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Abstract
We prove the abundance theorem for semi log canonical surfaces in positive char-

acteristic.
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0. Introduction

A semi log canonical (for short, slc)n-fold is a generalization of log canonical
(for short, lc) n-folds. In this paper, we prove the abundance theorem for slcsurfaces
in positive characteristic. We use the same definition of slcvarieties as the one of [13].

Theorem 0.1. Let (X,1) be a projective slc surface over an algebraically closed
field of positive characteristic. If KX C1 is nef, then KX C1 is semi-ample.

Let us briefly review the history of the semi log canonical varieties in character-
istic zero. The notion of semi log canonical singularities is introduced in [15] for a
moduli problem. The abundance theorem for slc surfaces is proved in [1] and [11].
[4] generalizes this result to dimension three. Moreover, [4] shows that the abundance
theorem for slcn-folds follows from the two parts:
(1) The abundance theorem for lcn-folds.
(2) The finiteness theorem of the pluri-canonical representation for (n� 1)-folds.
[6] shows that (2) holds for eachn 2 Z

>0. If n D 3, then (1) follows from [12]. If
n � 4, then (1) is an open problem. For a recent development of thetheory of slc
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varieties in characteristic zero, see [5], [6], [8] and [9].For related topics, see [10],
[2] and [16].

In this paper, we use the strategy of [4]. Hence, we must prove(1) and (2) in
the case wheren D 2 and chark > 0. In this case, (1) is a known result by [7]. It
is not difficult to prove (2). However, [4] uses many fundamental results based on the
minimal model theory and the Kawamata–Viehweg vanishing theorem. We can freely
use the minimal model theory for surfaces in positive characteristic by [20] (cf. [7],
[14]). Although there exist counter-examples to the Kodaira vanishing theorem in posi-
tive characteristic ([19]), we can use some weaker vanishing theorems obtained in [21]
and [22] (cf. [14]).

In characteristic two, some new phenomena happen. For example, in characteris-
tic zero, the Whitney umbrella{x2

D yz2} � A3 is a typical example of slc surfaces
(cf. [1, Definition 12.2.1]). In characteristic two, this isslc but not normal crossing in
codimension one. Moreover, [4] uses the following fact: if a field extensionL=K sat-
isfies [L W K ] D 2 and its characteristic is zero, thenL=K is a Galois extension. But,
in characteristic two, this field extensionL=K may be purely inseparable. Thus, some
proofs are more complicated.

0.2 (Overview of contents). In Section 1, we summarize the notations. The nor-
malization of an slc surface is an lc surface. Therefore, we should investigate lc sur-
faces. Every lc surface is birational to a dlt surface. Thus,in Section 2, we consider
a dlt surface (X, 1). More precisely, we considerx1y becausex1y has the patch-
ing data of the normalization. In Section 3, we calculate thenormalization of nodal
singularities. In Section 4, we prove the main theorem. In Section 5, we summarize
fundamental results on dlt surfaces. These results may be well-known but the author
can not find a good reference.

1. Notations

We will not distinguish the notations invertible sheaves and Cartier divisors. For
example, we will writeL C M for invertible sheavesL and M.

Throughout this paper except for Section 3, we work over an algebraically closed
field k of positive characteristic and let chark DW p.

In this paper, avariety means a pure dimensional reduced scheme which is sepa-
rated and of finite type overk. A curve or a surfacemeans a variety whose dimension
is one or two, respectively. Note that varieties, curves andsurfaces may be reducible.

Let X be a noetherian reduced scheme and letX D
S

Xi be the irreducible decom-
position. LetYi ! Xi be the normalization ofXi . Then we define thenormalization
of X by

`

Yi !
`

Xi ! X. We say X is normal if the normalization morphism is
an isomorphism.

Let X be a variety. We say1 is aQ-divisor on X if 1 is a finite sum1D
P

Æi1i

where Æi 2 Q and1i is an irreducible and reduced closed subscheme of codimension
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one which is not contained in the singular locus Sing(X). Note that, in this case, the
local ring OX,1i is a discrete valuation ring.

We will freely use the notation and terminology in [13]. In the definition in [13,
Definition 2.8], for a pair (X,1), 1 is not necessarily effective. But, in this paper, we
assume1 is an effectiveQ-divisor. For a reducible normal varietyX and an effective
Q-divisor 1, we say (X, 1) is lc (resp. dlt, klt) if each irreducible component is lc
(resp. dlt, klt).

For the definition of (nodes and) slc varieties, see Definition 3.1 and Definition 4.1.
These definitions are the same as [13, 1.41, 5.10].

2. Boundaries of dlt surfaces

In this section, we investigate dlt surfaces. First, we consider the case of curves.
The main result of this section is Proposition 2.8. Proposition 2.8 is the surface version
of Proposition 2.1.

Proposition 2.1. Let (X, 1) be an irreducible lc curve. Let fW X ! R be a
projective surjective morphism such that f

�

OX D OR. Assume that SWD x1y ¤ 0 and
let T WD f (S). If K X C1 � f 0, then one of the following assertions holds.
(1) f

�

OSD OT .
(2) f

�

OS ¤ OT . X ' P

1 and dim R D 0. Moreover, 1 D S and S is two distinct
points.

Proof. If dim R D 1, then we seeX ' R and we obtain (1). We may assume
dim RD 0. Since deg(KX C1) D 0 andx1y ¤ 0, we seeX ' P1 and S has at most
two points. If S is one point, then we obtain (1).

In the above proposition, (1) is a good case. Hence, we classify the other case (2)
as above. For this, we want sufficient conditions forf

�

OSD OT .
We use the following vanishing theorem for rational surfaces essentially established

in [22].

Proposition 2.2. Let (X, B) be a projective irreducible klt surface such that X is
a rational surface. Let D be aQ-Cartier Z-divisor such that D� (KXC B) is nef and
big. Then, H1(X, D) D 0.

Proof. We can find a birational morphismf W Y ! X from a smooth projective
surfaceY and finitely many prime divisors{F j } j2J on Y such that
(1) Ex( f ) � Supp

�

P

j2J F j
�

.

(2) f �1(B) [
P

j2J Fi is a simple normal crossing divisor.
(3) f �(D � (KX C B)) �

P

Æ j F j is ample for some 0< Æ j � 1.
(4) p f �(D � (KX C B)) �

P

Æ j F j q D p f �(D � (KX C B))q.
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We define E by KY D f �(KX C B) C E. Since (X, B) is klt, pEq is effective and
f -exceptional. Thus, we obtainOX(D) D f

�

OY(p f �DC Eq). Therefore, by the Leray
spectral sequence, we obtain

0! H1(X, OX(D))! H1(Y, OY(p f �D C Eq)).

Then, the assertion holds by

H1(Y, OY(p f �D C Eq)) D H1
�

Y, KY C p f �(D � (KX C B)) �
X

Æ j F j q

�

D 0,

where the last equation follows from [22, Theorem 1.4].

Proposition 2.3. Let f W X ! Y be a projective surjective morphism between ir-
reducible normal varieties such that f

�

OX D OY. Assume the following conditions.
(1) (X, 1) is a Q-factorial lc surface such that(X, {1}) is klt.
(2) S WD x1y ¤ 0 and let T WD f (S).
(3) �(KX C1) is f -nef and f -big.
Then, f

�

OS D OT . In particular, for every y2 Y, S\ f �1(y) is connected or an
empty set.

Proof. STEP 1. In this step, we assume dimY � 1 and we prove the assertion.
Consider the exact sequence:

0! OX(�x1y)! OX ! O
x1y

! 0.

Take the push-forward byf :

0! f
�

OX(�x1y)! OY ! f
�

O
x1y

! R1 f
�

OX(�x1y).

It is sufficient to prove that the last termR1 f
�

OX(�x1y) vanishes. Since

�x1y D KX C {1} � (KX C1),

we haveR1 f
�

OX(�x1y) D 0 by [21, Theorem 2.12].
STEP 2. In this step, we assume dimY D 0 and we prove the assertion. It is

sufficient to prove thatS is connected. Since rational surfaces satisfy the Kawamata–
Viehweg vanishing theorem by Proposition 2.2, we can apply the same argument as
Step 1. Thus we may assume thatX is not rational. We can run a (KX C 1)-MMP
by [20, Theorem 6.8]. Then we have

h W X
q
�! X0

h0
�! R

whereqW X! X0 is a composition of extremal birational contractions andh0 W X0

! R
is a Mori fiber space.



SEMI LOG CANONICAL SURFACES 539

We prove dimR D 1. Let � W X00

! X0 be a resolution andX00

! Q be a ruled
surface structure. We may assume thatQ is not rational. Note thatX0 has at worst ra-
tional singularities, because (X, {1}) is klt and R1q

�

OX D 0 (cf. [21, Theorem 2.12]).
Therefore each�-exceptional curves goes to one point byX00

! Q. This X00

! Q fac-
tors throughX0. In particular, there exists a surjectionX0

! Q to a smooth projective
curve. This means�(X0) � 2. Therefore we see dimR¤ 0.

