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Abstract
We extend an equivariant mountain pass theorem, due to dBarGlapp and
Puppe for compact Lie groups to the setting of infinite dicrgroups satisfying
a maximality condition on their finite subgroups.

Symmetries play a fundamental role in the analysis of aitjwoints and sets of
functionals [2], [20], [12]. The development of equivattiaalgebraic topology, particu-
larly equivariant homotopy theory, has given a number ofstdo conclude the exist-
ence of critical points in problems which are invariant unttee action of a compact
Lie group, as investigated in [11].

In this work we discuss extensions of methods of equivarg@gebraic topology to
the setting of actions of infinite groups. The main resulthi$ hote is the modification of
a result by Bartsch, Clapp and Puppe originally proved ftioas of compact Lie groups,
to infinite discrete groups with appropriate families of ttnsubgroups inside them.

Theorem 1.1 (Mountain pass theorem) Let G be an infinite discrete group act-
ing by bounded linear operators on a real Banach space E ofitefidimension. As-
sume that the action on E is proper outsifleLet ¢: E — R be a G-invariant func-
tional of classC?~. For any value a R, define the sublevel sef = {x € E | ¢(x) <
a} and the critical set K= |,z K¢, Where K is the critical set at level cK¢; = {u |
l¢’(W)|| = 0, ¢(u) = c}. Suppose that
e There exist & R with ¢(0) <a and a linear subspacé C E of finite codimension
such thatEN¢? is the disjoint union of two closed subspacese of which is bounded
and contains0.

e The functionalyp satisfies the orbitwise Palais—Smale conditibB.
e The group G satisfies the maximal finite subgroups conditi@n

Then the equivariant Lusternik—Schnirelmann category of E treta to ¢2,
G-calE, ¢#?) is infinite. If moreoverthe critical sets K are cocompact under the
group action meaning that the quotient spaces\Kx are compact then ¢(K) is
unbounded above.
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Recall that given a natural numbey the classC"~ denotes the class of functions
whose derivatives up to order— 1 exist and are locally Lipschitz.
Condition 1.2 restricts maximal finite subgroups and theinjggacy relations.

CONDITION 1.2. LetG be a discrete group antM.AX" be a subset of finite sub-
groups. G satisfies the maximality condition if
e There exists a prime numbegy such that every nontrivial finite subgroup is con-
tained in a unique maximab-group M € MAX.
e Me MAX — Ng(M) = M, where Ng(M) denotes the normalizer d¥l in G.
Notice that in particular, the finite subgroups @fare all finite p-groups.

These conditions are satisfied in several cases. Among them:
(1) Extensions 1> Z" —- G — K — 1 by a finite p-group given by a representation
K — GI,(Z) acting freely outside from the origin [30], Lemma 6.3.
(2) Fuchsian groups, more generally NEC (non-euclideastalpgraphic groups) for
which the isotropy consists only gf-groups. [30].
(3) One relator groups& = (q; | r) for which the family of finite subgroups consists
of p-groups. See [31], Propositions 5.17, 5.18 and 5.19, in @p.dnd 108.

The orbitwise Palais—Smale condition was formulated byladyhasheras—Quintero
in [6] for complete Riemannian manifolds with a proper actiof a Lie Group. For
our purposes, the following notion is more adequate.

CONDITION 1.3. LetG be a discrete group. Let M be &~ Hilbert manifold
with a G-action by C*~ diffeomorphisms which is proper. Assume thét has aG-
invariant C*~ Riemannian Metric. TheG-invariant functional® of classC?~ satisfies
the orbitwise Palais—Smale condition if given a sequengg C M such that|d(x,)|
is bounded andv®(x,) converges to O, then the sequence of orl@ts, contains a
convergent subsequence in the orbit splteG.

This paper is organized as follows: in the second sectiam,udual facts concern-
ing the relation between critical points, Lusternik—Scllmann category and equivari-
ant deformation theorems are stated, being modified sfighdim [6] and [15].

In the third section, we introduce the notion of universabpgar length related to
a family of subgroups. We use some algebraic properties efctassifying space for
proper actions of groups with an appropriate family of maadirfinite subgroups in
order to conclude the unboundedness of critical values.

This is done in the fourth section adapting a constructioel@ments in the Burnside
ring of a finite group, originally due to Bartsch, Clapp andope [12] to the infinite
group setting, using the Atiyah—Hirzebruch spectral sagagas well as a version of the
Segal conjecture for families of finite groups inside disergroups [23], [7].
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2. Proper Lusternik—Schnirelmann category and critical padnts

The notion of a propeG-space provides an adequate setting for the study of non-
compact transformation groups.

