ON GENERA OF LEFSCHETZ FIBRATIONS AND FINITELY PRESENTED GROUPS

Ryoma KOBAYASHI

(Received May 14, 2014, revised January 7, 2015)

Abstract

It is known that every finitely presented group is the fundamental group of the total space of a Lefschetz fibration. In this paper, we give another proof which improves the result of Korkmaz. In addition, Korkmaz defined the genus of a finitely presented group. We also evaluate upper bounds for genera of some finitely presented groups.

1. Introduction

Gompf [5] proved that every finitely presented group is the fundamental group of a closed symplectic 4-manifold. Donaldson [4] proved that every closed symplectic 4manifold admits a Lefschetz pencil. By blowing up the base locus of a Lefschetz pencil, we obtain a Lefschetz fibration over S^{2}. In addition, blowing up does not change the fundamental group of a 4-manifold. Therefore, it immediately follows that every finitely presented group is the fundamental group of the total space of a Lefschetz fibration.

Amoros-Bogomolov-Katzarkov-Pantev [1] and Korkmaz [8] also constructed Lefschetz fibrations whose fundamental groups are a given finitely presented group. In particular, Korkmaz [8] provided explicitly a genus and a monodromy of such a Lefschetz fibration.

Let $F_{n}=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ be the free group of rank n. For $x \in F_{n}$, the syllable length $l(x)$ of x is defined by

$$
l(x)=\min \left\{s \mid x=g_{i(1)}^{m(1)} \cdots g_{i(s)}^{m(s)}, 1 \leq i(j) \leq n, m(j) \in \mathbb{Z}\right\} .
$$

For a finitely presented group Γ with a presentation $\Gamma=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}, \ldots, r_{k}\right\rangle$, Korkmaz [8] proved that for any $g \geq 2\left(n+\sum_{1 \leq i \leq k} l\left(r_{i}\right)-k\right)$ there exists a genus- g Lefschetz fibration $f: X \rightarrow S^{2}$ such that the fundamental group $\pi_{1}(X)$ is isomorphic to Γ, providing explicitly a monodromy.

In this paper, we improve this result.
Theorem 1.1. Let Γ be a finitely presented group with a presentation $\Gamma=\left\langle g_{1}\right.$, $\ldots, g_{n}\left|r_{1}, \ldots, r_{k}\right\rangle$, and let $l=\max _{1 \leq i \leq k}\left\{l\left(r_{i}\right)\right\}$. Then for any $g \geq 2 n+l-1$, there

[^0]

Fig. 1. The Dynkin diagram.
exists a genus-g Lefschetz fibration $f: X \rightarrow S^{2}$ such that the fundamental group $\pi_{1}(X)$ is isomorphic to Γ.

In this theorem, if $k=0$, we suppose $l=1$. We will prove the theorem by providing an explicit monodromy.

In addition, Korkmaz [8] defined the genus $g(\Gamma)$ of a finitely presented group Γ to be the minimal genus of a Lefschetz fibration with sections whose fundamental group is isomorphic to Γ. The Lefschetz fibrations constructed in Theorem 1.1 have sections. Hence the definition of the genus of a finitely presented group is well-defined.

We will also prove the following theorem.
Theorem 1.2. (1) Let B_{n} denote the n-strands braid group. Then for $n \geq 3$, we have $2 \leq g\left(B_{n}\right) \leq 4$.
(2) Let \mathcal{H}_{g} be the hyperelliptic mapping class group of a closed connected orientable surface of genus $g \geq 1$. Then we have $2 \leq g\left(\mathcal{H}_{g}\right) \leq 4$.
(3) Let $\mathcal{M}_{0, n}$ denote the mapping class group of a sphere with n punctures. Then for $n \geq 3$, we have $2 \leq g\left(\mathcal{M}_{0, n}\right) \leq 4$.
(4) Let S_{n} denote the n-symmetric group. Then for $n \geq 3$, we have $2 \leq g\left(S_{n}\right) \leq 4$.
(5) Let \mathcal{A}_{n} denote the n-Artin group associated to the Dynkin diagram shown in Fig. 1. Then for $n \geq 6$, we have $2 \leq g\left(\mathcal{A}_{n}\right) \leq 5$.
(6) Let $n, k \geq 0$ be integers with $n+k \geq 3$, and let $m_{1}, \ldots, m_{k} \geq 2$ be integers. Then we have $(n+k+1) / 2 \leq g\left(\mathbb{Z}^{n} \oplus \mathbb{Z}_{m_{1}} \oplus \cdots \oplus \mathbb{Z}_{m_{k}}\right) \leq n+k+1$.

2. A Lefschetz fibration and preliminaries

2.1. A Lefschetz fibration and its monodromy. Here, we review briefly the theory of Lefschetz fibrations.

Let X be a closed connected orientable smooth 4-manifold. A smooth map $f: X \rightarrow$ S^{2} is a genus-g Lefschetz fibration over S^{2} if it satisfies following properties:

- All regular fibers are diffeomorphic to a closed connected oriented surface of genus g.
- Each critical point of f has an orientation-preserving chart on which $f\left(z_{1}, z_{2}\right)=$ $z_{1}^{2}+z_{2}^{2}$ relative to a suitable smooth chart on S^{2}.
- Each singular fiber contains only one critical point.

Fig. 2. The right Dehn twist about c.

Fig. 3.

- $\quad f$ is relatively minimal, that is, no fiber contains an embedded sphere with the self-intersection number -1 .

Let \mathcal{M}_{g} be the mapping class group of a closed connected oriented surface Σ_{g} of genus g, that is, the group of isotopy classes of orientation-preserving diffeomorphisms $\Sigma_{g} \rightarrow \Sigma_{g}$. In this paper, for elements x and y of a group, the composition $x y$ means that we first apply x and then y. So for $f, g \in \mathcal{M}_{g}$, the composition $f g$ means that we first apply f and then g. For a simple closed curve c on Σ_{g}, let t_{c} be the isotopy class of the right Dehn twist about c (see Fig. 2). For a genus- g Lefschetz fibration which has n singular fibers, there are simple closed curves c_{1}, \ldots, c_{n} on Σ_{g}, each of which is called the vanishing cycle, such that each singular fiber F_{i} is obtained by collapsing c_{i} to a point to create a transverse self-intersection, and $t_{c_{1}} \cdots t_{c_{n}}=1$. This equation is called the monodromy of a Lefschetz fibration. Conversely, if there are simple closed curves c_{1}, \ldots, c_{n} on Σ_{g} such that $t_{c_{1}} \cdots t_{c_{n}}=1$, then we can construct a genus- g Lefschetz fibration with the monodromy $t_{c_{1}} \cdots t_{c_{n}}=1$.

For a Lefschetz fibration $f: X \rightarrow S^{2}$, a smooth map $s: S^{2} \rightarrow X$ is a section of f if $f \circ s: S^{2} \rightarrow S^{2}$ is the identity map.

For a closed connected orientable surface Σ_{g} of genus g, let $a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}$ and c_{1}, \ldots, c_{g} be loops on Σ_{g} as shown in Fig. 3. Then the fundamental group $\pi_{1}\left(\Sigma_{g}\right)$

Fig. 4.
of Σ_{g} has a following presentation

$$
\pi_{1}\left(\Sigma_{g}\right)=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g} \mid r\right\rangle
$$

where $r=b_{g}^{-1} \cdots b_{1}^{-1}\left(a_{1} b_{1} a_{1}^{-1}\right) \cdots\left(a_{g} b_{g} a_{g}^{-1}\right)$.
Let B_{0}, \ldots, B_{g} and a, b, c be simple closed curves on Σ_{g} as shown in Fig. 4. In this paper, let W denote the following

$$
W= \begin{cases}\left(t_{c} t_{B_{g}} \cdots t_{B_{0}}\right)^{2} & \text { when } g \text { is even, } \\ \left(t_{a}^{2} t_{b}^{2} t_{B_{g}} \cdots t_{B_{0}}\right)^{2} & \text { when } g \text { is odd. }\end{cases}
$$

It was shown in [7] that $W=1$ in the mapping class group \mathcal{M}_{g} of Σ_{g}. In addition, the Lefschetz fibration $f_{W}: X_{W} \rightarrow S^{2}$ with the monodromy $W=1$ has a section (see [7] and [8]).
2.2. Preliminaries. We now state the way to obtain the presentation of the fundamental group of a Lefschetz fibration with a section. For a group Γ and $\left\{x_{1}, \ldots, x_{n}\right\} \subset$ Γ, let $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ denote the normal closure of $\left\{x_{1}, \ldots, x_{n}\right\}$ in Γ.

Proposition 2.1 (cf. [6]). Let $f: X \rightarrow S^{2}$ be a genus-g Lefschetz fibration with the monodromy $t_{c_{1}} \cdots t_{c_{n}}=1$. Suppose that f has a section. Then we have

$$
\pi_{1}(X) \cong \pi_{1}\left(\Sigma_{g}\right) /\left\langle c_{1}, \ldots, c_{n}\right\rangle
$$

where we regard c_{1}, \ldots, c_{n} as elements in $\pi_{1}\left(\Sigma_{g}\right)$.