Hence we may assume dimR D 1. Note that�(KX0 C 1
0) is nef and big. As-

sume that�(KX0 C 1
0) is ample. Since�(X0) D 2 by [20, Theorem 6.8 (4) (b)],X0

has the two (KX0 C1
0)-negative extremal rays. Since these extremal rays are spanned

by rational curves (cf. [20, Proposition 4.6]),R is a rational curve. IfX00

! X0 is a
resolution, thenX00

! R is a ruled surface structure. This means thatX00 is rational.
This case is excluded. Therefore we may assume that�(KX0 C 1

0) curve C0 on X0

such that (KX0 C1
0) �C0

D 0. This impliesC02
< 0 andh0(C00) D R. Moreover we see

0D (KX0 C1
0) � C0

� (KX0 C C0) � C0.

If 0 > (KX0CC0) �C0, thenC0

' P

1 by [20, Theorem 5.3]. This case is excluded. Thus
the above inequality is an equality. In particular, we haveC0

� x1

0

y. Let C � X be the
proper transform ofC0. ThenC satisfiesh(C)D R andC � x1y. We can apply Step 1
of this proof toh W X ! R because�(KX C1) is h-nef andh-big. Then,S\ h�1(r )
is connected for everyr 2 R. This andh(C) D R imply that S is connected.

Lemma 2.4. Let

f W X
q
! X0

f 0

! R

be projective morphisms between normal varieties such thatq is birational and f0
�

OX0 D

OR. Assume the following conditions.
(1) (X, 1) is a Q-factorial lc surface such that(X, {1}) is klt.
(2) Ex(q) DW E is an irreducible curve.
(3) �(KX C1) is q-nef.
(4) x1y is q-nef.
Then, for every r2 R, the number of connected components ofx1y\ f �1(r ) is equal
to the number of connected components ofxq

�

1y \ f 0�1(r ).

Proof. Letq(E) DW x00 and f 0(x00) DW r0. If E \ Suppx1y D ;, then the assertion
is clear. Thus, we may assumeE \ Suppx1y ¤ ;.

We claim q(Suppx1y) D Suppxq
�

1y. The inclusionq(Suppx1y) � Suppxq
�

1y

is clear. Then, it is enough to showq(E) 2 Suppxq
�

1y. If E � Suppx1y, then E \
Suppx1y ¤ ; implies q(E) 2 Suppxq

�

1y. On the other hand, ifE � Suppx1y, then
the q-nefness implies that there exists a prime componentC ¤ E of x1y with C\E ¤
0. We see

q(E) 2 q(C) � Suppxq
�

1y.
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In each case, we obtain the claim.
For everyr 2 R, we obtain

q(Suppx1y \ f �1(r )) D q(Suppx1y \ q�1( f 0�1(r )))

D q(Suppx1y) \ f 0�1(r )

D Suppxq
�

1y \ f 0�1(r ).

Assume that the numbers of connected components are different. Then there exist at
least two connected componentsX1 and X2 of Suppx1y\ f �1(r0) such thatx00 2 q(X1)
and x00 2 q(X2). We take the intersection

Suppx1y \ f �1(r0) D X1q X2q � � �

with q�1(x00) and we obtain the following equation

Suppx1y \ q�1(x00) D (X1 \ q�1(x00))q (X2 \ q�1(x00))q � � �.

Thus, in order to derive a contradiction, it is sufficient to prove that Suppx1y\q�1(x00)
is connected. Since�(KXC1) is q-nef andq-big, we can apply Proposition 2.3. Thus
Suppx1y \ q�1(x00) is connected.

Proposition 2.5. Let f W X ! Y be a projective surjective morphism between ir-
reducible normal varieties such that f

�

OX D OY. Assume the following conditions.
(1) (X, 1) is a Q-factorial lc surface such that(X, {1}) is klt.
(2) S WD x1y ¤ 0 and let T WD f (S).
(3) KX C1 � f 0.
(4) T D f (S) ¨ Y .
Then, f

�

OS D OT . In particular, for every y2 Y, S\ f �1(y) is connected or an
empty set.

Proof. By (4), we have dimY ¤ 0. If dim Y D 2, then the assertion follows
from Proposition 2.3. Thus we may assume dimY D 1. It is sufficient to prove that
OY D f

�

OX ! f
�

OS is surjective. Since the problem is local, by shrinkingY, we may
assume thatf (S) D P 2 Y. If S is connected, thenf

�

OS ' OP and OY ! f
�

OS is
surjective. Therefore, it is sufficient to prove thatS is connected. We define a reduced
divisor D by

SC D D Supp(f �P).

If D D 0, thenS is connected sinceSD Supp(f �P). Therefore, we assume thatD ¤
0. Then, there exists an irreducible curveE � SuppD such thatE \ S¤ 0. We see
(KX C {1}) � E < 0. Thus, we obtain a birational morphismq W X ! X0 such that
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Ex(q) D E. Let 10

WD q
�

1. By Lemma 2.4, if Suppx10

y is connected, then so is
Suppx1y. We can repeat this argument and we obtain a projective morphisms

f W X
Qq
! X00

f 00

! Y

where Qq is a birational morphism such that Ex(Qq) D SuppD. Let 100

WD Qq
�

1. It
is sufficient to show that Suppx100

y is connected. This follows from Suppx100

y D

Supp(f 00�P).

In Proposition 2.8, the most complicated case is the Mori fiberspace to a curve.
Thus we investigate this case in the following lemma.

Lemma 2.6. Let f 0W X0

! R be a projective surjective morphism between normal
varieties such that f0

�

OX0 D OR. Assume the following conditions.
(1) (X0, 10) is a Q-factorial lc surface such that(X0, {10}) is klt.
(2) S0 WD x10

y ¤ 0.
(3) KX0 C1

0

� f 0 0.
(4) There is a(KX0 C {10})-negative extremal contraction g0 W X0

! V over R such
that dim V D 1.
Then the g0-horizontal part (S0)h of S0 satisfies one of the following assertions.
(a) (S0)h

D S01, which is a prime divisor, and [K (S01) W K (V)] D 2.
(b) (S0)h

D S01, which is a prime divisor, and [K (S01) W K (V)] D 1.
(c) (S0)h

D S01C S02, where each S0i is a prime divisor, and [K (S0i ) W K (V)] D 1.
Furthermore, there is aQ-Cartier Q-divisor DV on V such that KX C1 D g0�(DV ).

In the case(b), f 0
�

OS0 D O f 0(S0).

Proof. The assumption (3) meansKX0C1
0

�g0 0. Thus, by (4),x10

y is g0-ample.
We see (S0)h

¤ 0.
We prove that general fibers ofg0 W X0

! V areP1. The dimension of every fiber
is one. Since dimV D 1 and f 0

�

OX0 D OV , the field extensionK (X0)=K (V ) is alge-
braically closed and separable (cf. [3, Lemma 7.2]). Therefore general fibers are geo-
metrically integral. LetF be a general fiber ofg0, that is, F is a fiber which is a
proper integral curve such thatF \ Sing(X) D ;. The adjunction formula implies

(KX0 C F) � F D KX0 � F D �1
0

� F � �(S0)h
� F < 0.

This meansF ' P1.
By (KX0 C F) � F D �2, we have (S0)h

� F � 2 for a general fiberF . Therefore
one of (a), (b) and (c) holds. By the abundance theorem ([20, Theorem 18.4]), we see
KX0 C 1

0

�

Q,g0 0. This meansm(KX0 C 1
0) D g0�(D) for some integerm and some

Z-divisor D on V . We define aQ-divisor DV by D D mDV .
Assume (b) and let us provef 0

�

OS0 DO f 0(S0). Since dimV D 1, we have dimRD 0
or dim RD 1. Assume dimRD 0. It is sufficient to prove thatS0 is connected. This
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holds because all of the fibers ofg0 are irreducible and (S0)h
¤ 0. Assume dimRD 1.

Then, we seef 0(S0)D V ' R. SinceS01 and R are birational, the morphismf jS01W S01!
R is an isomorphism. We can write

S0 D S01C F1C � � � C Fr

where eachFi is the reduced subscheme whose support is a fiber ofg0.
We prove f 0

�

OS0 D OR by the induction onr . If r D 0, then the assertion follows
from S01 ' R. Assumer > 0. Consider the exact sequence:

0! OS0 ! OS0�Fr �OFr ! O(S0�Fr )\Fr ! 0.

The last map defined by the difference. Note that the last termis the scheme-theoretic
intersection. It is easy to see that (S0 � Fr ) \ Fr ' S01 \ Fr . Then (S0 � Fr ) \ Fr is
reduced becauseS01 ' R. Consider the push-forward of the above exact sequence:

0! f 0
�

OS0 ! f 0
�

OS0�Fr � f 0
�

OFr ! f 0
�

O(S0�Fr )\Fr ! R1 f 0
�

OS0 .

