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Abstract

Buchstaber invariant is a numerical characteristic of ap8oial complex (or a
polytope), measuring the degree of freeness of the torisnaonh the correspond-
ing moment-angle complex. Recently an interesting contbite theory emerged
around this invariant. In this paper we answer two questicnssidered as conjec-
tures in [2], [11]. First, Buchstaber invariant of a convexlypope P equals 1 if and
only if P is a pyramid. Second, there exist two simplicial complexéh vgomorphic
bigraded Tor-algebras, which have different Buchstabeariants. In the proofs of
both statements we essentially use the result of N. Erokbpvelating Buchstaber
invariant of simplicial complexK to the distribution of minimal non-simplices of
K. Gale duality is used in the proof of the first statement. dayesolution of a
Stanley—Reisner ring is used for the second.

1. Introduction

Consider a finite setnfi] = {1, 2,..., m}. A collection K of subsets of ] is
called asimplicial complexon [m], if it is closed under taking subsets, i.e.e K,
J C | imply J € K; and contains the empty sety € K. The elements oK are
called simplices. The elements aih] are called the vertices oK. If i € [m] and
{i} ¢ K, we calli a ghost vertex ofK. The dimension of a simplex € K is the
number|l| — 1. The maximal dimension of all simplices #f is called the dimension
of K and is denoted dirk.

Let | be a subset ofnfi], and A C X be a pair of topological spaces. Lex,(A)'
denote the subset k™ defined by K, A)' = Yy x --- x Y, whereY; = X if i €1,
andY; = A otherwise. LetK be a simplicial complex on the vertex seh][ Certain
topological spaces are associatedkip called moment-angle complexes.

DEFINITION 1.1 (Moment-angle complex [5, 6]). (1) Leb? ¢ C be the unit
disk with the boundary circlés'. The moment-angle compleaf K is the topological
space

2Z¢ = J(D?% sY' < (D)™
leK
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This subset is preserved by the coordinatewise action otdnepact torusT™ = (SH)™
on (D?)™, where each componer@* acts on the corresponding? c C by rotations.
This determines the action af™ on Z.

(2) LetD*=[-1,1]c R and & = 9D* = {1, 1}. The real moment-angle complex
of K is the topological space

R2Z¢ = J(D', ) < (DH™

leK

This subset is preserved by the coordinatewise action ofitiite groupZ3' on (D)™.
Here the groupZ, = Z/2Z acts onD' C R by change of sign. This determines the
action of ZJ' on RZ.

Homotopy types of moment-angle complexes first appearedénseminal work
[8] as an important tool in the study of quasitoric manifold$he theory of moment-
angle complexes was later developed in the works of Buchstabd Panov ([5], [6],
and other); they proposed the name “moment-angle compler” gave the definition
which is used here. Moment-angle complexes have rich tomalbg@nd geometrical
structures, and serve as topological models for some a@bjaoctombinatorial commu-
tative algebra. We review some of these facts later in thempdpesides, moment-angle
complexes give rise to interesting and nontrivial comtonat invariants of simplicial
complexes.

It can be easily seen that the action©f on Zx andZ}' on RZx are not free if
K has at least one nonempty simplex. The main objects of thigrpare Buchstaber
invariants measuringhe degree of symmetgf moment-angle complexes.

DEerINITION 1.2 (Buchstaber invariant). (1) Therflinary) Buchstaber invariant
s(K) of a simplicial complexK is the maximal dimension of toric subgrou@sc T™
for which the restricted action o6& on Zk is free.

(2) Thereal Buchstaber invariantiK) is the maximal rank of subgroups C ZJ'
for which the restricted action o6 on RZk is free.

Several approaches to Buchstaber invariants are develgpead date [18, 19, 10,
12, 15]. We refer to [13] for the comprehensive review of tfiedd.

The definition of Buchstaber invariant can be extended tgtppes by the follow-
ing construction [2, 3]. Recall, that a facet of a convex pmbg P is a face of
codimension 1.

DEFINITION 1.3. LetP C R" be a convex polytope with facef,...,Fm. Con-
sider the simplicial compleXp on the setin], such thatl = {i4,...,ix} € Kp if and
only if the facets#,,...,Fi, intersect.Kp is called thenerve-complexf a polytopeP.
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REMARK 1.4. If P is a simple polytope, then its polar duBl* is a simplicial
polytope, andKp coincides with its boundaryKp = dP*. In this case, in particular,
Kp is a simplicial sphere.

In [3] we showed that for the purposes of toric topology thenptex Kp is a nice
combinatorial substitute of a polytope, even in the case wheR is not simple. This
motivated the following definition.

DEerFINITION 1.5. Buchstaber invariants of a polytope are the correspgninh-

variants of its nerve-complexs(P) def s(Kp), sz(P) d:dsR(K p).