DEFINITION 2.1. LetG be a second countable, Hausdorff locally compact group.
Let X be a second countable, locally Hausdorff space. Recallal@&action is proper
if the map

Gx X —= XxX

Ox
(9, x) = (x, 9%)
is proper.

Ayala—Lasheras—Quintero [6] introduced the notion of wes@nt Lusternik—
Schnirelman category for proper actions of Lie groups, reitey previous work by
Marzantowicz [32] for compact Lie groups.

DEFINITION 2.2. Let X’ C X be paracompact propé&s-spaces. The relative-
category of K, X’), denoted byG-caf X, X’) is the smallest numbét such thatX can
be covered by 4+ 1 openG-subsetsXp, X1, ..., Xk with the following properties:

e X' C Xp and there is a homotoptd : (Xg, X') x | — (Xq, X') starting with the
inclusion andH(x, 1) € X'.

e For everyi € {1,...,k} there existG-mapsc;: Xi — A andgBi: A — Y with A a
G-orbit G/H; such that the restriction of to X; is G-homotopic to the composition
Bioq.

If no such number exists, then we wri@cai X, X') = cc.

The Lusternik—Schnirelman method can be extended to fumals which are in-
variant under proper actions.

Lemma 2.3 (Equivariant deformation) Let G be a discrete group acting properly
on a Hilbert manifold of clas€? . Let ®: X — R be a G-invariantC? -functional
ceKc={xe X|d(x)=0, &(X) =c}. For every c> a, every0 <3§ <c—a and
every G-neighborhood U of Kthere is ane > 0 and a homotopy;: ®°t¢ x| — @
which is the identity ornd® x I.

Proof. The gradient field-V® is locally Lipschitz by assumption. The usual de-
formation method [35] worksG-equivariantly. See [6], Lemma 5.4 in p.1130. [

DEFINITION 2.4. In the situation of Lemma 2.3, we will say that the fuontl
® satisfies the deformation property with respect to neightmads of critical sets.
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Proposition 2.5. Let M be a paracompact Hilber?~-manifold. Assume that the
discrete group G acts properly b§*~ maps on M. Letb: M — R be a G-invariant
C2 -function satisfying the deformation property with respecneighbourhoods of crit-
ical sets. Suppose that satisfies the orbitwise Palais—Smale conditib8.

e If the function is bounded belowhen the number of critical points ob with
values> a in M is at least G-cqtM, ®2).

e If G-ca{M, ®?) is greater than the number of critical values &f above a then
there is at least one & a such that the critical set Khas positive covering dimension.
In particular ® has infinitely many critical orbits with values above a.

e If G-cat(M, K) = oo, then® has an unbounded sequence of critical values.

Proof. The proofs given in [15], Theorem 2.3 and Corollar, ap. 606 and 607,
and [16], Theorem 1.1 extend to the proper setting. The psithat the equivariant
Lusternik—Schnirelmann category for proper spaces sagisfibadditivity, deformation
monotonicity, and continuity (Proposition 2.3 in [6] in tladsolute case, and the obvi-
ous modification extends to the relative category). ]

3. Universal cohomology length

We discuss now cohomology length in the context of equivaréahomology the-
ories. We use for this the notion of a classifying space foamily of subgroups.

DerINITION 3.1. Recall that &-CW complex structure on the paiX({A) con-
sists of a filtration of theG-spaceX = |J_;-, Xn, X_1 =@, Xo = A and for which
every spaceX, is inductively obtained from the previous one by attachirgiscin
pushout diagrams of the form

i S x G/Hi —— Xn_1

I |

LI D" x G/Hi ——— Xi.

We say that a propeG-CW complex is finite if it consists of a finite number of cells
G/H x D".

DEFINITION 3.2. LetG be a discrete group. A metrizable propérSpaceX is
an absolute neighbourhood retract if ev€ymap Z — X from a closed subspace of
a metrizableG-spaceY into X has an equivariant extensidh — X to a G-invariant
neighbourhoodJ of Z in Y.

It is proved in [4], Theorem 1.1 that prop&-ANR are G-homotopy equivalent
to G-CW complexes wher® is a locally compact Hausdorff group.
We recall the notion of the classifying space for a family abgroups.
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DEFINITION 3.3. LetF be a collection of subgroups in a discrete gr@epwhich
is closed under conjugation and intersection. A model fer d¢tassifying space for the
family F is a G-CW complexX satisfying
e All isotropy groups ofX lie in F.

e For any G-CW complexY with isotropy in F, there exists up td-homotopy a
unique G-equivariant mapf: Y — X.