We seeR1 f 0
�

OX0 D 0 by [21, Theorem 2.12]. This impliesR1 f 0
�

OS0 D 0. Since Fr

and (S0 � Fr )\ Fr are reduced, we havef 0
�

OFr ' f 0
�

O(S0�Fr )\Fr ' O f 0(Fr ). This means
f 0
�

OS0 ! f 0
�

OS0�Fr is an isomorphism. By the induction hypothesis, we obtainf 0
�

OS0 '

f 0
�

OS0�Fr ' OR.

REMARK 2.7. In the last argument in the above proof, we use the following fact.
Let A be a ring and letM, N, L and P are A-modules. Assume the exact sequence

0! M
('1,'2)
����! N � L

 ��

��! P! 0.

If � W L ! P is an isomorphism, then'1 W M ! N is also an isomorphism.

We can prove the following main result in this section.

Proposition 2.8. Let (X, 1) be an irreducible dlt surface. Let fW X ! R be a
projective surjective morphism such that f

�

OX D OR. Assume that SWD x1y ¤ 0 and
let T WD f (S). If K X C1 � f 0, then one of the following assertions holds.
(1) f

�

OSD OT .
(2) f

�

OS¤ OT . There exist a projective surjective R-morphism gW X! V to a smooth
curve V and aQ-divisor DV on V such that g

�

OX D OV and that KX C1 D g�(DV )
asQ-divisors. Every connected component of S intersects the g-horizontal part Sh of S.
Moreover, the g-horizontal part Sh satisfies one of the following assertions.

(2.1s) Sh
D S1, which is a prime divisor, and [K (S1) W K (V)] D 2. This field

extension is separable.
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(2.1i) Sh
D S1, which is a prime divisor, and [K (S1) W K (V)] D 2. This field ex-

tension is purely inseparable.
(2.2) Sh

D S1 C S2, where Si is a prime divisor, and gjSi W Si ! V is an iso-
morphism for iD 1, 2.

Proof. If f is birational, then Proposition 2.5 implies (1). Thus we mayassume
that dimR < dim X. We run a (KX C {1})-MMP on X over R. The end result is
a proper birational morphismq W X ! X0 over R. Let f 0 W X0

! R be the induced
morphism. SinceKX C 1 � f 0, we obtainKX0 C 1

0

� f 0 0 where10

WD q
�

1. Let
S0 WD x10

y. Then it is easy to see that (X0, 10) is a Q-factorial lc pair and (X, {10})
is klt.

STEP 1. Assume that (X0, {10}) is a minimal model overR. Then KX0 C {10} is
f 0-nef andKX0 C1

0

� f 0 0. So�x10

y is f 0-nef. If dim RD 0, thenx10

y D 0 because
X0 is projective. Lemma 2.4 impliesx1yD 0. This case is excluded. Assume dimRD
1. Since�x10

y is f 0-nef, we see f 0(x10

y) ¨ R. Therefore, by Proposition 2.5, we
obtain (1).

STEP 2. Assume that there exists a Mori fiber space structureg0 W X0

! V over
R. Let

g W X
q
! X0

g0

! V .

Then�(KX0C{10}) is g0-ample. Note that, if dimV D 1, then we can apply Lemma 2.6
and every connected component ofS intersectsSh by Lemma 2.4.

First, assume that dimRD 0. If x10

y is connected, then we have (1) by Lemma 2.4.
Thus we may assume thatx10

y is not connected.
We show dimV D 1. Assume dimV D 0. Thenx10

y is ample. Thus its suitable
multiple is an effective ample Cartier divisor. This must beconnected by the Serre
vanishing theorem. This case is excluded.

Thus we can apply Lemma 2.6. Since all of the fibers of the Mori fiber space
g0 W X0

! V are irreducible, we seex10

y D S01C S02. This implies (2.2).
Second, assume that dimRD 1. Then we have dimV D 1. Note thatT D R' V .

We can apply Lemma 2.6. Thus we obtain (a), (b) or (c) of Lemma 2.6. If (a) or (c)
holds, then (2) holds. Thus we may assume that (b) of Lemma 2.6holds. We have
f 0
�

OS0 D OT . Lemma 2.4 impliesq(S) D S0. By Proposition 2.3, we havef
�

OS D

f 0
�

OS0 D OT .

Example 2.9. Let chark D 2. Then, there exists a projective dlt surface(X, 1)
and smooth projective curve R which satisfyProposition 2.8 (2.1i).

CONSTRUCTION. Let X0 WD A
2 and letC0 WD {(x, y) 2 A2

j x D y2}. Note that
the restriction of the first projection toC0 is purely inseparable of degree two. Let
X0 � X WD P

1
� P

1 be the natural open immersion and letC be the closure ofC0

in X. Let g W X ! P

1
DW V DW R be the first projection. It is easy to see thatC is
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smooth andKXCC � g�O
P

1(�1). Thus, we see that (X,1 WD C) is dlt and that (X,1)
satisfies Proposition 2.8 (2.1i).

3. Normalization of nodes

In this section, we calculate the normalization of nodal singularities to reduce prob-
lems for slc varieties to ones for dlt varieties. The main theorem of this section is
Theorem 3.7. In this section, we do not work over a field and we treat noetherian or
excellent schemes.

First we recall the definition of the nodal singularities in the sense of [13, 1.41].

DEFINITION 3.1. Let (R,m) be a noetherian local ring. We sayR has anode(or
R is nodal) if there exists an isomorphismR' S=( f ) where (S,l) is a two-dimensional
regular local ring such thatf 2 l2 and that f is not a square inl2=l3.

We mainly use the following notations.

NOTATION 3.2. Let (R, m) be a nodal noetherian local ring. By definition, we
can write R ' S=( f ) where (S, l) is a two-dimensional regular local ring such that
f 2 l2 and that f is not a square inl2=l3. Take a generatorl D (x, y). We can write

f D ax2
C bxyC cy2

C g

where a, b, c 2 {0} [ S� and g 2 l3. We set Nx WD x C ( f ) 2 R=( f ) and Ny WD y C
( f ) 2 R=( f ).

REMARK 3.3. We use the same notations as Notation 3.2. We show that wemay
assume

c 2 S�

by replacing a generator{x, y} of l. If c 2 S�, then there is nothing to show. Ifa 2
S�, then we exchangex and y. Since a, c 2 {0} [ S�, we assumea D c D 0. By
f � l3, we seeb � l, that is,b 2 S�. Taking another generatorX WD x � y, Y WD y of
l D (x, y) D (X, Y), we obtain

f D bxyC g

D b(X C Y)Y C g

D bXYC bY2
C g.

By b 2 S�, we may assumec 2 S�.
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We calculate the normalization of nodes. We divide the proofinto the following two
cases:R is an integral domain or not. In Lemma 3.4, we treat the case where R is not
an integral domain. In Lemma 3.5, we treat the case whereR is an integral domain.

Lemma 3.4. Let (R, m) be a nodal noetherian local ring. We use the same no-
tations asNotation 3.2. Assume that R is not an integral domain. Then the following
assertions hold.
(1) f has a decomposition fD l1l2 with l1, l2 2 S which satisfies the following
properties.

• l1S¤ l2S.
• For each i, l i 2 l n l2.
• For each i, l i is a prime element of S, that is, l i S is a prime ideal.

(2) l1 and l2 satisfiesl D (l1, l2).
(3) For each i, S=(l i ) is regular.
(4) The natural homomorphism

� W RD S=( f ) D S=(l1l2)! S=(l1) � S=(l2) DW T

is the normalization.
(5) m is the conductor of the normalization� W R ,! T , that is,

m D {r 2 R j rT � R}.

(6) The normalization� W R ,! T induces

� W k(m) D R=m! T=mT ' k(m) � k(m),

where pi Æ � is the identity map for the projection pi to the i-th factor.

Proof. (1) SinceS is a unique factorization domain, we obtain a decomposition
of f into prime elements:

f D uln1
1 � � � l

nr
r

where u 2 S�, ni 2 Z>0 and l i is a prime element ofS. In particular, l i 2 l. Then,
f � l3 implies n1C � � � C nr � 2. Sincen1C � � � C nr D 1 implies thatR is an integral
domain, we seen1 C � � � C nr D 2. Thus, we obtain one of the following two cases:
f D ul21 or f D ul1l2 where l1S¤ l2S. By f � l3 and l i 2 l, we seel i � l

2. Then, it is
enough to show that the casef D ul21 does not occur. Supposef D ul21. We can write

l1 D �x C �yC h

where�, � 2 {0} [ S� and h 2 l2. We obtain

f D ul21 D u(�x C �yC h)2
D u(�x C �y)2

C (an element ofl3).
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By replacing f with u�1 f , this contradicts the definition of nodes: Definition 3.1.
(2) SinceR is nodal, (l1, l2) generatesl=l2. Then Nakayama’s lemma implies the

assertion.
(3) The assertion follows from (2).
(4) The assertion follows from (3).
(5) Let I � R be the conductor. The inclusionm � I is clear. We show the

inverse inclusion (l1, l2) D m � I . By the symmetry, it suffices to provel1 2 I . Take
� D (s1C(l1),s2C(l2)) 2 S=(l1)�S=(l2)D T . Then, we obtainl1� D (0C(l1),l1s2C(l2)).
Therefore,l1� D �(l1s2). This is what we want to show.