In [2] we conjectured that among all polytopes pyramids hidnee most asymmet-
ric torus actions on moment-angle complexes (i.e. leassiplesBuchstaber invariants).
Recall, that a pyramid is a polytope, which can be represented as a convex hull of
some polytope of smaller dimension (the basePdfand a point (the apex oP). The
proof of this statement is the first result of this paper.

Theorem 1. Let P be a convex polytope. The following are equivalent
(1) s(P) = 1
(2) =(P) = 1;
(3) P is a pyramid.

In Section 2 we review some known results in the theory of Btadber invariants
from which follow the equivalence of (1) and (2) and the imption (3)= (1). The
nontrivial implication (1)= (3) is proved using Gale diagrams in Section 3.

The second block of questions asks about the relation bat®aehstaber invariants
and other well-studied invariants. J(-) is an invariant (or a set of invariants) of a
simplicial complex, then the general question is:

PrRoOBLEM 1. DoesA(K) = A(L) imply s(K) = s(L) or sg(K) = sg(L)?

There are several natural candidates A1 ):

Chromatic numben/(K) or its generalizations;

f-vector (or, equivalentlyh-vector) of K;

Topological characteristics df, e.g. Betti numbers;

Topological characteristics of the moment-angle compgx

Classical chromatic number(K) on itself is too weak invariant for rigidity prob-

lem 1 to make sense. On the other hand, Buchstaber invartamsthemselves be
considered as generalized chromatic invariants (seedde2)i N. Erokhovets [9, 10]

proved that Buchstaber invariants are not determined dector and chromatic num-
ber. He constructed two simple polytopes with eqéiatectors and chromatic numbers,
but different Buchstaber invariants.
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Recall the definition of Stanley—Reisner algebra. kebe a ground field, and
k[m] = k[vy, ..., vm] be the polynomial algebra with the grading dgeg= 2. The
Stanley—Reisner algebr@therwise called théace ring of a simplicial complexK on
m vertices is the quotient algebig K] = k[m]/Isr(K), where Isg(K) is the square-
free ideal generated by monomials corresponding to nopigies of K:

Isp(K) = (viy -~ -~ Vit {i, .o ik € K).

The cohomology ring of a moment-angle complex is the suljédntensive study
during last fifteen years. It is known [5, 14] that,

(1.1) H*(Zk: k) = Torgm (k[K], k) = €D Tor 3 (k[K], K),
L

the Tor-algebra of a Stanley—Reisner rikk]. The dimensions of graded components
(1.2) £72(K) &' dimy Tory(:2) (&[K], k).

are called bigraded Betti numbers &f. In general, they may depend on the ground
field k. These invariants represent a lot of information abku{22, 6]. In particular,
from bigraded Betti numbers, it is possible to extract: theector of K; the ordinary
Betti numbers ofK and the ordinary Betti numbers &g by the formulas:

ho(K) + hy(K)t 4 - - - + hp(K)t" = m > oA

([6, Theorem 7.15})
dimg A (K; k) = g~(M-1-D:2n(K)
(part of Hochster's formula [17], [6, Theorem 3.27])

dime H'(Zk: k) = Z‘ B72(K) (follows from (1.1)),
—142j=i

wheren = dimK + 1. Note, that bigraded Betti numbers do not determine theedim
sion of K: e.g. the cone oveK has the same bigraded Betti numberskas

So far, bigraded Betti numbers together with dimension isegy \strong set of
invariants. Problem 1 makes sense for such choicd(ef. Still the answer is negative.

Theorem 2. There exist simplicial complexes; Kand K, such that
(1) p3(Ky) = B2 (Ky) for all I, j;
(2) dimKy =dimKy;
() v(Ka) = y(Ky);
(4) s(K1) # s(Kz2) and %(K1) # se(K>).
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In Section 4 we construct such complexés, K., and prove that Tor-algebras of
both K; and K, have trivial multiplications. Thus not only the bigradedtiB@umbers
but also the multiplicative structure ¢1*(Zx) does not determine Buchstaber invariant
in general. The construction of such counterexample raieshe properties of the
Taylor resolution of Stanley—Reisner ring.

In the proofs of both Theorems 1 and 2 we use the result of Enakbk, which
describes Buchstaber invariants in terms of the distdoutf minimal non-simplices
of K in some particular cases. We review his result in the nexisec

2. Preliminaries

There is a canonical coordinate splittifg" = S} x --- x S where each§' is a
1-dimensional torus. For eachC [m] we can consider a coordinate subtorlis =
Gy x--xGnCTM whereG; = §if i €1, andG; = {1} otherwise.

A subgroupG C T™ acts freely on a moment-angle compl&x if and only if G
intersects stabilizers of the actidi™ on Z trivially.