For $x, y \in \mathcal{M}_{g}$, let $x^{y}=y^{-1} x y$. For example, for simple closed curves c_{1}, \ldots, c_{n} on Σ_{g} and $h \in \mathcal{M}_{g}$, we have $\left(t_{c_{1}} \cdots t_{c_{n}}\right)^{h}=\left(h^{-1} t_{c_{1}} h\right) \cdots\left(h^{-1} t_{c_{n}} h\right)=t_{\left(c_{1}\right) h} \cdots t_{\left(c_{n}\right) h}$, where $\left(c_{i}\right) h$ means the image of c_{i} by h.

Proposition 2.2 ([8]). Let $f: X \rightarrow S^{2}$ be a genus-g Lefschetz fibration with the monodromy $V=t_{c_{1}} \cdots t_{c_{n}}=1$. Suppose that f has a section. Let d be a simple closed curve on Σ_{g} which intersects some c_{i} transversely at only one point. Let $f^{\prime}: X^{\prime} \rightarrow S^{2}$ be the genus-g Lefschetz fibration with the monodromy $V V^{t_{d}}=1$. Then we have

$$
\pi_{1}\left(X^{\prime}\right) \cong \pi_{1}\left(\Sigma_{g}\right) /\left\langle c_{1}, \ldots, c_{n}, d\right\rangle
$$

where we regard c_{1}, \ldots, c_{n} and d as elements in $\pi_{1}\left(\Sigma_{g}\right)$.
In this paper, we denote the Lefschetz fibration with the monodromy $V=1$ by $f_{V}: X_{V} \rightarrow S^{2}$. For example, in the above proposition, $f=f_{V}, X=X_{V}$ and $f^{\prime}=$ $f_{V V^{t c}}, X^{\prime}=X_{V V^{c}}$.

We next state results of Korkmaz [8].
Theorem 2.3 ([8]). (1) Let Σ_{g} be a closed connected orientable surface of genus $g \geq 0$. Then we have $g\left(\pi_{1}\left(\Sigma_{g}\right)\right)=g$.
(2) Let $m(\Gamma)$ denote the minimal number of generators for Γ. Then we have $m(\Gamma) / 2 \leq$ $g(\Gamma)$, with the equality if and only if Γ is isomorphic to $\pi_{1}\left(\Sigma_{g}\right)$.
(3) For the mapping class group \mathcal{M}_{1} of Σ_{1}, we have $2 \leq g\left(\mathcal{M}_{1}\right) \leq 4$.
(4) Let B_{n} denote the n-strands braid group. Then for $n \geq 3$, we have $2 \leq g\left(B_{n}\right) \leq 5$.
(5) Let $n, k \geq 0$ be integers with $n+k \geq 3$, and let $m_{1}, \ldots, m_{k} \geq 2$ be integers. Then we have $(n+k+1) / 2 \leq g\left(\mathbb{Z}^{n} \oplus \mathbb{Z}_{m_{1}} \oplus \cdots \oplus \mathbb{Z}_{m_{k}}\right) \leq 2(n+k)+1$.

Theorem 1.2 improves Theorem 2.3 (4) and (5).

3. Proof of Theorem 1.1

First of all, we show a proposition used in proofs of Theorem 1.1 and 1.2. For elements x and y in a group, let $[x, y]=x y x^{-1} y^{-1}$. For a real number $a,[a]$ is the maximal integer less than or equal to a.

Proposition 3.1. Let $f_{W}: X_{W} \rightarrow S^{2}$ be the genus-g Lefschetz fibration with the monodromy $W=1$, where W is as above, and let $a_{1}, b_{1}, \ldots, a_{g}, b_{g}$ be the generators of $\pi_{1}\left(\Sigma_{g}\right)$ as shown in Fig. 3. Then we have followings:
(1) (See [8].) Let $U=W W^{t_{1}} \cdots W^{t_{b_{g}}}$, then the fundamental group $\pi_{1}\left(X_{U}\right)$ of the Lefschetz fibration X_{U} has the following presentation

$$
\pi_{1}\left(X_{U}\right)=\left\{\begin{array}{l|l}
\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right. & \left.\begin{array}{l}
b_{1}, \ldots, b_{g}, \\
a_{1} a_{g}, \ldots, a_{g / 2} a_{(g+2) / 2}
\end{array}\right\rangle \quad \text { when } g \text { is even, } \\
\left\{\begin{array}{l}
b_{1}, \ldots, b_{g}, \\
a_{1}, b_{1}, \ldots, a_{g}, b_{g}
\end{array} \begin{array}{l}
a_{1} a_{g}, \ldots, a_{(g-1) / 2} a_{(g+3) / 2}, \\
a_{(g+1) / 2}
\end{array}\right.
\end{array}\right\rangle \text { when } g \text { is odd, }
$$

and, the group $\pi_{1}\left(X_{U}\right)$ is isomorphic to the free group of rank $[\mathrm{g} / 2]$.
(2) Let $U^{\prime}=W W^{t_{2}} \cdots W^{t_{g}-1}$, then the fundamental group $\pi_{1}\left(X_{U^{\prime}}\right)$ of the Lefschetz fibration $X_{U^{\prime}}$ has the following presentation

$$
\pi_{1}\left(X_{U^{\prime}}\right)=\left\{\begin{array}{l|l}
\left.\left\langle\begin{array}{l}
\left\{\begin{array}{l}
{\left[a_{1}, b_{1}\right],} \\
a_{1}, b_{1}, \ldots, a_{g}, b_{g}, \ldots, b_{g-1}, \\
b_{1}, b_{g}, \\
a_{1} a_{g}, \ldots, a_{g / 2} a_{(g+2) / 2}
\end{array}\right.
\end{array}\right\} \quad \begin{array}{l}
{\left[\begin{array}{l}
\left.a_{1}, b_{1}\right], \\
b_{2}, \ldots, b_{g-1}, \\
b_{1} b_{g}, \\
a_{1} a_{g}, \ldots, a_{(g-1) / 2} a_{(g+3) / 2}, \\
a_{(g+1) / 2}
\end{array}\right.}
\end{array}\right\} \text { when } g \text { is even, }
\end{array} \quad \begin{array}{l}
\text { when } g \text { is odd, }
\end{array}\right.
$$

and, the group $\pi_{1}\left(X_{U^{\prime}}\right)$ is isomorphic to the free product of the free group of rank ($[g / 2]-1$) with $\mathbb{Z} \oplus \mathbb{Z}$.

Proof. Simple closed curves B_{0}, \ldots, B_{g} and a, b, c as shown in Fig. 4 can be described in $\pi_{1}\left(\Sigma_{g}\right)$, up to conjugation, as follows

- $B_{2 k}=a_{k} b_{k+1} b_{k+2} \cdots b_{g-k-1} b_{g-k} c_{g-k} a_{g-k+1}$, where $0 \leq k \leq g / 2$,
- $B_{2 k+1}=a_{k+1} b_{k+1} b_{k+2} \cdots b_{g-k-1} b_{g-k} c_{g-k} a_{g-k}$, where $0 \leq k \leq g / 2$,
- $\quad a=a_{(g+1) / 2}, b=c_{(g-1) / 2} a_{(g+1) / 2}$ and $c=c_{g / 2}$,
where let $a_{0}=a_{g+1}=1$. In addition, note that $c_{i}=b_{i}^{-1} \cdots b_{1}^{-1}\left(a_{1} b_{1} a_{1}^{-1}\right) \cdots\left(a_{i} b_{i} a_{i}^{-1}\right)$ up to conjugation, for $1 \leq i \leq g$. Since X_{W} has a section, by Proposition 2.1, we first
obtain a presentation of $\pi_{1}\left(X_{W}\right)$ as follows.

$$
\pi_{1}\left(X_{W}\right)=\left\{\begin{array}{l|l}
\left\{\begin{array}{l}
a_{1}, b_{1}, \ldots, a_{g}, b_{g} \\
\text { when } g \text { is even, } \\
c_{g / 2}, \\
a_{1} a_{g}, \ldots, a_{g / 2} a_{(g+2) / 2}, \\
b_{1} a_{g} b_{g} a_{g}^{-1}, \ldots, b_{g / 2} a_{(g+2) / 2} b_{(g+2) / 2} a_{(g+2) / 2}^{-1}
\end{array}\right.
\end{array}\right\}
$$

(We have that $\pi_{1}\left(X_{W}\right)$ is isomorphic to $\pi_{1}\left(\Sigma_{[g / 2]}\right)$.) Since each b_{i} intersects some B_{j} transversely at only one point, by Proposition 2.2, we obtain the claim.

REMARK. From Proposition 3.1, we have followings.

- For $n \geq 1$, there are genus- $2 n$ and $(2 n+1)$ Lefschetz fibrations whose fundamental groups are isomorphic to the free group of rank n.
- For $n \geq 2$, there are genus- $(2 n-2)$ and $(2 n-1)$ Lefschetz fibrations whose fundamental groups are isomorphic to the free product of the free group of rank $(n-2)$ with $\mathbb{Z} \oplus \mathbb{Z}$.

Let Γ be a finitely presented group with a presentation $\Gamma=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}, \ldots, r_{k}\right\rangle$ and let $l=\max _{1 \leq i \leq k}\left\{l\left(r_{i}\right)\right\}$. For $g \geq n+l-1$ and r_{i}, we construct a simple closed curve R_{i} on Σ_{g} as below.