(6) By �(l1C l2)D (l2C (l1), l1C (l2)), we seemT D m=(l1)�m=(l2). This implies
the assertion.

Lemma 3.5. Let (R,m) be a nodal noetherian local ring. We use the same nota-
tions asNotation 3.2. Suppose c2 S� (cf. Remark 3.3). Assume that R is an integral
domain. Consider the following natural injective ring homomorphism

' W R ,! R

�

Ny

Nx

�

DW T .

Then the following assertions hold.
(1) The ring homomorphism� W S[y=x]=( f =x2)! R[ Ny= Nx] D T , y=x 7! Ny= Nx is an iso-
morphism.
(2) T is a regular ring.
(3) One of the following assertions holds.

(a) T=mT ' k(m) � k(m) and the composition homomorphism

k(m) D R=m! T=mT ' k(m) � k(m)
pi
�! k(m)

is the identity map for iD 1, 2 where pi is the projection to the i-th factor.
(b) T=mT is a field and the natural homomorphism

k(m) D R=m! T=mT

is a field extension with[T=mT W k(m)] D 2.
(4) The equation( Ny= Nx)2

C r1 Ny= Nx C r2 D 0 holds in R[ Ny= Nx] D T for some r1, r2 2 R.
In particular, T is a finitely generated R-module.
(5) T is the integral closure of R in the quotient field K(R).
(6) The maximal idealm is the conductor of the normalization, that is, m D {r 2 R j
rT � R}.

Proof. We use the same notations as Notation 3.2.
(1) Set z WD y=x 2 K (S). Let us check f =x2

2 S[y=x] D S[z]. Since f 2 l2 D

(x, y)2, we can write f D �x2
C �xy C  y2 for some�, �,  2 S. Then we see
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f =x2
2 S[z] by the following calculation:

f D �x2
C �xyC  y2

D �x2
C �x(xz)C  (xz)2

D x2(� C �zC  z2).

Consider the natural homomorphism

� W S

�

y

x

��

( f =x2)! R

�

Ny

Nx

�

,

y

x
7!

Ny

Nx
.

We prove that� is an isomorphism. For the time being, we show this assuming the
following two assertions.
(A) The S-algebra homomorphismS=( f )! S[y=x]=( f =x2) is injective.
(B) S[y=x]=( f =x2) is an integral domain.
Consider the following commutative diagram ofS-algebras:

S=( f ) R

S

�

y

x

��

( f =x2) R

�

Ny

Nx

�

.

(

(

 

! injective  

! injective

 

!

�

Note that R[ Ny= Nx] � K (R) D K (S=( f )) � K (S[y=x]=( f =x2)). All of the four rings in
the above diagram are contained in the quotient fieldK (S[y=x]=( f =x2)). In
K (S[y=x]=( f =x2)), the elementy=x C ( f =x2) 2 S[y=x]=( f =x2) is the same asNy= Nx 2
R[ Ny= Nx]. Therefore we obtain

S

�

y

x

��

( f =x2) D R

�

Ny

Nx

�

.

(A) We show that the natural mapS=( f )! S[y=x]=( f =x2) is injective. For this,
consider the following natural composition map

 W S! S

�

y

x

�

! S

�

y

x

��

( f =x2)

and we show Ker( ) D f S. The inclusion Ker( ) � f S is obvious. Let us prove the
inverse inclusion Ker( ) � f S. Take an elements 2 S such that (s) D 0, that is,
s 2 ( f =x2)S[y=x]. We have

sD
f

x2

�

t0C t1
y

x
C � � � C tm

ym

xm

�
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where ti 2 S. Let us show that we can assumem D 0. Assumem � 1. Moreover
assumetm 2 x S, that is, tm D xQtm with Qtm 2 S. Then, by the following calculation:

tm
ym

xm
D xQtm

ym

xm
D yQtm

ym�1

xm�1
,

we obtain another expression:s D ( f =x2)(t0 C � � � C tm�2(y=x)m�2
C t 0m�1ym�1

=xm�1)
for some t 0m�1 2 S. Thus, we assumem � 1 and tm � x S. Taking the multiplication
with xmC2, we obtain

sxmC2
D f (t0xm

C � � � C tm�1xym�1
C tmym).

This implies f tmym
2 x S. But, both the elementstm and y are not inx S. Since x S

is a prime ideal, we obtainf 2 x S. Then we can writef D xg with g 2 S. f 2 l2

implies g 2 l. Therefore, f is not a prime element, which contradicts thatR is an
integral domain. Therefore, we may assumemD 0 and we obtain

sD
f

x2
t0.

Since f � x S, we seet0 2 x S. Repeating this, we seet0 2 x2S, which impliess 2 f S.
This is what we want to show.

(B) First we prove thatS[y=x] is a unique factorization domain. We see that
x S[y=x] is a prime ideal because

S

�

y

x

��

x S

�

y

x

�

' S[Z]=(x, x Z � y) ' (S=(x, y))[Z]

is an integral domain. By Nagata’s criterion ([18, Lemma 1]), S[y=x] is a unique fac-
torization domain if so is

�

S

�

y

x

���

1

x

�

D S

�

1

x

�

.

This ring S[1=x] is a unique factorization domain because so isS.
We show thatS[y=x]=( f =x2) is an integral domain. SinceS[y=x] is a unique fac-

torization domain, let us check thatf =x2 is a prime element. Assume that there exists
a decomposition

f

x2
D

�

s0C s1
y

x
C � � � C sk

yk

xk

��

t0C t1
y

x
C � � � C tl

yl

xl

�

where si , t j 2 S and both the factors in the right hand side are not in (S[y=x])�. We
may assume that, ifk � 1 (resp.l � 1), thensk (resp. tl ) is not in x S. We show that
k D 0 or l D 0 holds. Assumek � 1 and l � 1. We consider the following two cases:
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k D l D 1 and k C l � 3. If k D l D 1, then we obtainf D (s0x C s1y)(t0x C t1y).
This contradicts thatf is a prime element. IfkC l � 3, then taking the multiplication
with xkCl , we seesktl ykCl

2 x S. By sk � x S and tl � x S, we haveykCl
2 x S, which

is a contradiction. Therefore,k D 0 or l D 0 holds. By the symmetry, we may assume
l D 0 and we obtain

f

x2
D

�

s0C s1
y

x
C � � � C sk

yk

xk

�

t0.

If k � 1 and t0 2 x S, then, for t0 D xt00, we obtain another expression:f =x2
D (xs0C

� � �Cxsk�1(y=x)k�1
C ysk(y=x)k�1)t 00. Thus we may assume thatkD 0 or t0 � x S holds.

If k D 0, then we obtain the following contradiction:f D x2s0t0. Assumet0 � x S.
Taking the multiplication withxk, we seek � 2. This implies f D (s0x2

C s1xyC
s2y2)t0. Since s0x2

C s1xyC s2y2
2 m and f 2 S is a prime element, we havet0 2

S� � (S[y=x])�. This is a contradiction.
(2) Set zD y=x. First, we calculate the ring (S[y=x]=( f =x2))=( Nx). The element

f =x2 can be written

f

x2
D

ax2
C bxyC cy2

C g

x2
D

ax2
C bx(xz)C c(xz)2

C x3
Qg

x2

D aC bzC cz2
C x Qg

for some Qg 2 S[z]. Here, since (S, (x, y)) is a regular local ring, we can check that the
homomorphism

S[Z]=(x Z � y)! S

�

y

x

�

, Z 7!
y

x

is an isomorphism. Then, we see
�

S

�

y

x

��

( f =x2)

��

( Nx) ' S

�

y

x

��

(( f =x2)C (x))

' S[Z]=(x Z � y, aC bZC cZ2, x)

' k(m)[Z]=( NaC NbZC NcZ2).

Fix a maximal ideal n of S[y=x]=( f =x2) and we show that the local ring
(S[y=x]=( f =x2))n is regular.

We show Nx 2 n. Assume Nx � n. Then n corresponds to a maximal ideal of
R[ Ny= Nx][1= Nx] D R[1= Nx], that is, n D (nR[ Ny= Nx][1= Nx]) \ R[ Ny= Nx]. Since (R, m) is one
dimensional local integral domain andNx 2 m, R[1= Nx] is a field. It implies n D (0).
Then S[y=x]=( f =x2) is a field. On the other hand, by the above isomorphism

�

S

�

y

x

��

( f =x2)

��

( Nx) ' k(m)[Z]=( NaC NbZC NcZ2)
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and Nc¤ 0, there exists a non-zero ideal (Nx) of S[y=x]=( f =x2). Thus S[y=x]=( f =x2) is
not a field and we obtain a contradiction.