Lemma 2.1. Stabilizers of T" acting onZx are the coordinate subtori TC T™,
corresponding to simplices ¢ K.

Proof. Let @y, ..., an) € (D?™ be the point with coordinates, =0 if i € I,
andg =1ifi ¢ 1. Then @&, ...,an) € (D?, SY)' € Z¢. The action of T' preserves
this point. ]

In this section we suppose for simplicity thKt does not have ghost vertices. In
other words,i € [m] implies {i} € K. Let G ¢ T™ be a toric subgroup of rank
acting freely onZ. Consider the quotient map: T™ — T™M/G, and fix an arbitrary
isomorphismT™/G =~ T", wherer = m—s. We get a mapp: T™ — T" such that the
restriction¢|t: to any stabilizer subgroup is injective. For each veitex[m] consider
the i-th coordinate subgrou c T™. Sincef{i} € K, the subgroupp(S') C T" is 1-
dimensional, therefore(S') = (t*,t*,...,t"), wheret € T* and ¢.1,A?,...,Al) € Z" /%
is a primitive integral vector defined uniquely up to sign.nGider a map:A: [m] —

Z" /£, Ai) = (Ail,kiz,...,k{), called characteristic mapcorresponding to the subgroup
G € T™M). Sinceg¢|t is injective for | € K, characteristic map satisfies the condition:

If 1 ={is,...,ik €K,

() then A(iy), ..., A(ix) is a part of some basis of the latti@& .

Vice a versa, any map: [m] — Z'/+ satisfying ) corresponds to some toric
subgroupG C T™ of rank s = m —r acting freely onZy, by reversing the above
construction.
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The case of real moment-angle complexes is similar. Eaclgreup G C Z' of
rank s acting freely onRZx determines a mapg: [m] — Z5, r = m— s which sat-
isfies the condition

If 1 ={ig,... ik} €K,
(z) then A(i1), . .., A(ix) are linearly independent if5.

These considerations prove the following statement.

Proposition 2.2 (I. Izmest'ev [19]) Let r(K) denote the minimal integer r for
which there exists a map.: [m] — Z' /4 satisfying(x). Let r(K) denote the min-
imal integer r for which there exists a map: [m] — Z}, satisfying(xg). Then §K) =
m—r(K) and &(K) = m—rg(K).

For anyr € N consider a simplicial complek, whose vertices are the primitive
vectors ofZ' /+ and simplices are the unimodular sets of vectors (i, ..., 7x} €
Ur < {n1, ..., 1} is a part of some basis of the latti& ). Similarly, consider the
complexesRU, whose vertices are the nonzero binary vectors of lengttlertRU, =
Z5\ {0}, and simplices are linearly independent subsets of vectorthis notation we
can reformulate Proposition 2.2 as follows

Corollary 2.3. Let m be the number of vertices of K. Then the numlfir) r=
m — s(K) coincides with the minimal integer r for which there existe@-degenerate
simplicial map from K to Y. The number g(K) = m — sx(K) is the minimal integer
r for which there exists a non-degenerate simplicial mapnfril to RU,.

Thus the numbers(K) and rg(K) are the very natural examples of generalized
chromatic numbers as defined in [24, Definition 4.11]. By ¢tamding non-degenerate
simplicial mapsA™™! — U, — RU, one can easily prove the estimation

(2.3) m—y(K) < s(K) < s(K) <m-dimK -1,

for K # A™ 1. Here y(K) is the chromatic number oK, i.e. the minimal number
of colors needed to color the vertices Kf so that adjacent vertices are of different
colors. See [18] and [15] for different explanation of estiion (2.3). Also note, that

(2.4) s(K) =1,

if K has at least one nonempty simplex. This general bound imfitie easy part of
Theorem 1.

Lemma 2.4. If P is a pyramid then §P) = sx(P) = 1.
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Fig. 1. CollectionsC; andCs.

Proof. Letm be the number of facets d?. Then all its facets except the base
intersect in the apex and, consequentys has a simplex withm — 1 vertices. Thus
dimKp = m—2. Now apply (2.3) and (2.4) t&p. O

N. Erokhovets developed a different approach to Buchstatvariants in [12, 13].
His description is given in terms of minimal non-simplicesto. Recall, that ifK is a
simplicial complex on the setf] and J C [m], then J is called a minimal non-simplex
of K if J ¢ K, but any proper subset of is a simplex ofK. The set of all minimal
non-simplices ofK is denotedN(K).

Proposition 2.5 (N. Erokhovets [12, 13]) The following conditions are equivalent
) s(K)=2
(i) se(K) =2
(i) there exist g, Jp, J3 € N(K) such that dN J N J3 = &. Sets Jmay coincide.

Thuss(K) =1 & s(K) = 1 for any simplicial complex, not only the nerve com-
plexes of polytopes.