At first, we construct a simple closed curve R in the case $n=4$ and $r=$ $g_{2} g_{1} g_{2}^{2} g_{4}^{-1} g_{3}^{-2}$ as an example. Note that $l(r)=5$. Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ be loops on Σ_{g} which are homotopic to $a_{2}, a_{1}, a_{2}, a_{4}$ and a_{3}, respectively, as shown in Fig. 5 (a). Let $y_{1}, y_{2}, y_{3}, y_{4}$ be loops on Σ_{g} which are homotopic to $a_{5}, a_{6}, a_{7}, a_{8}$, respectively, and let $z_{1}, z_{2}, z_{3}, z_{4}$ be loops on Σ_{g} which are homotopic to $a_{5}, a_{6}, a_{7}, a_{8}$, respectively, as shown in Fig. 5 (a). First we deform Σ_{g} around $y_{1}, z_{1}, \ldots, y_{4}, z_{4}$ as shown in Fig. 5 (b). Then let D be a subsurface containing y_{t} and z_{t} which is surrounded by a simple closed curve on Σ_{g} as shown in Fig. 5 (b). Next, for $1 \leq t \leq 4$, we move y_{t} to the right side of x_{t} in D, and z_{t} to the left side of x_{t+1} in D, as shown in Fig. 5 (c). Let \bar{R} be the loop as shown in Fig. 6 (a), and let $R=(\bar{R}) t_{x_{1}}^{-1} t_{x_{2}}^{-1} t_{x_{3}}^{-2} t_{x_{4}} t_{x_{5}}^{2}$, as shown in Fig. 6 (b). Finally, we deform the surface so that y_{1}, \ldots, y_{4} and z_{1}, \ldots, z_{4} go back to their original position as shown in Fig. 6 (c).

In general, a loop R_{i} is constructed as follows. Let $r_{i}=g_{j(1)}^{m(1)} \cdots g_{j\left(l\left(r_{i}\right)\right)}^{m\left(l\left(r_{i}\right)\right)}$. For $1 \leq$ $t \leq l\left(r_{i}\right)$, let x_{t} be a loop on Σ_{g} which is homotopic to $a_{j(t)}$. If $j(s)=j\left(s^{\prime}\right)$ for some $s<s^{\prime}$, we put $x_{s^{\prime}}$ to the right side of x_{s}. For $1 \leq t \leq l\left(r_{i}\right)-1$, let y_{t} and z_{t} be loops on Σ_{g} which are homotopic to a_{n+t}, such that z_{t} is in the right side of y_{t}.

Fig. 5. The loop R in the case $n=4, r=g_{2} g_{1} g_{2}^{2} g_{4}^{-1} g_{3}^{-2}$.

Fig. 6. The loop R in the case $n=4, r=g_{2} g_{1} g_{2}^{2} g_{4}^{-1} g_{3}^{-2}$.

Fig. 7. The loop c where $s=l\left(r_{i}\right)-1$.
First we deform Σ_{g} around $y_{1}, z_{1}, \ldots, y_{l\left(r_{i}\right)-1}, z_{l\left(r_{i}\right)-1}$, similarly to the above example. Let c be a simple closed curve which is described in $\pi_{1}\left(\Sigma_{g}\right)$ as follows

$$
c=\left(a_{n+1} b_{n+1} a_{n+1}^{-1}\right) \cdots\left(a_{n+l\left(r_{i}\right)-1} b_{n+l\left(r_{i}\right)-1} a_{n+l\left(r_{i}\right)-1}^{-1}\right) b_{n+l\left(r_{i}\right)-1}^{-1} \cdots b_{n+1}^{-1},
$$

and intersects each of a_{1}, \ldots, a_{n} at two points, as shown in Fig. 7. Then let D be a subsurface whose boundary is c, and which contains y_{t} and z_{t}.

Next we deform D as follows. For $1 \leq t \leq l\left(r_{i}\right)-1$, we move y_{t} to just right side of x_{t} in D, and z_{t} to just left side of x_{t+1} in D as shown in Fig. 5 (c). We regard that this motion does not affect on loops a_{i}, b_{i} and c_{i}. Hence $x_{1}, \ldots, x_{l\left(r_{i}\right)}$ also do not deform, as shown in Fig. 5 (c).

After that, we define a simple closed curve as shown in Fig. 6 (a). More precisely, we construct arcs L_{i} and L_{i}^{\prime} as follows. The arc L_{i} is in $D . L_{i}$ begins from the point at the left side of x_{1} on the loop c, crosses $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots$, in this order, finally crosses $x_{l\left(r_{i}\right)}$, and stops at the right side of $x_{l\left(r_{i}\right)}$ on the loop c. Let L_{i}^{\prime} be an arc whose base point is the end point of L_{i}, end point is the base point of L_{i}, and which does not intersect the interior of D and loops $a_{1}, b_{1}, \ldots, a_{n}, b_{n}$ and c_{n}. Note that the surface which is obtained by removing loops $c, a_{1}, b_{1}, \ldots, a_{n}, b_{n}$ and c_{n} from Σ_{g}, and which contains L_{i}^{\prime} is a disk. Hence the arc L_{i}^{\prime} is unique up to homotopy relative to the base point and the end point. Let $L_{i} \cdot L_{i}^{\prime}$ denote the composition of L_{i} and L_{i}^{\prime}.

We now define $R_{i}=\left(L_{i} \cdot L_{i}^{\prime}\right) t_{x_{1}}^{-m(1)} \cdots t_{x_{l\left(r_{i}\right)}}^{\left.-m\left(l r_{i}\right)\right)}$. Finally, we deform the surface so that $y_{1}, z_{1}, \ldots, y_{l\left(r_{i}\right)-1}, z_{l\left(r_{i}\right)-1}$ go back to their original position.

Note that the loop R_{i} is described in $\pi_{1}\left(\Sigma_{g}\right)$, up to conjugation, as follows:
(*)

$$
R_{i}=\left(\prod_{1 \leq t \leq m(1)} x_{i, 1, t} a_{j(1)}\right) \cdots\left(\prod_{1 \leq t \leq m\left(l\left(r_{i}\right)\right)} x_{i, l\left(r_{i}\right), t} a_{\left.j l\left(l r_{i}\right)\right)}\right) \tilde{L}_{i},
$$

where $x_{i, s, t}$ is a loop which is some products of $a_{n+1}, b_{n+1}, \ldots, a_{l\left(r_{i}\right)-1}, b_{l\left(r_{i}\right)-1}$ and c_{n+1}, and \tilde{L}_{i} is a loop which is described in $\pi_{1}\left(\Sigma_{g}\right)$ as follows:

$$
\tilde{L}_{i}= \begin{cases}b_{j\left(l\left(r_{i}\right)\right)}^{-1} b_{j\left(l\left(r_{i}\right)\right)-1}^{-1} \cdots b_{j(1)+1}^{-1} b_{j(1)}^{-1} & \text { when } j(1) \leq j\left(l\left(r_{i}\right)\right), \\ b_{j\left(l\left(r_{i}\right)\right)+1} b_{j\left(l\left(r_{i}\right)\right)} \cdots b_{j(1)} b_{j(1)-1} & \text { when } j(1)>j\left(l\left(r_{i}\right)\right) .\end{cases}
$$

We now prove Theorem 1.1.
Proof of Theorem 1.1. For $g \geq 2 n+l-1$, let V be the following

$$
V=U W^{t_{n+1}} \cdots W^{t_{\left.a_{[g / 2]}\right]}}
$$

where $U=W W^{t_{b_{1}}} \cdots W^{t_{g}}$. In addition, let V^{\prime} be the following

$$
V^{\prime}=V V^{t_{R_{1}}} \cdots V^{t_{R_{k}}}
$$

where R_{i} is the loop constructed previously. We show that the fundamental group $\pi_{1}\left(X_{V^{\prime}}\right)$ is isomorphic to Γ.

Since each of b_{1}, \ldots, b_{g} and $a_{n+1}, \ldots, a_{[g / 2]}$ intersects some B_{i} transversely at only one point, by Proposition 2.2, we have

$$
\begin{aligned}
\pi_{1}\left(X_{V}\right) & =\pi_{1}\left(\Sigma_{g}\right) /\left\langle b_{1}, \ldots, b_{g}, a_{n+1}, \ldots, a_{[g / 2]}\right\rangle \\
& =\pi_{1}\left(X_{U}\right) /\left\langle a_{n+1}, \ldots, a_{[g / 2]}\right\rangle .
\end{aligned}
$$

In addition, by the presentation of (1) of Proposition 3.1, we have

$$
\pi_{1}\left(X_{U}\right)=\left\langle a_{1}, \ldots, a_{[g / 2]}\right\rangle .
$$

Therefore we have

$$
\begin{aligned}
\pi_{1}\left(X_{V}\right) & =\left\langle a_{1}, \ldots, a_{[g / 2]} \mid a_{n+1}, \ldots, a_{[g / 2]}\right\rangle \\
& =\left\langle a_{1}, \ldots, a_{n}\right\rangle
\end{aligned}
$$

Because of the presentation of $\pi_{1}\left(X_{U}\right)$ in (1) of Proposition 3.1, we assume $g \geq 2 n+$ $l-1$ in place of $g \geq n+l-1$.