Therefore, Nx 2 n. To show that the local ring (S[y=x]=( f =x2))n is regular, it is
enough to prove that the ring

�

S

�

y

x

��

( f =x2)

��

( Nx) ' k(m)[Z]=( NaC NbZC NcZ2)

is regular. If NaC NbZC NcZ2 is irreducible overk(m), then the ringk(m)[Z]=( NaC NbZC
NcZ2) is a field. Assume thatNaC NbZCNcZ2 is not irreducible overk(m). We haveNc¤ 0.
There are�, � 2 R such that

NaC NbZC NcZ2
D Nc(Z C N�)(Z C N�).

Since R is nodal, we seeN� ¤ N�. Therefore,

�

S

�

y

x

�

=( f =x2)

�

=( Nx) ' k(m)[Z]=( NaC NbZC NcZ2) ' k(m) � k(m).

This is what we want to show.
(3) Let us calculateT=mT . By

mT D mR

�

Ny

Nx

�

D ( Nx, Ny)R

�

Ny

Nx

�

D Nx R

�

Ny

Nx

�

,

we obtainT=mT ' (S[y=x]=( f =x2))=( Nx). By the proof of (2), we obtain

�

S

�

y

x

��

( f =x2)

��

( Nx) ' k(m)[Z]=( NaC NbZC NcZ2).

If NaC NbZC NcZ2 is irreducible, then we obtain (b). Assume thatNaC NbZC NcZ2 is not
irreducible. Then, we can write

NaC NbZC NcZ2
D Nc(Z C N�)(Z C N�).

Since R is nodal, we seeN� ¤ N�. This implies (a).
(4) By Notation 3.2, we have

f D ax2
C bxyC cy2

C g

where a, b, c 2 {0} [ S� and g 2 l3 D (x, y)3. Moreover, we havec 2 S�. For some
�, �,  , Æ 2 S, we obtain

f D ax2
C bxyC cy2

C �x3
C �x2yC  xy2

C Æy3,
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which implies

f

x2
D aC b

y

x
C c

�

y

x

�2

C �x C �yC  y
y

x
C Æy

�

y

x

�2

D (cC Æy)

�

y

x

�2

C (bC  y)
y

x
C (aC �x C �y).

By c 2 S� and Æy 2 l, we seecC Æy 2 S�. Therefore the assertion follows from (1).
(5) The assertion follows from (2) and (4).
(6) Let I WD {r 2 R j rT � R} be the conductor ideal. By this definition,I is

an ideal of R. Note that I is also an ideal ofT . Since R¤ T , we obtain 1� I . In
particular, I � m. Let us showI � m. By (4), we obtain

T D R

�

Ny

Nx

�

D RC R
Ny

Nx
.

This implies NxT � R. Thus, Nx 2 I . Since I is an ideal ofT D R[ Ny= Nx], we see Ny D
Nx Ny= Nx 2 I . Therefore,I � Nx RC NyRD m.

We say a schemeX is excellent if X is covered by open affine schemes whose
corresponding rings are excellent.

Combining Lemma 3.4 and Lemma 3.5, we obtain the following result.

Proposition 3.6. Let X be a quasi-compact excellent reduced scheme and let�

be a scheme-theoretic point whose local ringOX,� is nodal. Let SWD {�} be the re-
duced scheme. Let� W Y ! X be the normalization, D � X the closed subscheme de-
fined by the conductor and C� Y its scheme-theoretic inverse image:

C WD ��1(D) Y

D X.

 

!

closed
immersion

 

!

 

!

�

 

!

closed
immersion

Then, there exists an open subset� 2 X0

� X which satisfies the following properties.
(0) Set Y0 WD ��1(X0), D0

WD D \ X0, C0

WD C \ Y0 and S0 WD S\ X0.
(1) D0 is reduced and S0 D D0. In particular, D0 is an integral scheme.
(2) �jC0

W C0

! D0 satisfies one of the following conditions
• C0

' D0

1q D0

2 with D0

i ' D and each morphism

D0

i ,! C0

�jC0

! D0

are isomorphism.
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• C0 is an integral scheme and the field extension K(C0)=K (D0) satisfies
[K (C0) W K (D0)] D 2.

Proof. We may assumeX D SpecA, Y D SpecB, D D SpecA=I andC D SpecB=J
where I D J. Let S

�

WD A n � where we consider� as a prime ideal ofA. There are the
following two cases.
(�) OX,� D A

�

D S�1
�

A is not an integral domain.

(�) OX,� D A
�

D S�1
�

A is an integral domain.

(�) Assume thatS�1
�

A is not an integral domain. We can apply Lemma 3.4 to

S�1
�

A. Then, by shrinking� 2 SpecA, we obtain the following commutative diagram:

A A=p1 � A=p2

S�1
�

A S�1
�

(A=p1) � S�1
�

(A=p2),

 

!

 

!

 

!

 

!

where (0)D p1\p2. Since A is excellent, for eachi , the regular locusUi of SpecA=pi

forms an open subset of SpecA=pi . Since S�1
�

(A=pi ) is regular, we obtain� 2 Ui .
Therefore, by shrinking� 2 SpecA, we may assume that eachA=pi is regular. In par-
ticular, the homomorphismA! A=p1 � A=p2 coincides with the normalization. Since
S�1
�

(A=I ) is reduced andA is noetherian, we may assume thatA=I is reduced by
shrinking SpecA. This implies (1). We show (2). We have the induced homomorphism

�i W A=I ! (A=(I C p1)) � (A=(I C p2))! A=(I C pi ),

where the latter map is the projection to thei -th factor. By Lemma 3.4,S�1
�

�i is an
isomorphism. SinceX D SpecA is noetherian and the kernel and the cokernel of� is
a finitely generatedA-modules, we obtain the assertion.

(�) Assume thatS�1
�

A is an integral domain. We can apply Lemma 3.5 toS�1
�

A.
We obtain the following commutative diagram:

A B

S�1
�

A S�1
�

B.

 

!

�

 

!

 

!

 

!

By Lemma 3.5,S�1
�

(A=I ) is reduced. This implies (1). By Lemma 3.5, there are the
following two cases:
(a) S�1

�

(B=J) ' S�1
�

(A=I ) � S�1
�

(A=I ) and the composition homomorphism

S�1
�

(A=I )! S�1
�

(B=J) ' S�1
�

(A=I ) � S�1
�

(A=I )
pi
�! S�1

�

(A=I )

is the identity map fori D 1, 2 wherepi is the projection to thei -th factor.
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(b) S�1
�

(B=J) is a field and the natural homomorphism

S�1
�

(A=I )! S�1
�

(B=J)

is a field extension with [S�1
�

(B=J) W S�1
�

(A=I )] D 2.
For each case, we obtain (2) by a similar argument to (�).

The following theorem is the main result in this section.

Theorem 3.7. Let k be a field. Let X be a pure-dimensional reduced separated
scheme of finite type over k. Assume that X is S2 and, for every codimension one
scheme-theoretic point� 2 X, the local ringOX,� is regular or nodal. Let�W Y! X be
the normalization, D � X the closed subscheme defined by the conductor and C� Y
its scheme-theoretic inverse image:

C WD ��1(D) Y

D X.

 

!

closed
immersion

 

!

�jC
 

!

�

 

!

closed
immersion

Let L be an invertible sheaf on X and fix s2 H0(Y, ��L
2). Let CD
S

Ci be the
irreducible decomposition where each Ci is an integral scheme. Assume the following
conditions.
(1) The equation g�(sjC j )D sjCi holds for every birational map gW Ci Ü C j such that
�jCi D �jC j Æg holds as rational maps. Note that g�(sjC j ) D sjCi means that there exist
non-empty open subsets C0i � Ci , C0

j � C j and an isomorphism g0 W C0

i ! C0

j induced
by g such that g0�(sjC0

j
) D sjC0

i
.

(2) For every i, there exists ti 2 H0(Ci , ��L) such that sjCi D t
2
i .

Then there exists an element u2 H0(X, L
2) such that��u D s.

Proof. Consider the exact sequence:

0! OX ! �

�

OY �OD ! �

�

OC ! 0,

which implies

0! H0(X, L
2)! H0(Y, ��L
2)� H0(D, L
2
jD)! H0(C, ��L
2

jC).

It suffices to show that there existst 2 H0(D, L
2
jD) such that (�jC)�t D sjC. SinceX

is S2, we can replaceX with arbitrary open subschemeX0 with codimX(X n X0) � 2.
Thus, we may assume thatC and D are regular and of pure codimension one. We can
apply Proposition 3.6. Then, by replacingX with its open subscheme,C! D satisfies
one of the following properties.
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(a) C is two copies ofD, that is,C ' Dq D.
(b) C ! D is a finite surjective morphism between integral schemes such that
[K (C) W K (D)] D 2 and thatK (C)=K (D) is separable.
(c) C ! D is a finite surjective morphism between integral schemes such that
[K (C) W K (D)] D 2 and thatK (C)=K (D) is purely inseparable.
If (a) or (b) holds, then the condition (1) implies thatsjC descends toD. If (c) holds,
then the condition (2) implies thatsjC descends toD.

REMARK 3.8. By the above proof, if the characteristic ofk is not equal to 2,
then we can drop the second condition (2) in Theorem 3.7.