Erokhovets also proves a criterion, wheg(K) = k, for any givenk, in terms of
minimal non-simplices, see [12]. We do not need the gendedément, but Propos-
ition 2.5 is essential for the proofs of both theorems.

REMARK 2.6. One can see that “minimal non-simplices” in Propositk5 can
be replaced by “non-simplices”. Indeed,Jf, J;, J; ¢ K satisfy J; N J;N J; = @, then
there existg € J/, J € N(K) for i =1, 2, 3, and the same non-intersecting condition
holds for J;.

The next example will be used in the proof of Theorem 2.

EXAMPLE 2.7. LetS def {1, 2,...,9}. Consider two collections of subsets of

S shown on Fig. 1. In the first collection there exi&t, Ay, Az € C; such thatA; U
A, U Az = &. As for the second collection, there does not eXdist A;, As € C> such
that A; U A, U Az = &. Consider simplicial complexek; and L, with N(L;) = {I C
S: S\ I €} fori =1,2. The complement ofA, becomesJ; in Proposition 2.5,
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thus condition (3) of Proposition 2.5 holds fag, and does not hold fok,. Therefore
s(L1) > 1 ands(Ly) =1 (and same fosg).

REMARK 2.8. One can consider collectioits and C, as simplicial complexes.
ThenL; are Alexander duals af; by the definition of combinatorial Alexander duality
(see e.g. [6, Example 2.26]).

3. Gale diagrams and proof of Theorem 1

We use the properties of Gale diagrams to prove Theorem 1.Slatenote the
unit sphere inR'*! centered at the origin. IA = (ay, ..., am) iS anm-tuple of points
(in any given space) ant € [m], then A(l) denotes the sub-arrag(:i € 1).

Let Q C R" be a convex polytope, di =n. LetY = (y, ..., ¥m) be them-
tuple of all its verticesQ = convY. To each such polytope we can associate its Gale
diagram, i.e. am-tuple X = G(Y) = (X1,...,Xm), Xi € S™"211{0}. The properties of
Gale diagrams essential for the proof are listed in the fotg proposition (see [16,
Section 5.4)).

Proposition 3.1. Let Y be the set of vertices of a polytope Q and=>G(Y) be
its Gale diagram |Y| = |X| = m.
(1) Let | c [m]. Points Y(I) lie in a common proper face of Q if an only if the points
X([m] \ 1) € S™"2 {0} contain the origin in their convex hull.
(2) Q is a pyramid if and only i0 € X.

Let P be a polytope, din? =n, andQ = P* be its dual polytope. Facefs,,...,
Fi, of P intersect if and only if the corresponding verticgs, ..., v, of Q lie in a
common proper face. If we leX ¢ S™ "2 1J {0} denote the Gale diagram of =
Vert Q, as before, then

| e Kp & 0econvX([m]\I).

In general, ifA is a finite subset oR", then the standard separation argument in con-
vex geometry shows that conditiongdconv A is equivalent to the existence of hyper-
planeIl through O such tha# lies strictly at one side ofl. This argument proves

Corollary 3.2. Let JC[m]. Then J¢ Kp if and only if there exists a hyperplane
T in R™ "1 such that all points X{m] \ J) ¢ S™"2 1 {0} ¢ R™"! are located
strictly at one side offT.

Now we are ready to prove the rest of Theorem 1. Pebe a polytope (withm
facets, dimP = n), and suppose is not a pyramid. Then its dua = P* is not a
pyramid as well. Thus its Gale diagrak = G(Vert Q) ¢ S™ "2 1 {0} does not have
points at the origin by Proposition 3.1. Choose a hyperplEne R™ " through the
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origin such thatlT N X = @. Let X(J;) (and X(J-)) be the subsets of points of
lying at the right (resp. left) side ofl. We haveJ, N J_ = @ and J; U J_ = [m].
By Corollary 3.2,J_ =[m]\ J. ¢ Kp and J, = [m] \ J_ ¢ Kp. Thus J,, J_ are
disjoint non-simplices ofKp and Proposition 2.5 shows(P) = s(Kp) = 2. Theorem
is proved.

4. Taylor resolutions and proof of Theorem 2

4.1. Bigraded Betti numbers and Taylor resolution. First, we review the ba-
sics of commutative algebra needed for our goals.

There exists a natural multigrading on the polynomial rik§m] given by
mdeggy*-...-vim) = (2ny,...,2nm) € Z™. We denote byk[m]* the maximal graded ideal
of k[m]. The Stanley—Reisner algebra of a simplicial compkexinherits the multi-
grading. Bothk andk[K] carry the structure of (multi)gradekm]-modules via quo-
tient epimorphism&[m] — k[m]/k[m]* = k andk[m] — k[K]. Then Tog;, (k[K], k)
is a Tor-functor of (multi)graded moduléd K] and k. Recall its standard construction
in homological algebra.