For any $1 \leq i \leq k$, consider the vanishing cycle $\left(\left(B_{0}\right) t_{a_{n+1}}\right) t_{R_{i}}$ of $X_{V^{\prime}}$. Note that $\left(B_{0}\right) t_{a_{n+1}}$ and $\left(a_{n+1}\right) t_{R_{i}}$ are described in $\pi_{1}\left(\Sigma_{g}\right)$, up to conjugation, as follows:

- $\left(B_{0}\right) t_{a_{n+1}}=a_{n+1}\left(b_{1} \cdots b_{g}\right)$,
- $\left(a_{n+1}\right) t_{R_{i}}=a_{n+1}\left(z R_{i} z^{-1}\right)$ for some $z \in \pi_{1}\left(\Sigma_{g}\right)$.

Then, we have that $\left(\left(B_{0}\right) t_{a_{n+1}}\right) t_{R_{i}}$ is described in $\pi_{1}\left(\Sigma_{g}\right)$ as follows:

$$
\begin{aligned}
\left(\left(B_{0}\right) t_{a_{n+1}}\right) t_{R_{i}} & =\left(x \cdot a_{n+1}\left(b_{1} \cdots b_{n}\right) \cdot x^{-1}\right) t_{R_{i}} \\
& =(x) t_{R_{i}}\left(a_{n+1}\right) t_{R_{i}}\left(b_{1} \cdots b_{n}\right) t_{R_{i}}\left(x^{-1}\right) t_{R_{i}} \\
& =(x) t_{R_{i}}\left(y \cdot a_{n+1}\left(z R_{i} z^{-1}\right) \cdot y^{-1}\right)\left(w \cdot\left(B_{0}\right) t_{R_{i}} \cdot w^{-1}\right)\left((x) t_{R_{i}}\right)^{-1},
\end{aligned}
$$

for some elements x, y and w in $\pi_{1}\left(\Sigma_{g}\right)$. Since $a_{n+1}=\left(B_{0}\right) t_{R_{i}}=1$ in $\pi_{1}\left(X_{V^{\prime}}\right)$, we have $R_{i}=1$ from $\left(\left(B_{0}\right) t_{a_{n+1}}\right) t_{R_{i}}=1$, in $\pi_{1}\left(X_{V^{\prime}}\right)$. For a vanishing cycle c of X_{V}, if R_{i} intersects c transversely at s points, then the vanishing cycle (c)t $t_{R_{i}}$ of $X_{V^{\prime}}$ is described in $\pi_{1}\left(\Sigma_{g}\right)$, up to conjugation, as follows:

$$
(c) t_{R_{i}}=x_{1} R_{i}^{\varepsilon_{1}} \cdots x_{s} R_{i}^{\varepsilon_{s}} x_{s+1},
$$

where $\varepsilon_{j}= \pm 1$ and x_{1}, \ldots, x_{s+1} are elements in $\pi_{1}\left(\Sigma_{g}\right)$ such that $c=x_{1} \cdots x_{s+1}$. Since $R_{i}=1$ and $c=1$ in $\pi_{1}\left(X_{V^{\prime}}\right)$, we can delete the relation $(c) t_{R_{i}}=1$ of $\pi_{1}\left(X_{V^{\prime}}\right)$. We now define $\hat{r}_{i}=a_{j(1)}^{m(1)} \cdots a_{\left.j\left(l r_{i}\right)\right)}^{m\left(l\left(r_{i}\right)\right)}$ for $r_{i}=g_{j(1)}^{m(1)} \cdots g_{j\left(l\left(r_{i}\right)\right)}^{m\left(l\left(r_{i}\right)\right)}$. Since $x_{i, s, t}$ and \tilde{L}_{i} in the description $(*)$ of R_{i} are 1 in $\pi_{1}\left(X_{V^{\prime}}\right)$, the natural epimorphism $\pi_{1}\left(\Sigma_{g}\right) \rightarrow \pi_{1}\left(X_{V^{\prime}}\right)$ sends R_{i} to \hat{r}_{i}. Note that the vanishing cycles of $X_{V^{\prime}}$ consist of c and $(c) t_{R_{i}}$ for all vanishing cycles c of X_{V} and $1 \leq i \leq k$. Therefore, we have

$$
\begin{aligned}
\pi_{1}\left(X_{V^{\prime}}\right) & =\left\langle a_{1}, \ldots, a_{n} \mid \hat{r}_{1}, \ldots, \hat{r}_{k}\right\rangle \\
& \cong \Gamma
\end{aligned}
$$

Thus, the proof of Theorem 1.1 is completed.

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2.
4.1. Proof of (1) of Theorem 1.2. For $n \geq 2$, let B_{n} denote the n-strands braid group. The group B_{n} has a presentation with generators $\sigma_{1}, \ldots, \sigma_{n-1}$ and with relations - $\sigma_{i} \sigma_{j} \sigma_{i}^{-1} \sigma_{j}^{-1}=1$, where $1 \leq i<j-1 \leq n-2$,

- $\sigma_{i} \sigma_{i+1} \sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1}^{-1}=1$, where $1 \leq i \leq n-2$.

Let $x=\sigma_{1}$ and $y=\sigma_{1} \cdots \sigma_{n-1}$. Then B_{n} can be presented with generators x, y and with relations

- $x y^{k} x y^{-k} x^{-1} y^{k} x^{-1} y^{-k}=1$, where $2 \leq k \leq n-2$,
- $\quad x y x y^{-1} x y x^{-1} y^{-1} x^{-1} y x^{-1} y^{-1}=1$,
- $\quad(x y)^{n-1} y^{-n}=1$.

A correspondence between the first presentation and the second presentation is given by $\sigma_{i}=y^{i-1} x y^{1-i}$ for $1 \leq i \leq n-1$. See [8] for this presentation.

We now prove (1) of Theorem 1.2.
Proof of (1) of Theorem 1.2. For $n \geq 3$, since B_{n} is generated by two generators x, y, we have $g\left(B_{n}\right) \geq 2$ from (2) of Theorem 2.3 (cf. [8]). Therefore, we prove $g\left(B_{n}\right) \leq 4$ for $n \geq 3$.

Let $R_{1, k}, R_{2}$ and $R_{3, n}$ be simple closed curves on Σ_{4} as shown in Fig. 8, where $2 \leq$ $k \leq n-2$. Note that $R_{1, k}, R_{2}$ and $R_{3, n}$ intersect B_{4} transversely at only one point, for $2 \leq k \leq n-2$. Loops $R_{1, k}, R_{2}$ and $R_{3, n}$ can be described in $\pi_{1}\left(\Sigma_{4}\right)$, up to conjugation, as follows

(a) The loop $R_{1, k}$ with $k=2$.

(b) The loop R_{2}.

(c) The loop $R_{3, n}$ with $n=4$.

Fig. 8.

- $\quad R_{1, k}=a_{3}^{-1} a_{4}^{-k}\left(b_{3} b_{4}\right)^{-1} a_{2} a_{1}^{-k}\left(b_{1}\right) a_{2}^{-1}\left(b_{1} b_{2}\right)^{-1} a_{1}^{k} a_{2}^{-1}\left(b_{3} b_{4}\right) a_{4}^{k}$, where $2 \leq k \leq n-2$,
- $R_{2}=a_{3}^{-1} a_{4}^{-1}\left(b_{4}^{-1}\right) a_{3}^{-1} a_{4} a_{3}^{-1} a_{4}^{-1}\left(b_{2} b_{3} b_{4}\right)^{-1} a_{2}^{-1}\left(b_{3} b_{4}\right) a_{4} a_{3} a_{4}^{-1} a_{3}\left(b_{4}\right) a_{4}$,
- $\quad R_{3, n}=\left(a_{3}^{-1} a_{4}^{-1}\left(b_{4}^{-1}\right)\right)^{n-1}\left(b_{1} b_{3}\right)^{-1} a_{1}^{-n}$.

Let V_{1} be the following:

$$
V_{1}=W W^{t_{b_{1}}} W^{t_{2}} W^{t_{3}} W^{t_{4}}\left(\prod_{2 \leq k \leq n-2} W^{t_{R_{1}, k}}\right) W^{t_{R_{2}}} W^{t_{R_{3, n}}} .
$$

Then, from Proposition 2.2 and (1) of Proposition 3.1, the fundamental group $\pi_{1}\left(X_{V_{1}}\right)$ can be presented with generators a_{2}, a_{1} and with relations

- $a_{2} a_{1}^{k} a_{2} a_{1}^{-k} a_{2}^{-1} a_{1}^{k} a_{2}^{-1} a_{1}^{-k}=1$, where $2 \leq k \leq n-2$,
- $a_{2} a_{1} a_{2} a_{1}^{-1} a_{2} a_{1} a_{2}^{-1} a_{1}^{-1} a_{2}^{-1} a_{1} a_{2}^{-1} a_{1}^{-1}=1$,
- $\quad\left(a_{2} a_{1}\right)^{n-1} a_{1}^{-n}=1$.

Let $a_{2}=x$ and $a_{1}=y$. Then it follows that $\pi_{1}\left(X_{V_{1}}\right)$ is isomorphic to B_{n}. Therefore, for $n \geq 3$ we have $g\left(B_{n}\right) \leq 4$.