4. Abundance theorem for slc surfaces

The following definition of slc varieties is the same as Definition-Lemma 5.10 in [13].
For more details, see also [13, 1.41, 5.1, 5.9, 5.10]. Moreover, we define sdlt varieties.

DEFINITION 4.1. Let X be a variety. Assume thatX is S2 and thatX is regular
or nodal in codimension one. Let1 be an effectiveQ-divisor such thatKX C 1 is
Q-Cartier. Let � W Y ! X be the normalization and we define1Y by KY C 1Y D

�

�(KX C 1). We say (X, 1) is slc if (Y, 1Y) is lc. We say (X, 1) is sdlt variety if
(Y, 1Y) is dlt and every irreducible component ofX is normal.

REMARK 4.2. (1) Note thatsdlt in Definition 4.1 andsemi-dlt in the sense of
[13, Definition 5.19] are different. There is an sdlt varietywhich is not semi-dlt (see
the example after [13, Definition 5.19]).

(2) In characteristic zero, semi-dlt varieties are sdlt by [13, Definition 5.20]. In
positive characteristic, we do not know whether the notionsof semi-dlt and sdlt have
some relations.

We recall theB-birational maps introduced in [4].

DEFINITION 4.3. Let (X, 1X) and (Y, 1Y) be lc varieties (may be reducible).
We say� W (X, 1X)Ü (Y, 1Y) is a B-birational map if � W X Ü Y is a birational
map and there exist proper birational morphisms� W W ! X and � W W ! Y from a
normal varietyW such that� D � Æ � and ��(KX C1X) D ��(KY C1Y). Note that
B-birational maps may permute the irreducible components. We define

Aut(X, 1X) WD {� 2 Aut(X) j KX C1X D �
�(KX C1X)}.

To obtain sections on slc varieties, we consider the following sections on sdlt va-
rieties. The idea is very similar to the admissible sectionsin [4].
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DEFINITION 4.4. Let (X,1) be ann-dimensional projective sdlt variety withn�
2. Let X D

S

Xi be the irreducible decomposition and let� W
`

Xi ! X be the nor-
malization. We define1i by KXi C 1i D (��(KX C 1))jXi . Note that (Xi , 1i ) is dlt.
Let m be a positive integer such thatm(KX C 1) is Cartier. We defineB-invariant
sectionsand separably gluable sectionsas follows.
(1) We says 2 H0(X, m(KX C 1)) is B-invariant if g�(sjX j ) D sjXi for every B-
birational mapg W (Xi , 1i )Ü (X j , 1 j ).
(2) We says 2 H0(X, m(KX C1)) is separably gluableif sj`

i x1i y is B-invariant.
We define vector subspaces

BI (X, m(KX C1)) WD {s is B-invariant} � H0(X, m(KX C1)),

SG(X, m(KX C1)) WD {s is separably gluable} � H0(X, m(KX C1)).

Moreover, we define

BI (2)(X, 2m(KX C1)) WD {t2
j t 2 BI (X, m(KX C1))},

G(X, 2m(KX C1)) WD

(

s sj`
i x1i y 2 BI (2)

 

a

i

x1i y, 2m(KX C1)j`
i x1i y

!)

.

We says 2 H0(X, 2m(KX C1)) is gluable if s 2 G(X, 2m(KX C1)).

REMARK 4.5. In characteristicp¤ 2, we do not needBI (2)(X,2m(KXC1)) and
G(X, 2m(KXC1)). For more details, see Remark 3.8 and the proof of Proposition 4.9.

The following lemma teaches us that, in order to obtain sections on an slc surface,
we should consider gluable sections on a dlt surface.

Lemma 4.6. Let (X, 1) be a projective slc surface. Let� W Y ! X be the nor-
malization and let KYC1Y WD �

�(KXC1). Let �W (Z,1Z)! (Y,1Y) be a birational
morphism from a projective dlt surface(Z, 1Z) such that KZ C1Z D �

�(KY C1Y).
Then the following assertions hold. If s2 G(Z, 2m(KZ C 1Z)), then sD �

�

�

�t for
some t2 H0(X, 2m(KX C1)).

Proof. The assertion holds by Theorem 3.7.

We summarize the basic properties ofB-invariant sections and (separably) glu-
able sections.

Lemma 4.7. Let (X, 1) be an n-dimensional projective sdlt variety with n� 2.
Let m be a positive integer such that m(KX C1) is Cartier.
(1) If s 2 BI (X, m(KX C1)), then s2 2 BI (2)(X, 2m(KX C1)).
(2) If t 2 BI (2)(X, 2m(KX C1)), then t2 BI (X, 2m(KX C1)).
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(3) The vector space B I(X, m(KX C 1)) generatesOX(m(KX C 1)) if and only if
B I (2)(X, 2m(KX C1)) generatesOX(2m(KX C1)).
(4) If s 2 SG(X, m(KX C1)), then s2 2 G(X, 2m(KX C1)).
(5) If t 2 G(X, 2m(KX C1)), then t2 SG(X, 2m(KX C1)).
(6) If the vector space SG(X, m(KX C 1)) generatesOX(m(KX C 1)), then
G(X, 2m(KX C1)) generatesOX(2m(KX C1)).
(7) Assume that X is normal and let SWD x1y ¤ 0. If the map

SG(X, m(KX C1))! BI (S, m(KX C1)jS)

is surjective, then so is the map

G(X, 2m(KX C1))! BI (2)(S, 2m(KX C1)jS).

Proof. (1), (2), (3) These assertions follow from the definition.
(4) The assertion follows from (��s2)j`

x1i y D ((��s)j`
x1i y)

2.
(5) The assertions follows from (2).
(6), (7) The assertions follow from (4).

Lemma 4.8. Let (X, 1) be a proper lc curve or a proper lc surface such that
KXC1 is semi-ample and SWD x1y ¤ 0. Let f WD '

jk(KXC1)jW X! R be a surjective
morphism to a projective variety R such that f

�

OX D OR. Let T WD f (S). Assume the
following conditions.
(a) f

�

OSD OT .
(b) There exist sections{si }

q
iD1 � H0(S, m(KX C 1)jS) without common zeros for

some m.
Then, for some r> 0, there exist sections{ui }

l
iD1 � H0(X, rm(KX C1)) which satisfy

the following conditions.
(1) ui jSD sr

i for 1� i � q and ui jSD 0 for qC 1� i � l.
(2) {ui }

l
iD1 have no common zeros.

Proof. There is an ampleQ-Cartier Q-divisor H on R such thatKX C 1 �

Q

f �H . For r � 0, we have the following commutative diagram.

H0(X, rm(KX C1)) H0(S, rm(KX C1)jS)

H0(R, rmH) H0(T, rmHjT )

 

!

 

!

'

 

!

surjection

 

!

'

Let u1, : : : , uq 2 H0(X, rm(KX C 1)) be lifts of sr
1, : : : , sr

q and let us consider the
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following corresponding sections.

ui sr
i

u0i s0i

 

!

 

!

 

!

 

!

We may assume thatr is so large thatIT 
OR(rmH) is generated by global sections
where IT is the corresponding ideal to the closed subschemeT . Let t 0qC1, : : : , t 0l be

the basis ofH0(R, IT 
OR(rmH)) and letu0qC1, : : : , u0l be its image toH0(R, rmH).
Then u01, : : : , u0l have no common zeros. Thus the corresponding sectionsu1, : : : , ul

satisfy the desired properties.

The following proposition is the key to prove the abundance theorem for slc surfaces.

Proposition 4.9. Let (X,1) be a projective dlt surface such that SWD x1y ¤ 0.
Let m be a sufficiently large and divisible integer such that m2 2Z

>0. If K X C 1 is
nef, then the following assertions hold.
(a) The following map is surjective:

G(X, 2m(KX C1))! BI (2)(S, 2m(KX C1)jS).

(b) Assume that B I(S,m(KXC1)jS) generatesOS(m(KXC1)jS). Then G(X,2m(KXC

1)) generatesOX(2m(KX C1)).

Proof. We may assume thatX is irreducible. By the abundance theorem (cf. [7]),
we obtain f WD '

jk(KXC1)j W X ! R such that f
�

OX D OR. Let f (S) DW T . Then (1)
or (2) holds.
(1) f

�

OSD OT .
(2) f

�

OS¤ OT .
(1) Assume f

�

OSD OT . By the diagram of the proof of Lemma 4.8, the map

H0(X, m(KX C1))! H0(S, m(KX C1)jS)

is surjective. Thus the map

SG(X, m(KX C1))! BI (S, m(KX C1)jS)

is also surjective. Thus assertion (a) follows from Lemma 4.7 (7). We prove (b). Since
BI (S, m(KX C1)jS) generatesOS(m(KX C1)jS), SG(X, m(KX C1)) also generates
OX(m(KX C1)) by Lemma 4.8. The assertion follows from Lemma 4.7 (6).
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(2) Assume f
�

OS ¤ OT . We can apply Proposition 2.8 and we obtain Propos-
ition 2.8 (2). Then, we have projective morphisms

f W X
g
! V ! R

where V is a smooth projective curve.
CASE (2.1s). Assume Proposition 2.8 (2.1s) holds. By Lemma 4.7 (7), it is suf-

ficient to prove (a)0 and (b)0.
(a)0 The following map is surjective:

SG(X, m(KX C1))! BI (S, m(KX C1)jS).