CONSTRUCTION 4.1.  To describe Tgf;(k[K], k) do the following:
(1) Take any free resolution of the moduk¢K] by (multi)gradedk[m]-modules:

. d R_| d R_|+1 d . d R_l d RO d 0
k[K] —— O

(2) apply the functor®ymk to R*;
(3) calculate the cohomology of the resulting complex:

Torgi (K[K], k) & H*(R* @y k: d g k).

The resulting vector space inherits the inner (multi)gngdfrom R and has an add-
itional grading —| called homological. It is well known that Th, (k[K], k) =

EB(|,;)EZmHTorﬂ;[',‘f]j_(k[K],k) does not depend on the choice of a free (multi)graded reso-
lution R*. Define thebigraded Betti numbersf K as

,B_I’Zj (K) d:efdim]k Tor];[lr’nzlj (k[K], k).

DEFINITION 4.2 (Minimal resolution). A resolutionR is called minimal if
im(d) c k[m]* - R, or, equivalently,d ®xm k = 0.

For a minimal resolutionrR* step (3) in Construction 4.1 can be skipped. There-
fore, if R is minimal, then:

B~2(K) = the number of generators of the moduRe' in degree 3.
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Several explicit constructions of free resolutionskjK] are known. In our con-
siderations we use one of the most important and basic cmtistns: the Taylor reso-
lution. In general, Taylor resolution is defined for any monal ideal (see [21] or
[20]). Here we restrict ourselves to Stanley—Reisner rings the case of square-free
monomial ideals. The work [23] is also devoted to this pattc case and its applica-
tions to toric topology.

We use the following convention. A subs&tC [m] determines the vectat; € Z™
with i-th coordinate equal to 1 if € J and O otherwise. We simply writd € Z™
meanings; € Z™. The monomial[];(v)* € k[m] is denotedv?’.

CONSTRUCTION 4.3 (Taylor resolution). Consider the gd{K) of minimal non-
simplices of K. Fix a linear order onN(K). To eachJ € N(K) associate a formal
variable w; and construct a fre&[m]-module R;', generated by formal expressions

W, = wy, A--- Awy for all subsetss = {J; <--- < J} € N(K) of cardinality!.
Define the multigrading

|
4.1) mdeg@y, A--- Awy) = <_|,2U Ji) €Zx I

)GZZ.

Define the differential ofc[m]-modulesdr: Ry' — Ry'*! by

and specialize it to the double grading

bidegwy, A--- A wy) = <_|, 2

"

|
42)  dr(wy A Awy) E DY cwy A Ay A Ay,

i=1
wherev*s4 e k[m] is the monomial corresponding to the set

Xo3 B3\ (QU---UJU---UJ)Cm].

Define the multiplication on th&[m]-module R = @, Ry'. Leto = {J <+ <
J}, Tt ={l1 <--- < I} € N(K).

(43) W-Wdzef 0, if Uﬂf#@;
' 7T sgne, t)v¥er W, otherwise.
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Here vY>+ € k[m] is the monomial corresponding to the set

o (e ()

The sign sgng, ) is the sign of the permutation needed to sort the orderedJset .,
NI ETR A R

Proposition 4.4 ([21], [20]). (1) R: =, Ry is a differentialZz™*1-graded al-
gebra over the ringk[m] with respect to multigradingdifferential and multiplication
described above. This algebra is skew-commutative witmeiso homological grading.
(2 H'(R:,d) =0, if | >0. HY(R%, d) = k[K] as k[m]-algebras.

Therefore Ry is a free multiplicative resolution of the Stanley—Reisalgebrak[K].

EXAMPLE 4.5. Leton denote the simplicial complex on a se][in which all
vertices are ghost. We haddo,] =~ k and N(o,) = [m]. The Taylor resolution in
this case is given b)R;' = A'[uy, ..., un] ® k[m], where formal variabless; corres-
pond to elements oN(o,) = [m] and bidequ; = (-1, 2). The general definitions of
differential and product imply thaR; is isomorphic toA[uy, ..., um] ® k[m] with the
standard Grassmann product, and the differemtial= v;. In this example we get the
multiplicative resolutionA[uy, ..., uy] ® k[m] of the k[m]-modulek. This resolution
is widely known as theKoszul resolution

ExXAMPLE 4.6. Let K be the boundary of a square. Its maximal simplices are
{1,2, {2,3}, {3,4}, {1, 4. In this caseN(K) = {{1, 3}, {2, 4}}. The Taylor resolution
has the form

d d
A(Z)[U){]_’g}, U){2'4}] ® ]k[4] —2> A(l)[w{lvg}, w{2,4}] 024 ]k[4] —1> ]k[4] -1l —> ]k[K]