Thus, the proof of (1) of Theorem 1.2 is completed.
4.2. Proof of (2) of Theorem 1.2. For $g \geq 1$, let \mathcal{H}_{g} be the hyperelliptic mapping class group of Σ_{g}, that is, a subgroup of the mapping class group \mathcal{M}_{g} which consists of elements commutative with a hyperelliptic involution. It is well known that there is the natural epimorphism $B_{2 g+2} \rightarrow \mathcal{H}_{g}$. For $g \geq 2$, Birman and Hilden [2] gave a presentation of the group \mathcal{H}_{g} with generators $\sigma_{1}, \ldots, \sigma_{2 g+1}$ and with relations

- $\sigma_{i} \sigma_{j} \sigma_{i}^{-1} \sigma_{j}^{-1}=1$, where $1 \leq i<j-1 \leq 2 g$,
- $\sigma_{i} \sigma_{i+1} \sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1}^{-1}=1$, where $1 \leq i \leq 2 g$,
- $\left(\sigma_{1} \cdots \sigma_{2 g+1}\right)^{2 g+2}=1$,
- $\left(\sigma_{1} \cdots \sigma_{2 g+1} \sigma_{2 g+1} \cdots \sigma_{1}\right)^{2}=1$,
- $\quad\left[\sigma_{1} \cdots \sigma_{2 g+1} \sigma_{2 g+1} \cdots \sigma_{1}, \sigma_{1}\right]=1$.

Similarly to Subsection 4.1, let $x=\sigma_{1}$ and $y=\sigma_{1} \cdots \sigma_{2 g+1}$. Then, note that $y^{2 g+2}=1$. We calculate

$$
\begin{aligned}
\sigma_{1} \cdots \sigma_{2 g+1} \sigma_{2 g+1} \cdots \sigma_{1} & =y\left(y^{2 g} x y^{-2 g}\right) \cdots\left(y x y^{-1}\right) x \\
& =y^{2 g+1}\left(x y^{-1}\right)^{2 g} x \\
& =y^{-1}\left(x y^{-1}\right)^{2 g} x \\
& =\left(y^{-1} x\right)^{2 g+1}
\end{aligned}
$$

Then we have $\left(\sigma_{1} \cdots \sigma_{2 g+1} \sigma_{2 g+1} \cdots \sigma_{1}\right)^{2}=\left(y^{-1} x\right)^{4 g+2}$. In addition, we have

$$
\begin{aligned}
{\left[\sigma_{1} \cdots \sigma_{2 g+1} \sigma_{2 g+1} \cdots \sigma_{1}, \sigma_{1}\right] } & =\left(y^{-1} x\right)^{2 g+1} x\left(x^{-1} y\right)^{2 g+1} x^{-1} \\
& =\left(y^{-1} x\right)^{2 g+1}\left(y x^{-1}\right)^{2 g+1}
\end{aligned}
$$

Therefore, \mathcal{H}_{g} can be presented with generators x, y and with relations

Fig. 9. The loop R_{6}.

- $x y^{k} x y^{-k} x^{-1} y^{k} x^{-1} y^{-k}=1$, where $2 \leq k \leq 2 g$,
- $x y x y^{-1} x y x^{-1} y^{-1} x^{-1} y x^{-1} y^{-1}=1$,
- $\quad(x y)^{2 g+1} y^{-2 g-2}=1$,
- $y^{2 g+2}=1$,
- $\left(y^{-1} x\right)^{4 g+2}=1$,
- $\quad\left(y^{-1} x\right)^{2 g+1}\left(y x^{-1}\right)^{2 g+1}=1$.

We now prove (2) of Theorem 1.2.
Proof of (2) of Theorem 1.2. For $g \geq 2$, since \mathcal{H}_{g} is generated by two generators x, y, we have $g\left(\mathcal{H}_{g}\right) \geq 2$ from (2) of Theorem 2.3 (cf. [8]). Therefore, we prove $g\left(\mathcal{H}_{g}\right) \leq 4$ for $g \geq 2$.

Let R_{4}, R_{5} and R_{6} be simple closed curves on Σ_{4} described in $\pi_{1}\left(\Sigma_{4}\right)$, up to conjugation, as follows

- $\quad R_{4}=a_{1}^{2 g+2}\left(b_{1}^{-1}\right)$,
- $\quad R_{5}=\left(a_{1}^{-1} a_{2}\right)^{4 g+2}\left(b_{1}^{-1}\right)$,
- $\quad R_{6}=\left(a_{1}^{-1} a_{2}\right)^{2 g+1}\left(b_{2} b_{3} b_{4}\right)\left(a_{4}^{-1} a_{3}\right)^{2 g+1}\left(b_{3}^{-1}\right)$.

For the loop R_{6}, see Fig. 9. Note that R_{4}, R_{5} and R_{6} intersect B_{2}, B_{1} and B_{4} transversely at only one point, respectively. Let V_{2} be the following:

$$
V_{2}=W W^{t_{b_{1}}} W^{t_{b_{2}}} W^{t_{b_{3}}} W^{t_{b_{4}}}\left(\prod_{2 \leq k \leq 2 g} W^{t_{R_{1, k}}}\right) W^{t_{R_{2}}} W^{t_{R_{3,2}+2}} W^{t_{R_{4}}} W^{t_{R_{5}}} W^{t_{R_{6}}}
$$

Then, from Proposition 2.2 and (1) of Proposition 3.1, the fundamental group $\pi_{1}\left(X_{V_{2}}\right)$ can be presented with generators a_{2}, a_{1} and with relations

- $a_{2} a_{1}^{k} a_{2} a_{1}^{-k} a_{2}^{-1} a_{1}^{k} a_{2}^{-1} a_{1}^{-k}=1$, where $2 \leq k \leq 2 g$,
- $a_{2} a_{1} a_{2} a_{1}^{-1} a_{2} a_{1} a_{2}^{-1} a_{1}^{-1} a_{2}^{-1} a_{1} a_{2}^{-1} a_{1}^{-1}=1$,
- $\quad\left(a_{2} a_{1}\right)^{2 g+1} a_{1}^{-2 g-2}=1$,
- $a_{1}^{2 g+2}=1$,
- $\left(a_{1}^{-1} a_{2}\right)^{4 g+2}=1$,
- $\quad\left(a_{1}^{-1} a_{2}\right)^{2 g+1}\left(a_{1} a_{2}^{-1}\right)^{2 g+1}=1$.

Let $a_{2}=x$ and $a_{1}=y$. Then it follows that $\pi_{1}\left(X_{V_{2}}\right)$ is isomorphic to \mathcal{H}_{g}. Therefore, for $g \geq 2$ we have $g\left(\mathcal{H}_{g}\right) \leq 4$. In particular, since the group \mathcal{H}_{1} is isomorphic to \mathcal{M}_{1},
we have $2 \leq g\left(\mathcal{H}_{1}\right) \leq 4$ from (3) of Theorem 2.3 (cf. [8]).
Thus, the proof of (2) of Theorem 1.2 is completed.
4.3. Proof of (3) of Theorem 1.2. For $n \geq 3$, let $\mathcal{M}_{0, n}$ denote the mapping class group of an n-punctured sphere, that is, the group of isotopy classes of orientationpreserving diffeomorphisms $S^{2} \backslash\left\{p_{1}, \ldots, p_{n}\right\} \rightarrow S^{2} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$. Magnus [9] gave a presentation of the group $\mathcal{M}_{0, n}$ with generators $\sigma_{1}, \ldots, \sigma_{n-1}$ and with relations

- $\sigma_{i} \sigma_{j} \sigma_{i}^{-1} \sigma_{j}^{-1}=1$, where $1 \leq i<j-1 \leq n-2$,
- $\sigma_{i} \sigma_{i+1} \sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1}^{-1}=1$, where $1 \leq i \leq n-2$,
- $\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}=1$,
- $\sigma_{1} \cdots \sigma_{n-1} \sigma_{n-1} \cdots \sigma_{1}=1$.

Similarly to Subsection 4.1 and 4.2 , let $x=\sigma_{1}$ and $y=\sigma_{1} \cdots \sigma_{n-1}$. Then $\mathcal{M}_{0, n}$ can be presented with generators x, y and with relations

- $x y^{k} x y^{-k} x^{-1} y^{k} x^{-1} y^{-k}=1$, where $2 \leq k \leq n-2$,
- $\quad x y x y^{-1} x y x^{-1} y^{-1} x^{-1} y x^{-1} y^{-1}=1$,
- $(x y)^{n-1} y^{-n}=1$,
- $y^{n}=1$,
- $\quad\left(y^{-1} x\right)^{n-1}=1$.

We now prove (3) of Theorem 1.2.

Proof of (3) of Theorem 1.2. For $n \geq 3$, since $\mathcal{M}_{0, n}$ is generated by two generators x, y, we have $g\left(\mathcal{M}_{0, n}\right) \geq 2$ from (2) of Theorem 2.3 (cf. [8]). Therefore, we prove $g\left(\mathcal{M}_{0, n}\right) \leq 4$ for $n \geq 3$.

Let R_{7} and R_{8} be simple closed curves on Σ_{4} described in $\pi_{1}\left(\Sigma_{4}\right)$, up to conjugation, as follows

- $\quad R_{7}=a_{1}^{n}\left(b_{1}^{-1}\right)$,
- $\quad R_{8}=\left(a_{1}^{-1} a_{2}\right)^{n-1}\left(b_{1}^{-1}\right)$.