(b)0 Assume thatBI (S, m(KX C 1)jS) generatesOS(m(KX C 1)jS). Then SG(X,
m(KX C1)) generatesOX(m(KX C1)).
First we prove (a)0. Note that there is a Galois involution� W S1 ! S1 and � is B-
birational. Lets 2 BI (S, m(KX C 1)jS). Since s is B-invariant, this sections is in-
variant for �. Thus sjS1 is the pull-back of a sectiont 2 H0(V, m(DV )). Let u WD
g�t 2 H0(X, m(KX C 1)). We prove thatujS D s. Let SD

S

Si be the irreducible
decomposition. SinceS is reduced, we obtain the exact sequence:

0! OS!
M

i

OSi .

Therefore it is sufficient to prove thatujSi D sjSi for every i . For i D 1, this is clear
by the construction. Thus we may assume thatSi is g-vertical. We take a proper bi-

rational morphism� W X00

! X in Lemma 5.10. Letg00 W X00

�

�! X
g
�! V . Note that

�

�

OS00 D OS by Lemma 5.10 whereS00 WD x100

y. Thus it is sufficient to prove that
u00jS00i D s00jS00i where u00 WD �

�u, s00 WD �

�s and S00i is an irreducible component ofS00

such thatg00-vertical. Let S001 be the proper transform ofS1. AssumeS001 \S00i ¤ ;. Note
that, since (X00,100) is dlt, the scheme-theoretic intersectionS001 \S00i is reduced. Hence,
Lemma 5.10 impliesg00

�

OS00i ' g00
�

OS001\S00i . Sincem(KX00C1
00) is the pull-back ofmDV ,

this means

H0(S00i , m(KX00 C1
00)jS00i ) ' H0(S001 \ S00i , m(KX00 C1

00)jS001\S00i ).

By u00jS001 D s00jS001 , we haveu00jS001\S00i D s00jS001\S00i . Therefore, by the above isomorphism,
we seeu00jS00i D s00jS00i . If S00j satisfiesS00j \ S00i ¤ ; for S001 \ S00i ¤ ;, then u00jS00j D s00jS00j
by the same argument as above. By the inductive argument, if avertical irreducible
componentS00j is contained in a connected component ofS00 which intersectsS001 , then
u00jS00j D s00jS00j . By Lemma 2.4 and Proposition 2.8, every vertical irreducible component
S00i satisfies this property. Therefore, we seeu 2 SG(X, m(KXC1)) such thatujSD s.

Second, we prove (b)0. We prove thatSG(X,m(KXC1)) generatesOX(m(KXC1)).
Let s1, : : : , sr 2 BI (S, m(KX C 1)jS) be a basis and letu1, : : : , ur 2 SG(X, m(KX C
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1)) be their lifts. Let t1, : : : , tr 2 H0(V, mDV ) be the corresponding sections. Since
BI (S,m(KXC1)jS) generatesOS(m(KXC1)jS) andS! V is surjective,t1, : : : , tr have
no common zeros. Thus the corresponding sectionsu1,: : : ,ur generatesOX(m(KXC1)).

CASE (2.2). Assume Proposition 2.8 (2.2) holds. It is sufficient to prove the above
assertions (a)0 and (b)0.

We prove (a)0. Note that there is aB-birational morphism� W S2! S1 obtained by
S2 ' V ' S1. Let s 2 BI (S, m(KX C1)jS). Sinces is B-invariant, we see��(sjS1) D
sjS2. SinceS1 ' V , sjS1 is the pull-back of a sectiont 2 H0(V, mDV ). Let u WD g�t 2
H0(X, m(KX C1)). We would like to prove thatujSD s. It is sufficient to prove that
ujSi D sjSi for every irreducible componentSi of S. By the same argument as (2.1s),
it is sufficient to prove this equality only fori D 1, 2. It is clear in the case where
i D 1. Since��(ujS1) D ujS2, it is also clear in the case wherei D 2. The assertion (b)
holds by the same argument as (2.1s).

Case (2.1i). Assume Proposition 2.8 (2.1i) holds. We seep D chark D 2.
We prove (a). Lets 2 BI (2)(S, 2m(KX C 1)jS). Then we havesD Qs2 where Qs 2

BI (S,m(KXC1)jS). Note thatgjS1 W S1! V is the relative Frobenius morphism. Thus
the absolute Frobenius morphismF W S1! S1 factors throughV :

F W S1

gjS1
��! V

G
�! S1.

Note thatG is a non-k-linear isomorphism as schemes and that, for an invertible sheaf
L on V ,

G�(gjS1)
�L ' G�(gjS1)

�G�(G�1)�L ' G�F�(G�1)�L ' L
2.

We showOV (2mDV ) ' G�OS1(m(KX C1)jS1). Sincem 2 2Z, we can writemD 2m0

wherem0

2 Z. First, we see

(gjS1)
�OV (2m0DV ) ' OS1(2m0(KX C1)jS1) ' (gjS1)

�G�OS1(m
0(KX C1)jS1).

Then, for an invertible sheaf

M WD (G�1)�OV (2m0DV )
OS1(�m0(KX C1)jS1),

we obtainF�M D (gjS1)
�G�M ' OS1. This implies

OV (2mDV ) ' G�(gjS1)
�OV (2m0DV )

' G�F�(G�1)�OV (2m0DV )

' G�F�OS1(m
0(KX C1)jS1)

' G�OS1(m(KX C1)jS1).

Therefore, the sections is the pull-back of

t WD G�

Qs 2 H0(V, 2mDV ).
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Let u WD g�t 2 H0(X, 2m(KX C 1)). Then, by the same argument as (2.2s), we see
ujSD s. This meansu 2 G(X, 2m(KX C1)).

We prove (b), that is, we prove thatG(X, 2m(KX C 1)) generatesOX(2m(KX C

1)). Let s1,:::,sr 2 BI (2)(S,2m(KXC1)jS) be a basis and letu1,:::,ur 2 G(X,2m(KXC

1)) be their lifts. Let t1, : : : , tr 2 H0(V, 2mDV ) be the corresponding sections. Here,
BI (2)(S, 2m(KX C 1)jS) generatesOS(m(KX C 1)jS) by Lemma 4.7 (3). Thus, since
S! V is surjective,t1, : : : , tr have no common zeros. Thus the corresponding sections
u1, : : : , ur generatesOX(2m(KX C1)).

In order to constructB-invariant sections, we consider the following finiteness
theorem.

Theorem 4.10. Let (C,1) be a projective lc curve and let m be a positive integer
such that m(KC C1) is Cartier. Then�m(Aut(C, 1)) is a finite group where�m is a
group homomorphism defined by

�m W Aut(C, 1)! Aut(H0(C, m(KC C1))),

� 7! (s 7! �

�s).

Proof. We may assume thatC is irreducible. If the genusg(C) � 2, then Aut(C)
is a finite group. Therefore,�m(Aut(C,1)) is a finite group since Aut(C,1) � Aut(C).

If g(C) D 1 and 1 ¤ 0, then Aut(C, p1q) is a quasi-projective scheme and
H0(C, TC 
 OC(�p1q)) D 0. Therefore, Aut(C, p1q) is a finite group. Thus,
�m(Aut(C, 1)) is a finite group because Aut(C, 1) � Aut(C, p1q).

Assume thatg(C) D 1 and1 D 0. Let 02 C be the origin of the elliptic curve
C. Then T

�� (0) Æ � 2 Aut(C, [0]) for any � 2 Aut(C), where T
�� (0) is the translation

of C by �� (0). Note thatH0(C, OC(KC)) ' k is spanned by a translation invariant
1-form on C and that Aut(C, [0]) is a finite group. Therefore,�1(Aut(C)) is a finite
group. Since�m D �


m
1 , �m(Aut(C)) is finite for everym> 0.

Finally, we assume thatC D P1. If jSupp1j � 3, then Aut(C,1) is a finite group.
If deg(KC C 1) < 0, then there is nothing to prove. Therefore, we can reduce the
problem to the case when1 D x1y D {two points}. In this case, we can easily check
that �m(Aut(C, 1)) is finite for everym > 0. Moreover,�m(Aut(C, 1)) is trivial if m
is an even positive integer.

The following proposition shows that the assumption of (b) in Proposition 4.9 holds.

Proposition 4.11. Let (X, 1) be a projective lc curve. If KX C 1 is nef, then
B I (X, m0(KX C1)) generatesOX(m0(KX C1)) for some integer m0 > 0.

Proof. We see thatH0(X,m(KXC1)) generatesOX(m(KXC1)) for some integer
m > 0. Let G WD �m(Aut(X, 1)). Note that this group is finite by Theorem 4.10. Let
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N WD jGj and letG D {g1, : : : ,gN}. For 1� i � N, let �i be theN-variable elementary
symmetric polynomial of degreei . If s 2 H0(X, m(KX C1)), then

(�i (g
�

1s, : : : , g�Ns))N!=i
2 BI (X, N! m(KX C1)).