H ll

Wii1,3,2.4) - k[4] w3 - k[4] ® wiz 4 - k[4]

with the multigrading
mdegfv(1,3) = (-1 (2, 0, 2, 0)),
mdegiuiz4) = (~1: (0, 2,0, 2)),
mdegWi(1,3.12.4)) = (-2 (2, 2, 2, 2))
the differentials
di(wia,3) = vivs - 1,
th(wiz,4) = vova- 1,

Ao(W(1,3,(2,4)) = V1V3 - Wi2,4 — V2V4 - W13}
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and the prOdUC'hU{j_'g] X W4 = —Wr4 X W1y = W{{1’3}'{2’4”. Clearly, Imﬁz) =
ker(dl) and Imﬁj_) = ISR(K)

EXAMPLE 4.7. Let Ay denote the simplex on a s # @. ConsiderK =
dAN, *--- % dApy,. ComplexK is a simplicial sphere on the séi; Li---U M,. Then
N(K) = {My, ..., Mp}. The Taylor resolution oK is a differential algebra

A*[w:]_, ...,wn] ®]k[M]_|_|“‘l_| Mn]
with the standard Grassmann product, bidgey= (—1, 2 M;|), and the differential;
|
dr(wi, A Aw;) = Z(—l)'“rlv'\"‘kwi1 Ao A A AW
k=1

The Taylor resolution is minimal, therefore Iﬁglu_"uMn](k[K]; k) =~ A*[wy, ..., wn].
Both previous examples are particular cases of this one.

4.2. Multiplication in Tor.

CONSTRUCTION 4.8. There is a standard way to understand the structure of
Tonin (k[K]; k) using Koszul resolution. At first, note that T (k[K];k) =
Toryir (k: k[K]). By construction,

Ton i (k; k[K]) = H*(R* ®@km) k[K]; d @km k[K]),

where R*, d) is any graded free resolution &f as ak[m]-module. By taking Koszul
resolution R~ = Alu, ..., uy] ® k[m] with grading and differential as described in
Example 4.5 we get

(4.4) Toginy (k; k[K]) = H*(Afuy, . . ., um] ® k[K]; d ®jm k[K]).
The differential complexA[ug,...,un] ® k[K] has the structure of a graded differential

algebra. Thus Tgf;; (k: k[K]) has the structure of an algebra as well. The word “Tor-
algebra” usually refers to this definition of multiplicatio

Proposition 4.9 ([5, 14]). The cohomology ring H(Z; k) is isomorphi¢ as a
graded algebrato the Tor-algebra Tory; ., (k[K]; k) with the total grading(—i, 2j) ~
2j —i.

REMARK 4.10. According to Construction 4.1,

(4.5) TOkry (K[K]; k) = H* (R} ®km k; dr ®xqm k),
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where R}, dr) is the Taylor resolution ok[K]. The differential complexR; Qum k
obtains the multiplication induced by the multiplicatiom the Taylor resolution. This,

in turn, induces the multiplication ofl*(R} ®xm k; dr ®kmj k). The question arises:
is this multiplication on Tq’j’[*m](k[K];k) the same as the one given by Construction 4.8
or not? Fortunately, this multiplicative structures ardeiad the same (see e.g. [1, Con-
struction 2.3.2]). So far the cohomological producthii(Zx; k) can be described in
terms of the Taylor resolution (see [23] for examples of soaltulations).

4.3. Taylor resolutions and minimality.

Lemma 4.11. Let K be a simplicial complex ofm] and N(K) be the set of its
minimal non-simplices. The following two conditions araiieglent
(1) The Taylor resolution Ry, dr) of k[K] is minimal.
(2) Any minimal non-simplex & N(K) is not a subset of the union of others

(4.6) MRS R

IeN(K),1 £J

Proof. By definition, Ri is minimal if dr(R;') € k[m]™ - R{'“ for eachl > 0.
From (4.2) follows thaidr (R;') € k[m]* - R;'*! if and only if v*-» € k[m]* for each
o € N(K) and J € 0. This is equivalent toX, ; # @. By definition, X, ; = J \
(Uieo,1231)- If the Taylor resolution is minimal, then, in particulaXn),s # @,
which is precisely the condition (4.6) of the lemma. On theeothand, Xn«) j # <
implies X, j # @ for any o € N(K). ]

Lemma 4.12. If the Taylor resolution ofk[K] is minimal then Tor;;’[*m](]k[K], k)
has the following description
e It is generated as a vector space oderby W, for o € N(K);
e The multidegree is given bi.1);
e The multiplication is given by

4.7)