A model for the classifying space of the familfy will be usually denoted b¥ ~(G).

Particularly relevant is the classifying space for propaioms, the classifying space
for the family FZN of finite subgroups, denoted yG.

The classifying space for proper actions always existsnigue up toG-homotopy
and admits several models. The following list includes s@wamples. We remit to
[27] for further discussion.

e If G is a compact group, then the singleton space is a modeE®r

e Let G be a group acting properly and co-compactly on a CAT(0) spacen the
sense of [14]. TherX is a model forEG.

e Let G be a Coxeter group. The Davis complex is a model Egs.

e Let G be a mapping class group of an orientable surface. The Téikdnmrspace
is a model forEG.

The spaces appearing in applications in analysis are natyal®-CW complexes.
They satisfy more often numerability conditions.

DEFINITION 3.4. LetF be family of closed subgroups closed under conjugation
and intersection inside the locally compact second colmtdhausdorff groupG. A G-
spaceX is said to be anF-numerable space if there exists an open covefldg|i €
I} by G-subspaces such that there is for each | a G-map U; — G/G; for some
Gi € F and there is a locally finite partition of unitjeic;} subordinate to{U;} by
G-invariant functions. Notice that we do not require that thatropy groups ofX lie
in F.

The slice theorem (Theorem 2.3.3, in p. 313 of [34]) implieattcompletely regu-
lar spaces carrying proper actions of Lie groups are prigcisemerable spaces with
respect to the family of compact subgroups for which, in @ddj the isotropy groups
of points are all compact subgroups.

Specializing to Lie groups acting properly d&-CW complexes, the conditions
boil down to the fact that all stabilizers are compact, setl,[Zheorem 1.23. In par-
ticular for a cellular action of a discrete gro@ on a G-CW complex, a proper action
reduces to the finiteness of all stabilizer groups. Notieg #ny (continuous) action of
a compact Lie group or a finite group on a locally compact, ldatfé space is proper.

The following version of the classifying space for a familytends the notion to
F-numerable spaces.
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DeriNITION 3.5 (Numerable version for the classifying space of a familyLet
F be a family of subgroups. A modelx(G) for the classifying numerabl&-space
for the family 7 is a G-space which has the following properties:
e Jr(G) is F-numerable.
e For any F-numerable space&X there is up toG-homotopy precisely one map
X = J=(G).

REMARK 3.6. There exists up t&-homotopy a uniqué&-equivariant mafgG —
J=(G). This map is proved to be &-homotopy equivalence for a discrete group in
Theorem 3.7, part ii of [27].

Recall the notion of an equivariant cohomology theory, [26]

DEFINITION 3.7. LetG be a group and fix an associative ring with ult A
G-cohomology theory with values iR-modules is a collection of contravariant func-
tors ¢ indexed by the integer numbe#s from the category of5-CW pairs together
with natural transformations: HL(A) := HL(A, §) — HET(X, A), such that the
following axioms are satisfied:

(i) If foand f; areG-homotopic mapsX, A) — (Y, B) of G-CW pairs, theri{ (fo) =

HE(f1) for all n.

(i) Given a pair X, A) of G-CW complexes, there is a long exact sequence
O e 1(A) L x, A) B g (x)

HG( ) Hn+1(l)

(A) HE (X, A ——
wherei: A— X and j: X — (X, A) are the inclusions.
(iii) Let (X, A) be aG-CW pair and f: A— B be a cellular map. The canonical map
(F, f): (X, A) - (X Ug B, B) induces an isomorphism

HL(X Us B, B) = HL(X, A)

(iv) Let {X; | i € Z} be a family of G-CW-complexes and denote by: Xi — [ [ Xi
the inclusion map. Then the map

HiEIH%(ji): H% <]_[ Xi) — HIGIHG(X)

is bijective for eachn € Z.
A G-Cohomology Theory is said to have a multiplicative struetii there exist natural,
graded commutativeJ-products

HL(X, A) & HI(X, A) — HE™(X, A).
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Let w: H — G be a group homomorphism and be a H-CW complex. The in-
duced space indX, is defined to be th&-CW complex defined as the quotient space
G x X by the right H-action given by ¢, X) - h = (ga(h), h~1x).