Since
N
\

jD1

{g�j sD 0} D

N
\

iD1

{�i (g
�

1s, : : : , g�Ns) D 0},

BI (X, N! m(KX C1)) generatesOX(N! m(KX C1)).

Let us prove the main theorem of this paper.

Theorem 4.12. Let (X, 1) be a projective slc surface. If KX C 1 is nef, then
KX C1 is semi-ample.

Proof. Let � W Y ! X be the normalization and we define1Y by KY C 1Y D

�

�(KXC1). There exists a birational morphism�W Z! Y from a projective dlt surface
(Z,1Z) where KZC1Z D �

�(KYC1Y). By Lemma 4.6, it is sufficient to prove that
G(Z, m0(KZC1Z)) generatesOZ(m0(KZC1Z)) for somem0 > 0. This follows from
Proposition 4.9 (b) and Proposition 4.11.

5. Appendix: Fundamental properties of dlt surfaces

We summarize fundamental properties for dlt surfaces. In this section, we assume
that all surfaces are irreducible. The results in this section may be well-known for experts.

First, we recall the definition of dlt surfaces. It is easy to see that the following
definition is equivalent to [13, Definition 2.8] and [17, Definition 2.37].

DEFINITION 5.1. Let X be a normal surface and let1 be aQ-divisor such that
KX C1 is Q-Cartier and 0� 1 � 1. Let

S(X, 1) WD Sing(X) [ {x 2 Reg(X) j Supp1 is not simple normal crossing atx}.

We say (X,1) is dlt if a(E,X,1)> �1 for every proper birational morphismf W Y! X
and every f -exceptional prime divisorE � Y such that f (E) 2 S(X, 1).

Proposition 5.2. Let X be a normal surface and let1 be aQ-divisor such that
KX C1 is Q-Cartier and 0� 1 � 1. The following assertions are equivalent:
(1) (X, 1) is dlt.
(2) There exists a projective birational morphism� W X0

! X from a smooth surface
such that Ex(�) [ Supp��(1) is a simple normal crossing divisor and each
�-exceptional prime divisor Ei satisfies a(Ei , X, 1) > �1.
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Proof. Note thatS(X, 1) is a finite set.
Assume (1), that is, assume that (X,1) is dlt. Let f W Y! X be a log resolution

of (X, 1). Let

Ex( f ) WD E1q � � � q Er q F1q � � � q Fs

be the decomposition into the connected components wherePi WD f (Ei ) 2 S(X,1) and
Q j WD f (F j ) � S(X, 1). There exists a proper birational morphisms

Y
g
! Z

h
! X

such thatZ is a normal surface and Ex(g) D F1 t � � � t Fs. Indeed,Z is obtained by
glueing the varietiesX n {P1, : : : , Pr } and Y n (F1t � � � t Fs). Note that this morphism
h W Z ! X is projective becauseZ is smooth. Thus this morphism satisfies (2).

Assume (2). Let f W Y! X be a proper birational morphism and letE � Y be a
prime divisor such thatf (E) 2 S(X,1). We provea(E, X,1) > �1. We may assume

that there exists a proper birational morphismY
f 0

�! X0 and Y is smooth by replacing
Y with a desingularization of a resolution of indeterminacyYÜ X0. There are two
cases: dimf 0(E) D 0 and dim f 0(E) D 1. The latter case is clear by (2). Thus we
may assumef 0(E) is one point. LetKX0 C1

0

WD �

�(KXC1). Since f (E) 2 S(X,1),
there exists an�-exceptional curveEi such that f 0(E) 2 Ei . We can write the prime
decomposition

1

0

WD bi Ei C � � �

wherebi < 1. Then we see thata(E, X, 1) > �1 since10 is simple normal crossing
and since the morphismf 0 W Y! X0 is a sequence of blow-ups.

Proposition 5.3. Let (X, 1) be a dlt surface. Then X isQ-factorial.

Proof. See, for example, [20, Theorem 14.4].

Proposition 5.4. Let (X,1) be a dlt surface. If aQ-divisor10 satisfies0�10

�

1, then (X, 10) is dlt.

Proof. Since X is Q-factorial, the assertion immediately follows from
Definition 5.1.

Proposition 5.5. Let (X, 1) be a dlt surface. Then the following assertions are
equivalent.
(1) (X, 1) is plt.
(2) x1y is smooth.
(3) Each connected component ofx1y is irreducible.



SEMI LOG CANONICAL SURFACES 563

Proof. See [17, Proposition 5.51]. Note that the proof of [17, Proposition 5.51]
needs the relative Kawamata–Viehweg vanishing theorem fora resolution of singular-
ities Y! X. This follows from [21].

Corollary 5.6. Let (X,1) be a dlt surface. Then each prime component ofx1y
is smooth.

Proof. Let C be a prime component ofx1y. Then (X, C) is plt by Propos-
ition 5.5.

Proposition 5.7. Let (X, CC10) be a dlt surface where C is a smooth curve in
X. Let (KX C C C10)jC DW KC C1C. Then(C, 1C) is lc, that is, 0� 1C � 1.

Proof. Let f W Y ! X be an arbitrary resolution and letCY be the proper trans-
form of C. Let f �(KX CCC10) DW KYCCYC1Y. Note thatC ' CY. Consider the
following commutative diagram.

CY Y

C X

 

!

closed

immersion

 

!

'

 

! f

 

!

closed

immersion

We prove that1C is effective. Let f be the minimal resolution. Then1Y is effec-
tive andCY is not a prime component of1Y. Thus we have 0� 1C by the adjunction
formula.

Let f be a log resolution. Then, by Definition 5.1, we see1Y � 1. This means
1C � 1.

Corollary 5.8. Let (X,1) be a dlt surface. Assume SWD x1y ¤ 0 and let KSC

1S WD (KX C1)jS. Then S is normal crossing and(S, 1S) is sdlt.

Proof. By [17, Theorem 4.15],S is normal crossing. Thus, the assertion follows
from Proposition 5.7.

Proposition 5.9. Let (X, 1) be an lc surface. Then there exists a proper bi-
rational morphism hW Z ! X from a smooth surface Z such that(Z,1Z) is dlt where
1Z is defined by KZ C1Z D h�(KX C1).

Proof. Let f W Y! X be a log resolution of (X,1) and letKYC1Y WD f �(KXC

1). Let 1Y D 1

C

Y � 1
�

Y where1C

Y and1�

Y are effective and1C

Y and1�

Y have no
common irreducible components. SinceKY � 1

�

Y < 0 and each irreducible component
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of 1�

Y is f -exceptional, there exists a (�1)-curveC such thatC � Supp1�

Y . Contract
this (�1)-curveY! Y0. We repeat this procedure and we obtain morphisms

f W Y
g
�! Z

h
�! X.

Then we see thatZ is smooth and 0� 1Z � 1 where KZ C1Z D h�(KX C1). We
prove that (Z,1Z) is dlt. Let l W W! Z be a proper birational morphism andE � W
be anl -exceptional prime divisor such thatl (E) 2 S(Z,1). We provea(Z,1Z ,E)> �1.
We may assume thatW is smooth andl W W ! Z factors throughY. We obtain four
surfaces:

W
p
�! Y

g
�! Z

h
�! X.

Note that p(E) � Supp1�

Y . There are two cases:
(0) dim p(E) D 0 and
(0) dim p(E) D 1.

(0) Assume dimp(E) D 0. Note thatp is a composition of blow-ups. Since1Y

is simple normal crossing andp(E) 2 Supp1�

Y , we obtaina(Z,1Z , E) > 0 by a direct
calculation.

(1) Assume dimp(E) D 1. Since p(E) � Supp1�

Y , we obtain the inequality
a(Z, 1Z , E) > 0.

Lemma 5.10. Let (X, 1) be a dlt surface. Then there exists a proper birational
morphism�W X00

! X from a normal surface X00 which satisfies the following properties.
(1) For KX00 C1

00

WD �

�(KX C1), the pair (X00, 100) is dlt.
(2) If S00i and S00j are prime components ofx100

y such that S00i ¤ S00j and S00i \ S00j ¤ ;,
then S00i \ S00j is one point.
(3) �

�

(x100

y) D x1y and �
�

O
x1

00

y

D O
x1y

.

Proof. If (X, 1) satisfies the condition (2), then the assertion is clear. Thus we
may assume that there exists prime componentsSi and Sj of x1y such thatSi ¤ Sj

and Si \ Sj has at least two points. LetP 2 Si \ Sj . Note that, since (X, 1) is dlt,
P 2 Reg(X) and Supp1 is simple normal crossing atP. Let �W Y! X be the blowup
at P and let KY C 1Y WD �

�(KX C 1). We apply this argument to (Y, 1Y) and we
repeat the same procedure. Then, by a direct calculation andLemma 2.3, we obtain
the desired morphismX00

! X.
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