Note that R_{7} and R_{8} intersect B_{2} and B_{1} transversely at only one point, respectively. Let V_{3} be the following:

$$
V_{3}=V_{1} W^{t_{R_{7}}} W^{t_{R_{8}}}
$$

Then, from Proposition 2.2 and (1) of Proposition 3.1, the fundamental group $\pi_{1}\left(X_{V_{3}}\right)$ can be presented with generators a_{2}, a_{1} and with relations

- $a_{2} a_{1}^{k} a_{2} a_{1}^{-k} a_{2}^{-1} a_{1}^{k} a_{2}^{-1} a_{1}^{-k}=1$, where $2 \leq k \leq n-2$,
- $a_{2} a_{1} a_{2} a_{1}^{-1} a_{2} a_{1} a_{2}^{-1} a_{1}^{-1} a_{2}^{-1} a_{1} a_{2}^{-1} a_{1}^{-1}=1$,
- $\quad\left(a_{2} a_{1}\right)^{n-1} a_{1}^{-n}=1$,
- $a_{1}^{n}=1$,
- $\quad\left(a_{1}^{-1} a_{2}\right)^{n-1}=1$.

Let $a_{2}=x$ and $a_{1}=y$. Then it follows that $\pi_{1}\left(X_{V_{3}}\right)$ is isomorphic to $\mathcal{M}_{0, n}$. Therefore, for $n \geq 3$ we have $g\left(\mathcal{M}_{0, n}\right) \leq 4$.

Thus, the proof of (3) of Theorem 1.2 is completed.
4.4. Proof of (4) of Theorem 1.2. For $n \geq 3$, let S_{n} denote the n-symmetric group. It is well known that the group S_{n} has a presentation with generators $\sigma_{1}, \ldots, \sigma_{n-1}$ and with relations

- $\sigma_{i} \sigma_{j} \sigma_{i}^{-1} \sigma_{j}^{-1}=1$, where $1 \leq i<j-1 \leq n-2$,
- $\sigma_{i} \sigma_{i+1} \sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1}^{-1}=1$, where $1 \leq i \leq n-2$,
- $\sigma_{i}^{2}=1$, where $1 \leq i \leq n-1$.

Similarly to Subsection 4.1 , let $x=\sigma_{1}$ and $y=\sigma_{1} \cdots \sigma_{n-1}$. Since $\sigma_{i}=y^{i-1} x y^{1-i}$, $\sigma_{i}^{2}=1$ if and only if $x^{2}=1$. Therefore S_{n} can be presented with generators x, y and with relations

- $x y^{k} x y^{-k} x^{-1} y^{k} x^{-1} y^{-k}=1$, where $2 \leq k \leq n-2$,
- $x y x y^{-1} x y x^{-1} y^{-1} x^{-1} y x^{-1} y^{-1}=1$,
- $(x y)^{n-1} y^{-n}=1$,
- $x^{2}=1$.

We now prove (4) of Theorem 1.2.
Proof of (4) of Theorem 1.2. For $n \geq 3$, since S_{n} is generated by two generators x, y, we have $g\left(S_{n}\right) \geq 2$ from (2) of Theorem 2.3 (cf. [8]). Therefore, we prove $g\left(S_{n}\right) \leq$ 4 for $n \geq 3$.

Let R_{9} be the simple closed curve on Σ_{4} described in $\pi_{1}\left(\Sigma_{4}\right)$, up to conjugation, as follows

- $\quad R_{9}=a_{2}^{2}\left(b_{2}^{-1}\right)$.

Note that R_{9} intersects B_{4} transversely at only one point. Let V_{4} be the following:

$$
V_{4}=V_{1} W^{t_{R_{9}}} .
$$

Then, from Proposition 2.2 and (1) of Proposition 3.1, the fundamental group $\pi_{1}\left(X_{V_{4}}\right)$ can be presented with generators a_{2}, a_{1} and with relations

- $a_{2} a_{1}^{k} a_{2} a_{1}^{-k} a_{2}^{-1} a_{1}^{k} a_{2}^{-1} a_{1}^{-k}=1$, where $2 \leq k \leq n-2$,
- $a_{2} a_{1} a_{2} a_{1}^{-1} a_{2} a_{1} a_{2}^{-1} a_{1}^{-1} a_{2}^{-1} a_{1} a_{2}^{-1} a_{1}^{-1}=1$,
- $\left(a_{2} a_{1}\right)^{n-1} a_{1}^{-n}=1$,
- $a_{2}^{2}=1$.

Let $a_{2}=x$ and $a_{1}=y$. Then it follows that $\pi_{1}\left(X_{V_{4}}\right)$ is isomorphic to S_{n}. Therefore, for $n \geq 3$ we have $g\left(S_{n}\right) \leq 4$.

Thus, the proof of (4) of Theorem 1.2 is completed.
4.5. Proof of (5) of Theorem 1.2. The Artin group is introduced by [3]. For $n \geq 6$, the n-Artin group \mathcal{A}_{n} associated to the Dynkin diagram shown in Fig. 1 is defined by a presentation with generators $\sigma_{1}, \ldots, \sigma_{n-1}, \tau$ and with relations

- $\sigma_{i} \sigma_{j} \sigma_{i}^{-1} \sigma_{j}^{-1}=1$, where $1 \leq i<j-1 \leq n-2$,
- $\sigma_{i} \sigma_{i+1} \sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1}^{-1}=1$, where $1 \leq i \leq n-2$,
- $\sigma_{4} \tau \sigma_{4} \tau^{-1} \sigma_{4}^{-1} \tau^{-1}=1$,
- $\tau \sigma_{i} \tau^{-1} \sigma_{i}^{-1}=1$, where $1 \leq i \leq n-1$ with $i \neq 4$.

(b) The loop R_{2}.

(c) The loop R_{3} with $n=3$.

(d) The loop R_{4}.

(e) The loop $R_{5, i}$ with $i=3$.

Fig. 10.

It is known that there is the natural epimorphism $\mathcal{A}_{2 g+1} \rightarrow \mathcal{M}_{g}$. Similarly to Subsection 4.1, let $x=\sigma_{1}$ and $y=\sigma_{1} \cdots \sigma_{n-1}$. In addition, let $z=\tau$. Then the group \mathcal{A}_{n} can be presented with generators x, y, z and with relations

- $x y^{k} x y^{-k} x^{-1} y^{k} x^{-1} y^{-k}=1$, where $2 \leq k \leq n-2$,
- $x y x y^{-1} x y x^{-1} y^{-1} x^{-1} y x^{-1} y^{-1}=1$,
- $(x y)^{n-1} y^{-n}=1$,
- $\quad\left(y^{3} x y^{-3}\right) z\left(y^{3} x y^{-3}\right) z^{-1}\left(y^{3} x^{-1} y^{-3}\right) z^{-1}=1$,
- $z\left(y^{i-1} x y^{1-i}\right) z^{-1}\left(y^{i-1} x^{-1} y^{1-i}\right)=1$, where $1 \leq i \leq n-1$ with $i \neq 4$.

We now prove (5) of Theorem 1.2.
Proof of (5) of Theorem 1.2. Since \mathcal{A}_{n} is generated by three generators x, y and z, we have $g\left(\mathcal{A}_{n}\right) \geq 2$ from (2) of Theorem 2.3 (cf. [8]). Therefore, we prove $g\left(\mathcal{A}_{n}\right) \leq 5$.

Let $R_{1, k}, R_{2}, R_{3}, R_{4}$ and $R_{5, i}$ be simple closed curves on Σ_{5} as shown in Fig. 10, where $2 \leq k \leq n-2$ and $2 \leq i \leq n-1$ with $i \neq 4$. Note that we can not consider the loop $R_{5,1}$. Note that $R_{1, k}, R_{2}$ and R_{3} intersect a transversely at only one point, for $2 \leq k \leq n-2$, and that R_{4} and $R_{5, i}$ intersect b transversely at only one point, for $2 \leq i \leq n-1$ with $i \neq 4$. Loops $R_{1, k}, R_{2}, R_{3}, R_{4}$ and $R_{5, i}$ can be described in $\pi_{1}\left(\Sigma_{5}\right)$, up to conjugation, as follows

