroup of SL(2,Z) and χ be a character of ΓJ
k,m.

We assume the character χ̃ is not in the case ε0 = ε1 = ε2 = ε3 = 1. Then we have

J
w(ΓJ

k,m; χ) =

⎧⎪⎪⎨⎪⎪⎩ ψ Jw(ΓJ
k−k0,m−m0

; χχ−1
0 ) (Γ ⊂ Γ0),

{0} (otherwise).

Here ψ and Γ0 are a weak Jacobi form and a finite index subgroup of SL(2,Z), which are
given in the following Table 2 corresponds to the parameters ε0, ε1, ε2 and ε3. k0,m0 and χ0

are the weight, the index and the character of ψ. We remark that the character χχ−1
0 has

a parameter ε0 = ε1 = ε2 = ε3 = 1. Therefore, the structure of Jw(ΓJ
k−k0,m−m0

; χχ−1
0 ) has

already been given in Theorem 9.

Table 2.

ε0 ε1 ε2 ε3 ψ k0 m0 Γ0

1 1 1 −1 ϕAϕC 0 1 ΓB

1 1 −1 1 ϕAϕB 0 1 ΓC

1 1 −1 −1 ϕBϕC 0 1 ΓA

1 −1 1 1 ϕ−1,2 := 1
4ϕAϕBϕCϕD −1 2 SL(2,Z)

1 −1 1 −1 ϕBϕD −1 1 ΓB

1 −1 −1 1 ϕCϕD −1 1 ΓC

1 −1 −1 −1 ϕAϕD −1 1 ΓA

−1 1 1 1 ϕA 0 1/2 ΓA

−1 1 1 −1 ϕC 0 1/2 ΓC

−1 1 −1 1 ϕB 0 1/2 ΓB

−1 1 −1 −1 ϕAϕBϕC 0 3/2 SL(2,Z)

−1 −1 1 1 ϕBϕCϕD −1 3/2 ΓA

−1 −1 1 −1 ϕAϕBϕD −1 3/2 ΓC

−1 −1 −1 1 ϕAϕCϕD −1 3/2 ΓB

−1 −1 −1 −1 ϕD −1 1/2 SL(2,Z)

By Theorem 9 and Theorem 10, now we know the structure of the space of all weak
Jacobi forms of arbitrary real weight and index. If we say above theorem simply like a
catchword, the bigraded ring of weak Jacobi forms of real weights and indices are generated
by ϕA, ϕB, ϕC and ϕD over the graded ring of elliptic modular forms of real weights.

5. Application

5. Application
At the end of this paper, we give one application. Jacobi forms appear in the Fourier-

Jacobi expansion of Siegel modular forms. To determine the structure of the graded ring of
Siegel modular forms, the Fourier-Jacobi expansion is very helpful, because we have already
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known the structure of (weak) Jacobi forms in many cases (e.g. [1, 3]). In the case of Siegel
paramodular forms of degree 2 with its level ≤ 4, the structure has already been determined
by Ibukiyama, Poor and Yuen [10]. Using their method (more precisely in [2]), here we
will show possible weights of Siegel paramodular forms of degree 2 for arbitrary level and
character.

First we review Siegel modular forms of degree 2 shortly. We denote Siegel upper half
space of degree 2 by

H2 :=
{

Z = tZ =
(
τ z
z ω

)
∈ M(2,C)

∣∣∣∣ Im Z > 0
}
.

The symplectic group

Sp(2,R) =
{

M =
(
A B
C D

)
∈ M(4,R)

∣∣∣∣ t MJM = J :=
(

O −E2

E2 O

) }
acts on H2 by

H2 � Z �−→ M〈Z〉 := (AZ + B)(CZ + D)−1 ∈ H2.

The automorphic factor of weight k ∈ Z is det(CZ + D)k and satisfies the cocycle condition
if k ∈ Z. For a holomorphic function F on H2, we define

(F|k M)(Z) := det(CZ + D)−kF(M〈Z〉).
The paramodular group of level N is defined by

K(N) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Z NZ Z Z

Z Z Z
1
NZ

Z NZ Z Z

NZ NZ NZ Z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∩ Sp(2,R).

Let

VN :=
1√
N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 N 0 0
−1 0 0 0
0 0 0 1
0 0 −N 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ Sp(2,R)

and we denote by K∗(N) the subgroup of Sp(2,R) generated by K(N) and VN . We can easily
show that [K∗(N) : K(N)] = 2. Let χ be a character of K∗(N).

Definition. We say a holomorphic function F on H2 is a Siegel paramodular modular
form of degree 2 of level N and weight k with character χ if F satisfies the condition F|kγ =
χ(γ)F for any γ ∈ K∗(N). We denote by Mk(K∗(N); χ) the C-vector space of all Siegel
paramodular modular forms of degree 2 of level N and weight k with character χ.

In the same manner as elliptic modular forms and weak Jacobi forms, we can define Siegel
paramodular forms of real weight. For k ∈ R, we denote byM(K∗(N)k; χ) the C-vector space
of all Siegel paramodular forms with respect to K∗(N)k and its character χ.

Let F ∈ M(K∗(N)k; χ) be a nonzero modular form. In the same manner as elliptic modular



584 H. Aoki

forms and weak Jacobi forms, F has a Fourier expansion

(1) F(Z) =
∑
n,l,m

c(n, l,m)e(nτ + lz + mω).

From the translation formula of ṼN := (VN , 1), we have

F
(
τ z
z ω

)
= χ(ṼN)F

(
Nω −z
−z N−1τ

)
.

Hence we have the symmetry of the Fourier coefficients:

(2) c(N−1m,−l,Nn) = χ(ṼN)c(n, l,m).

On the Fourier-Jacobi expansion

(3) F(Z) =
∑

m

ϕm(τ, z)e(mω), ϕm(τ, z) :=
∑
n,l

c(n, l,m)e(nτ + lz),

easily we can see each ϕm is a Jacobi form of weight k and index m, namely, ϕm ∈
J

w(SL(2,Z)J
k,m; χm), where χm is a suitable character of SL(2,Z)J

k,m. As we know the struc-
ture of Jw(SL(2,Z)J

k,m; χm), in the paper by Ibukiyama, Poor and Yuen [10], they determined
the structure ofMk(K∗(N); 1K∗(N)) by using (2) and (3) cleverly for N � 4.

Here we consider the general case N ∈ N. Again let F ∈ M(K∗(N)k; χ) be a nonzero
modular form, where χ is an arbitrary character of K∗(N)k. By Proposition 4, on the Fourier
expansion (1), c(n, l,m) = 0 unless 2m ∈ Z. Hence, by the symmetry (2), c(n, l,m) = 0
unless 2Nn ∈ Z. In Theorem 1, 9 and 10, all generators except the real power of the
Dedekind eta function has no Fourier coefficients at n � Z. The weight of the real power of
the Dedekind eta function with nonzero Fourier coefficients at n � Z should be in 12(n+Z) ⊂
6
NZ. In Theorem 1, 9 and 10, the weights of all generators except the real power of the
Dedekind eta function is integral, therefore, k should be in 6

NZ + Z =
(N,6)

N Z. Namely, we
have the following theorem:

Theorem 11. Possible weights of Siegel paramodular forms of degree 2 with level N is
in (N,6)

N Z.

We remark that, on the conference at RIMS (Kyoto) in 2003, Richard Hill [8] stated that
there is no modular forms of Sp(g,R) (g ≥ 2) whose weights are neither integral nor half-
integral. He commented that this was pointed out by Deligne [5]. Our result is another one
on possible weights of modular forms of several variables.
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