W W — sgne, DWs,r, if onNt=2 and (U, I)N(Ue 1) =92,
o 0, otherwise.
The proof follows easily from the definitions. Bigraded Betumbers of com-
plexes with the minimal Taylor resolution are expresseddmiginatorial terms:

:,-}_

3

Jeo

(4.8) BA(K) = #{0 S N(K): Jo] =1,
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4.4. Proof of Theorem 2. As a starting point take the complexés and L,
defined in Example 2.7. The outline of the proof is the follogi
(1) To upgradel; and L, to the new complexe&; and K, satisfying condition (4.6)
(Taylor resolutions are minimal);
(2) To prove thatg2(K,) = g2 (K,) using formula (4.8);
(3) To prove thats(K;) = 1 ands(K;) = 2.
(4) Final technical remarks: dif;) = dim(K;), (K1) = y(K;), and algebra iso-
morphism Togm (k[K1], k) = Torm (k[K2], k).

Stepl. LetL be any complex on a setn] with the set of minimal non-simplices
N(L). For eachJ e N(L) consider a symboh;. Define the complex’ on the set
V =[m]u{a;: J € N(L)} with the set of minimal non-simplices given by

(4.9) N(L)={J=Ju{a;} cV:JeN(L)

The Taylor resolution of the complel is minimal. Indeed, anyl € N(L) contains the
vertexa; which does not belong to other minimal non-simplicesLoby construction.
Therefore, condition (4.6) holds fdr.

Now we apply this construction to simplicial complexes and L, constructed in
Example 2.7. Recall thalN(L;) = {l C &: S\ | € G}, fori = 1, 2, with collections
Ci1, C» shown on Fig. 1. SeK; = L; fori =1, 2. BothK; and K, have 9+ 6 = 15

vertices.
STEP 2. Apply (4.8) toK;:
_ ,-}
(4.10) Jeo
=#{a N(L): ol =1, | JJ|= j}.

Jeo
The last equality is the consequence of the bijective cpmedence betweeN(L;)
and N(K;), sendingJ € N(L;) to J € N(K;). We have

B2 (Ki) =#{G S N(Ki): lo] =1, |[J I

N

JJI=Uufa)) = (U J) U{ay: J eo},
Jeo Jeo Jeo
therefore

JJ

Jeo

=UJ

Jeo

+ lol.
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£.2) 2j

B

1 30
6 28
15 26
20 24
9 22
6 20

16
14

wlw

1]0
6 5-4-32-10

Fig. 2. Bigraded Betti numbers df; and K.

o]
|

The last equality follows from the definition dfj, since N(L;) consists of comple-
ments to subsets of the collectigh By analyzing Fig. 1 we see that for eacland j

Returning to (4.10),

J3J

Jeo

'B—I,Zj(Ki) - #{G C N(Lj): |o] =1,

(4.11)

A

Aco

=#{6§Ci:|0|=|,

#{agc1:|a|=l, ﬂA=9—(J—I)}
Aco
=#{agc2:|a|=l, ﬂA=9—(j—l)}.
Aeco

Indeed, in bothC; and C, there are 3 subsets of cardinality 2; 3 subsets of cardinal-
ity 3; 6 pairwise intersections of cardinality 1; and all ethintersections are empty.
Therefore,7+2 (K1) = p721(K,). The nonzero bigraded Betti numbers calculated by
this method are presented in Fig. 2 (empty cells represanegg

Step 3. Condition (3) of Proposition 2.5 holds for the complexwhenever it
holds for L. Indeed,J; N J, N Jz = (Ju{ay)) N (L u{ay))N(du{ay})=dn
J, N J;. As observed in Example 2.7 condition (3) holds fof and does not hold
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for L,. Therefore it also holds fokK; = L; and does not hold foK, = L,. Thus

s(K1) # s(K2) and sg (K1) # se(K2).
STEP 4. Final remarks.

REMARK 4.13. Let us prove that did; = dim K, = 12. Consider the comple-
ment to the se{l, 4} in the set of vertices oK, (see Fig. 1):

S=1{1,2,...,9a,...,a\ {1, 4.

Suppose thaB ¢ K;. Then there exists € N(K1) such that] € S. Therefore,{1,4} C
S\ J. By construction,S \ J € C;. But {1, 4} is not a subset of anyA € Cy, the
contradiction. ThusS € K; and dimK; > |§ — 1 = 12. Similar reasoning shows that
there is no simplex with 14 vertices i; (because any singleton lies in sores C).
Therefore, dinK, is exactly 12. Similar forKs,.

REMARK 4.14. In both complexeK; and K, there are no minimal non-simplices
of cardinality 1 and 2. Therefore all pairs of verticeskn and K, are connected by
edges, so 1—skelet0ri$£l), Kél) are complete graphs on 15 vertices. Thus chromatic
numbers coincidey (K1) = y(Ky) = 15.