- $R_{1, k}=b_{5}^{-1}\left(b_{2} b_{3} b_{4}\right)^{-1} a_{2}^{k}\left(b_{3} b_{4}\right) b_{5}^{-1}\left(b_{3} b_{4}\right)^{-1} a_{2}^{-k}\left(b_{2} b_{3} b_{4}\right) b_{5} a_{4}^{-2 k}\left(b_{3}^{-1}\right) a_{2}^{-k} b_{1}^{-1} a_{2}^{k} a_{4}^{2 k}$, where $2 \leq k \leq n-2$,
- $R_{2}=b_{1} a_{2}\left(b_{3} b_{4}\right) b_{5}^{-1}\left(b_{3} b_{4}\right)^{-1} a_{2}^{-1}\left(b_{3} b_{4}\right) b_{5}^{-1}\left(b_{2} b_{3} b_{4}\right)^{-1} a_{2}\left(b_{3} b_{4}\right) b_{5}\left(b_{3} b_{4}\right)^{-1} a_{2}^{-1}\left(b_{2} b_{3} b_{4}\right) \times$ $b_{5} a_{2}\left(b_{3} b_{4}\right) b_{5}\left(b_{3} b_{4}\right)^{-1} a_{2}^{-1}$,
- $\quad R_{3}=\left(b_{1}\left(b_{2}\right) a_{2}\right)^{n-1}\left(b_{1}\left(b_{2} b_{3} b_{4}\right) b_{5}\right) a_{4}^{n+2} a_{2}^{2}$,
- $\quad R_{4}=a_{2}^{3} b_{1}\left(b_{2}\right) a_{4}^{3} a_{5}^{-1} a_{4}^{-3}\left(b_{2}^{-1}\right) b_{1}\left(b_{2}\right) a_{4}^{3} a_{5} a_{4}^{-3}\left(b_{2}^{-1}\right) b_{1}^{-1}\left(b_{2}\right) a_{4}^{3} a_{5}\left(a_{3} b_{3} b_{4}\right)^{-1}$,
- $\quad R_{5, i}=a_{1} a_{2}^{i-1}\left(b_{4}\right) b_{5}^{-1}\left(b_{4}\right) a_{2}^{1-i} a_{1}^{-1}\left(b_{1}\left(b_{2} b_{4}\right) b_{5}\right) a_{4}^{1-i}\left(a_{3} b_{4}\right) b_{5}\left(a_{4}^{2-i} a_{2}^{2-i}\left(b_{2}\right)\right) a_{2}^{-1} a_{4}^{i-2} \times$ $\left(b_{1}\left(b_{2} b_{3} b_{4}\right) b_{5}\right)^{-1}$, where $2 \leq i \leq n-1$ with $i \neq 4$.
Let V_{5} be the following:

$$
V_{5}=W W^{t_{b_{2}}} W^{t_{3}} W^{t_{4}}\left(\prod_{2 \leq k \leq n-2} W^{t_{1, k}}\right) W^{t_{R_{2}}} W^{t_{R_{3}}} W^{t_{R_{4}}}\left(\prod_{2 \leq i \leq n-1, i \neq 4} W^{t_{R_{5, i}}}\right) .
$$

Then, from Proposition 2.2 and (2) of Proposition 3.1, the fundamental group $\pi_{1}\left(X_{V_{5}}\right)$ can be presented with generators b_{1}, a_{2}, a_{1} and with relations

- $b_{1} a_{2}^{k} b_{1} a_{2}^{-k} b_{1}^{-1} a_{2}^{k} b_{1}^{-1} a_{2}^{-k}=1$, where $2 \leq k \leq n-2$,
- $b_{1} a_{2} b_{1} a_{2}^{-1} b_{1} a_{2} b_{1}^{-1} a_{2}^{-1} b_{1}^{-1} a_{2} b_{1}^{-1} a_{2}^{-1}=1$,
- $\left(b_{1} a_{2}\right)^{n-1} a_{2}^{-n}=1$,
- $\left(a_{2}^{3} b_{1} a_{2}^{-3}\right) a_{1}\left(a_{2}^{3} b_{1} a_{2}^{-3}\right) a_{1}^{-1}\left(a_{2}^{3} b_{1}^{-1} a_{2}^{-3}\right) a_{1}^{-1}=1$,
- $a_{1}\left(a_{2}^{i-1} b_{1} a_{2}^{1-i}\right) a_{1}^{-1}\left(a_{2}^{i-1} b_{1}^{-1} a_{2}^{1-i}\right)=1$, where $2 \leq i \leq n-1$ with $i \neq 4$,
- $a_{1} b_{1} a_{1}^{-1} b_{1}^{-1}$.

Let $b_{1}=x, a_{2}=y$ and $a_{1}=z$. Then $\pi_{1}\left(X_{V_{5}}\right)$ is isomorphic to \mathcal{A}_{n}. Therefore, for $n \geq 6$ we have $g\left(\mathcal{A}_{n}\right) \leq 5$.

Thus, the proof of (5) of Theorem 1.2 is completed.

4.6. Proof of (6) of Theorem 1.2.

Proof of (6) of Theorem 1.2. Let $n, k \geq 0$ be integers with $n+k \geq 3$.
At first, we consider the case $n+k$ is even. We put $n+k=2 r$. Let $A_{i, j}$ and $B_{i, j}$ be simple closed curves on Σ_{n+k+1} as shown in (a) and (b) of Fig. 11, respectively, where $1 \leq i<j \leq r$, and let $C_{i, j}$ be the simple closed curve on Σ_{n+k+1} as shown in (c), (d) and (e) of Fig. 11, where $1 \leq i, j \leq r$. Note that each of $A_{i, j}, B_{i, j}$ and $C_{i, j}$ intersects a_{r+1} transversely at only one point. Loops $A_{i, j}, B_{i, j}$ and $C_{i, j}$ can be described in $\pi_{1}\left(\Sigma_{n+k+1}\right)$, up to conjugation, as follows

- $A_{i, j}=a_{i} a_{j}^{-1} a_{2 r-i+2} a_{2 r-j+2}^{-1}\left(c_{r+1}^{-1} b_{r+1}^{-1}\right)$, where $1 \leq i<j \leq r$,
- $\quad B_{i, j}=b_{i} b_{j} b_{i}^{-1} a_{2 r-j+2} b_{2 r-j+2} a_{2 r-j+2}^{-1}\left(b_{r+1}^{-1} c_{r}\right)$, where $1 \leq i<j \leq r$,
- $\quad C_{i, j}=a_{i} b_{j}^{-1} a_{i}^{-1} a_{2 r-j+2} b_{2 r-j+2}^{-1} a_{2 r-j+2}^{-1}\left(a_{r+1} b_{r+1}^{-1}\right)$, where $1 \leq i, j \leq r$ and $i \neq j$,
- $\quad C_{i, i}=b_{i}^{-1} a_{i} b_{i} a_{i}^{-1}\left(b_{r+1}^{-1}\right)$, where $1 \leq i \leq r$.

Let V_{6} be the following:

$$
V_{6}=W\left(\prod_{1 \leq i<j \leq r} W^{t_{A_{i, j}}}\right)\left(\prod_{1 \leq i<j \leq r} W^{t_{B_{i, j}}}\right)\left(\prod_{1 \leq i, j \leq r} W^{t_{c_{i, j}}}\right)
$$

Note that we have relations $a_{r+1}=1, b_{r+1}=1, c_{r}=1$ and $c_{r+1}=1$ in $\pi_{1}\left(X_{W}\right)$. In addition, we have the relation $a_{2 r-j+2} b_{2 r-j+2} a_{2 r-j+2}^{-1}=b_{j}^{-1}$ in $\pi_{1}\left(X_{W}\right)$ (see the presentation of $\pi_{1}\left(X_{W}\right)$ in the proof of Proposition 3.1). Then, from Proposition 2.2, the fundamental group $\pi_{1}\left(X_{V_{6}}\right)$ can be presented with generators $a_{1}, b_{1}, \ldots, a_{r}, b_{r}$ and with relations

- $a_{i} a_{j}^{-1} a_{i}^{-1} a_{j}$, where $1 \leq i<j \leq r$,
- $b_{i} b_{j} b_{i}^{-1} b_{j}^{-1}$, where $1 \leq i<j \leq r$,
- $a_{i} b_{j}^{-1} a_{i}^{-1} b_{j}$, where $1 \leq i, j \leq r$ and $i \neq j$,
- $b_{i}^{-1} a_{i} b_{i} a_{i}^{-1}$, where $1 \leq i \leq r$.

Namely, $\pi_{1}\left(X_{V_{6}}\right)$ is isomorphic to $\mathbb{Z}^{2 r}$. We next consider the simple closed curve $R_{i}^{m_{i}}$ on Σ_{n+k+1} as shown in Fig. 12, where $1 \leq i \leq 2 r$ and $m_{i} \geq 2$. Note that $R_{i}^{m_{i}}$ intersects a_{r+1} transversely at only one point. Loops $R_{i}^{m_{i}}$ can be described in $\pi_{1}\left(\Sigma_{n+k+1}\right)$, up to conjugation, as follows

- $\quad R_{i}^{m_{i}}=a_{i}^{m_{i}}\left(a_{2 r-i+2} b_{2 r-i+2}^{-1} a_{2 r-i+2}^{-1} a_{r+1} b_{r+1}^{-1} b_{i}^{-1}\right)$, where $1 \leq i \leq r$,
- $R_{r+i}^{m_{r+i}}=b_{i}^{m_{r+i}}\left(a_{i}^{-1} a_{2 r-i+2}^{-1} a_{r+1} b_{r+1}^{-1}\right)$, where $1 \leq i \leq r$.

Let V_{7} be the following:

$$
V_{7}=V_{6}\left(\prod_{1 \leq i \leq k} W^{t_{R_{i}}^{m_{i}}}\right)
$$

Then, from Proposition 2.2, the fundamental group $\pi_{1}\left(X_{V_{7}}\right)$ is isomorphic to $\mathbb{Z}^{n} \oplus$ $\mathbb{Z}_{m_{1}} \oplus \cdots \oplus \mathbb{Z}_{m_{k}}$. Therefore, if $n+k$ is even, we have $g\left(\mathbb{Z}^{n} \oplus \mathbb{Z}_{m_{1}} \oplus \cdots \oplus \mathbb{Z}_{m_{k}}\right) \leq$ $n+k+1$.