REMARK 4.15. Tor-algebras oK; and K, are isomorphic as algebras. Actually,
the products in Tais)(k[K4], k) and Togs(k[K2], k) are trivial by dimensional rea-
sons. See Fig. 2: products of nonzero elements hit zero. cells

4.5. Other invariants defined from Z.

REMARK 4.16. Problem 1 is answered in the negativé\{f) is a bigraded Tor-
algebra. We may ask the same question wiA¢n) is the collection of multigraded
Betti numbersg=2/ (K ) =" dim Torg;3 (k[K], k).

Eventually, this question does not make sense. Multigradetti Bumbers are too
strong invariants;3—12/(K) = 12 (L) implies K = L. Indeed, for a subsel C [m]
the condition8~12)(K) # 0 is equivalent toJ € N(K) by the construction of the
Taylor resolution (also by Hochster’'s formula [7, Theoren2.9]). Therefore multi-
graded Betti numbers encode all minimal non-simplices thetermine the complex
K uniquely.

REMARK 4.17. Problem 1 may be formulated for an equivariant cohompting
of Zx. This task is not interesting as well. Indeddi’ (2 ; k) = k[K] (see [8] or [5]).
It is known, that the Stanley—Reisner algelfd&] determines the combinatorics &f
uniquely [4]. Therefore multiplicative isomorphisiyn(Zk,; k) = Hin(Zk,: k) implies
K; = K3 and, in particulars(K) = s(Ky).
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5. Conclusion and open problem

Constructions of Buchstaber invariants and bigraded Bettnbers are defined for
any simplicial complex. Nevertheless, in toric topologye timost important ones are
simplicial complexes arising from simple polytopes.

If P is a simple polytope withm facets, then the compleKp = 9P* is a sim-
plicial sphere withm vertices. It is known [5, 6] thatZk, is a compact orientable
manifold in this case. The algebraic version of this fact isafnov—Golod theorem [7,
Theorem 3.4.4]. It states the following. The Tor-algebramq(k[K]; k) is a (multi-
graded) Poincare duality algebra if and only if the complkexis Gorenstein*. Any
simplicial sphereK is Gorensteifi [22, Theorem 5.1]. In particular, for any simple
polytope P the complexKp is Gorenstein*, thus Téﬁn](]k[Kp];]k) is a Poincare du-
ality algebra. This is not surprising since mﬁ(]k[Kp];k) =~ H*(2k,; k) and Z, is
an orientable manifold.

PROBLEM 2. Does an isomorphism of algebras Htmf(k[Kp]; k) =~
Tonim (k[Kol; k) imply s(Kp) = s(Kq) or se(Kp) = sz(Kq) for simple polytopesP
and Q?

The complexe¥; and K, constructed in Section 4 are not simplicial spheres. One
can deduce this from the table of bigraded Betti numbers. (Bjg if the complexes
were spheres, the distribution of bigraded Betti numberaldvbe symmetric according
to (bigraded) Poincare duality.

It is tempting to modify the construction dk; and K, of Section 4 to obtain
spheres in the output. Unfortunately, this attempt faile ttuthe following observation.

Proposition 5.1. Let K be a simplicial sphere. The Taylor resolutionkgK] is
minimal if and only if K is a join of boundaries of simplices.

REMARK 5.2. For suchK holdss(K) = sg(K) = m—dimK —1 (see [13]). Thus
a counterexample to Problem 2 can not be constructed usinignali Taylor resolutions.

Proof of Proposition 5.1. The “if” part is already verified Example 4.7. Let us
prove the “only if” part. Let fn] be the vertex set oK. Any vertexi € [m] is con-
tained in at least one minimal non-simplex. Otherwikejs a cone with apex, thus
contractible, thus not a sphere. Since the Taylor resalugominimal, we may apply
Lemma 4.12. CompleX is a sphere, thuk[K] is Gorenstein* and T§f*m](k[K];lk)
is a multigraded Poincare duality algebra. There should lgraaled component of
Torﬂ";’[fn](k[K];k) of maximal total degree which plays the role of fundamentalle. It
is generated byWy ) in the notation of Lemma 4.12 and has multidegre¢N(K)],
(2,2,...,2)). Non-degenerate pairing in Poincare duality algem@'[:],'](k[K];k) yields
that for eacho € N(K) there existsr € N(K) such thatW, -W, = aWy«) with « # 0.
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Taking multigrading into account and applying Lemma 4.12 ge¢ the following con-
dition: for eacho < N(K) the vertex subsett);., J and (J;cni ), J are disjoint.
In particular, any single non-simplex € N(K) is disjoint from the union of others.
Therefore,N(K) = {J,..., %} and m] = JiU---UJ. ThusK = (8A ) *---x(3Ay)
which was to be proved. O
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