(a) The loop $A_{i, j}, 1 \leq i<j \leq r$.

(b) The loop $B_{i, j}, 1 \leq i<j \leq r$.

(c) The loop $C_{i, j}, 1 \leq i<j \leq r$.

(d) The loop $C_{i, j}, 1 \leq j<i \leq r$.

(e) The loop $C_{i, i}, 1 \leq i \leq r$.

Fig. 11.

(a) The loop $R_{i}^{m_{i}}$ with $m_{i}=2,1 \leq i \leq r$.

(b) The loop $R_{r+i}^{m_{r+i}}$ with $m_{r+i}=2,1 \leq i \leq r$.

Fig. 12.

Next, we consider the case $n+k$ is odd. We put $n+k=2 r+1$. Let $A_{i, j}$ and $B_{i, j}$ be simple closed curves on Σ_{n+k+1} as shown in (a) and (b) of Fig. 13, respectively, where $1 \leq i<j \leq r$, and let $C_{i, j}$ be the simple closed curve on Σ_{n+k+1} as shown in (c), (d) and (e) of Fig. 13, where $1 \leq i, j \leq r$. In addition, let $A_{i, r+1}$ and $C_{r+1, i}$ be simple closed curves on Σ_{n+k+1} as shown in (a) and (b) of Fig. 14, where $1 \leq i \leq r$. Note that each of $A_{i, j}, B_{i, j}$ and $C_{i, j}$ intersects $B_{2 r+2}$ transversely at only one point. Loops $A_{i, j}, B_{i, j}$ and $C_{i, j}$ can be described in $\pi_{1}\left(\Sigma_{n+k+1}\right)$, up to conjugation, as follows

- $A_{i, j}=a_{i} a_{j}^{-1} a_{2 r-i+3} a_{2 r-j+3}^{-1}\left(c_{r+1}^{-1} b_{r+1}^{-1}\right)$, where $1 \leq i<j \leq r$,
- $A_{i, r+1}=a_{i} a_{r+1}^{-1}\left(b_{r+2}\right) a_{2 r-i+3}\left(c_{r+2}\right) a_{r+1}$, where $1 \leq i \leq r$,
- $B_{i, j}=b_{i} b_{j} b_{i}^{-1}\left(b_{r+2}\right) a_{2 r-j+3} b_{2 r-j+3} a_{2 r-j+3}^{-1}\left(b_{r+2}^{-1} b_{r+1} c_{r+1}\right)$, where $1 \leq i<j \leq r$,
- $C_{i, j}=a_{i} b_{j} a_{i}^{-1}\left(b_{r+2}\right) a_{2 r-j+3} b_{2 r-j+3} a_{2 r-j+3}^{-1}\left(b_{r+2}^{-1} b_{r+1} c_{r+1}\right)$, where $1 \leq i, j \leq r$ and $i \neq j$,
- $C_{i, i}=b_{i}^{-1} a_{i} b_{i} a_{i}^{-1}\left(b_{r+1}^{-1}\right)$, where $1 \leq i \leq r$,
- $\quad C_{r+1, i}=a_{r+1} b_{i} a_{r+1}^{-1}\left(b_{r+2}\right) a_{2 r-i+3} b_{2 r-i+3} a_{2 r-i+3}^{-1}\left(c_{r+2}\right)$, where $1 \leq i \leq r$.

Let V_{8} be the following:

$$
V_{8}=W W^{t_{r+1}}\left(\prod_{1 \leq i<j \leq r+1} W^{t_{t_{i, j}}}\right)\left(\prod_{1 \leq i<j \leq r} W^{t_{B_{i, j}}}\right)\left(\prod_{1 \leq i \leq r+1,1 \leq j \leq r} W^{t_{c_{i, j}}}\right) .
$$

Since b_{r+1} intersects $B_{2 r+2}$ transversely at only one point, we have the relation $b_{r+1}=1$

(a) The loop $A_{i, j}, 1 \leq i<j \leq r$.

(b) The loop $B_{i, j}, 1 \leq i<j \leq r$.

(c) The loop $C_{i, j}, 1 \leq i<j \leq r$

(d) The loop $C_{i, j}, 1 \leq j<i \leq r$.

(e) The loop $C_{i, i}, 1 \leq i \leq r$.

Fig. 13.

(a) The loop $A_{i, r+1}, 1 \leq i \leq r$.

(b) The loop $C_{r+1, i}, 1 \leq i \leq r$.

Fig. 14.
in $\pi_{1}\left(X_{W W^{t_{r+1}}}\right)$ from Proposition 2.2. Hence we have relations $b_{r+2}=1$ and $c_{r+2}=1$ in $\pi_{1}\left(X_{W W^{t_{b_{r+1}}}}\right)$. Then, from Proposition 2.2 and the presentation of $\pi_{1}\left(X_{W}\right)$ in the proof of Proposition 3.1, the fundamental group $\pi_{1}\left(X_{V_{8}}\right)$ is isomorphic to an abelian generated by $a_{1}, b_{1}, \ldots, a_{r}, b_{r}$ and a_{r+1}. We next consider the simple closed curve $R_{i}^{m_{i}}$ on Σ_{n+k+1} as shown in Fig. 15, where $1 \leq i \leq 2 r+1$ and $m_{i} \geq 2$. Note that $R_{i}^{m_{i}}$ intersects $B_{2 r+2}$ transversely at only one point. Loops $R_{i}^{m_{i}}$ can be described in $\pi_{1}\left(\Sigma_{n+k+1}\right)$, up to conjugation, as follows

- $\quad R_{i}^{m_{i}}=a_{i}^{m_{i}}\left(a_{2 r-i+3} b_{2 r-i+3}^{-1} a_{2 r-i+3}^{-1} c_{r+1}^{-1} b_{r+1}^{-1} b_{i}^{-1}\right)$, where $1 \leq i \leq r$,
- $\quad R_{r+i}^{m_{r+i}}=b_{i}^{m_{r+i}}\left(a_{i}^{-1} a_{2 r-i+3}^{-1} c_{r+1}^{-1} b_{r+1}^{-1}\right)$, where $1 \leq i \leq r$,
- $\quad R_{2 r+1}^{m_{2 r+1}}=a_{r+1}^{m_{2 r+1}}\left(b_{r+1}^{-1}\right)$.

Let V_{9} be the following:

$$
V_{9}=V_{8}\left(\prod_{1 \leq i \leq k} W^{t_{R_{i}^{m_{i}}}}\right)
$$

Then, from Proposition 2.2, the fundamental group $\pi_{1}\left(X_{V_{9}}\right)$ is isomorphic to $\mathbb{Z}^{n} \oplus$ $\mathbb{Z}_{m_{1}} \oplus \cdots \oplus \mathbb{Z}_{m_{k}}$. Therefore, if $n+k$ is odd, we have $g\left(\mathbb{Z}^{n} \oplus \mathbb{Z}_{m_{1}} \oplus \cdots \oplus \mathbb{Z}_{m_{k}}\right) \leq n+k+1$.

Moreover, it is immediately follows from Theorem 2.3 (2) or (5) (cf. [8]) that $g\left(\mathbb{Z}^{n} \oplus \mathbb{Z}_{m_{1}} \oplus \cdots \oplus \mathbb{Z}_{m_{k}}\right) \geq(n+k+1) / 2$. Thus, the proof of (6) of Theorem 1.2 is completed.

Fig. 15.

Acknowledgement. The author would like to express thanks to Susumu Hirose and Naoyuki Monden for their valuable suggestions and useful comments.

References

[1] J. Amorós, F. Bogomolov, L. Katzarkov, T. Pantev: Symplectic Lefschetz fibrations with arbitrary fundamental groups, J. Differential Geom. 54 (2000), 489-545.
[2] J.S. Birman and H.M. Hilden: On the mapping class groups of closed surfaces as covering spaces; in Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), Ann. of Math. Studies 66, Princeton Univ. Press, Princeton, NJ, 1971, 81-115.
[3] E. Brieskorn: Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971), 57-61.
[4] S.K. Donaldson: Lefschetz fibrations in symplectic geometry, Doc. Math. 1998, 309-314.
[5] R.E. Gompf: A new construction of symplectic manifolds, Ann. of Math. (2) $\mathbf{1 4 2}$ (1995), 527-595.
[6] R.E. Gompf and A.I. Stipsicz: 4-Manifolds and Kirby Calculus, Graduate Studies in Mathematics 20, Amer. Math. Soc., Providence, RI, 1999.
[7] M. Korkmaz: Noncomplex smooth 4-manifolds with Lefschetz fibrations, Internat. Math. Res. Notices (2001), 115-128.
[8] M. Korkmaz: Lefschetz fibrations and an invariant of finitely presented groups, Internat. Math. Res. Notices (2009), 1547-1572.
[9] W. Magnus: Über Automorphismen von Fundamentalgruppen berandeter Flächen, Math. Ann. 109 (1934), 617-646.

Department of Mathematics
Faculty of Science and Technology
Tokyo University of Science
2641 Yamazaki, Noda
Chiba 278-8510
Japan
Current address:
General Education
Ishikawa National College of Technology
Tsubata, Ishikawa, 929-0392
Japan
e-mail: kobayashi_ryoma@ishikawa-nct.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 57N13; Secondary 57M05.