An equivariant cohomology theory consists of a family@fcohomology theories
HE together with an induction structure determined by gradeg homomorphisms

HO(indy (X, A)) — HI (X, A)

which are isomorphisms for group homomorphissndHd — G whose kernel acts freely
on X satisfying the following conditions:

(i) For anyn, d]} oind, = ind, 0dg.

(i) For any group homomorphisng: G — K such that kep o o acts freely onX,
one has

iNdyop = H (1 0indg 0indy): A1 (Idgor (X, A)) — H (X, A)

where f1: indg ind, — indg., is the canonicalG-homeomorphism.
(iii) For any n € Z, any g € G, the homomorphism

iNdgg): 661 He(iNd)e): c-a(X, A) = He(X, A)

agrees with the map((f2), where f,: (X, A) — indyg). e sendsx to (1,g71x) and
c(g) is the conjugation isomorphism iG.

REMARK 3.8 (Extensions ofG-cohomology theories to more general spaces).
Let HE be aG-cohomology theory defined on prop€-CW complexes. Using a func-
torial G-CW approximation for prope6-ANR as introduced in [4] for locally compact
Hausdorff groups, an equivariant cohomology theory may Xiengled to the category
of proper G-ANR.

More generally, theCech expansion of [33] provides Gech extension of &-
cohomology theory to arbitrary pairs of prop&rspaces. That is, a family dR-mod
valued functors}vl(”3 defined on pairs of propeG-spaces and natural transformations
8% a: HA(A, 0) > HETH(X, A) satisfying the axioms:

e G-homotopy invariance.
e Long exact sequences f@-pairs.
e Excision. LetXj, X, C X be properG- invariant spaces such that

Xo=XiN X1 =Xpg=0=Xo— X1 N Xy — Xa.

Then, the inclusion mapXy, X1 N X2) — (X1 U X3, X;) induces a natural isomorphism.
e Axioms (i)—(iii) for the induction structure.

For the purposes of this work we need an extension of a spedfiomology the-
ory to a certain propeG-ANR which is contractible after forgetting the action and
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is exhausted by finite&5-CW complexes. This is done by an ad-hoc construction, see
Definition 5.1.

Recall [17], [26], that for any equivariant cohomology theG{* on finite G-CW
complexes there exists a spectral sequence @ftterm given by Bredon cohomology

EYY = HJone) (X, He(G/H))

converging toHg(X).
The following result will be used later:

Proposition 3.9. Let X be an I-dimensional G-CW complex. Suppose that for
r =2, 3,... the differential appearing in the Atiyah—Hirzebruch spatsequence for
X and H§ vanishes rationally. Therfor any element

X € HZ(Z)Or(G)(X1 H2(G/?))

there exists some positive integer k such thiatisxcontained in the image GHOG(X)
under the edge homomorphism

Edges: Ha(X) = Hzone) (X, Ha(G/?)).

Proof. Letx € HQOr(G)(X, H°(G/?)). The proof reduces to construct inductively

positive integersks, ..., k_; such that the producxl_[ir:2 k survives to Ef’fl forr =
1,...,1—1, in the sense that d*(x[T-2k) =0 forr =2,...,1 —1. Sincex € EX°,

we pick ko such thatk,dx(x) = dy(x*2) = 0 (this is possible by the rational vanishing
of the differentials).

Assume inductively that there ate, ..., k-_; and xIT=2k which survive to the
e E%O-term. Choosek, such thatk d%(xIT=2) = 0. This is possible by the rational
vanishing of differentials again.

Now, d2o(xIT-2) = k. doO((xIli=z))(xIT=2)« 1. And sincex!l-> € E®Y for k =

1”2 ki, thel-dimensionality ofX implies xk € E2? and hence it is on the image under

the edge homomorphism. ]

DEerINITION 3.10 (Universal cohomology length relative to a family obgtoups).
Let A = {G/H;} be a collection of orbit spaces representing all homogen&sapaces
with isotropy in some familyF of subgroups ofG. Let M be a module over the
graded ringHE(E#(G)). The H 4-length of the moduleM is the smallest numbek
such that there exist spacds, ..., Ax € A such that for anyy € M and w; in the
kernel of the map

HE(EF(G)) > HL(G/H;)
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given by the up toG-equivariant homotopy unique map/H — Ex(G), one has
ywy---wg = 0.

Given a mapf: X — Y, betweenAd-numerable spaces, tl# 4-length of f is the
H .4 length of the image, considered &&;(Ex(G))-module.

4. Computations in Burnside rings

We specialize now to equivariant stable cohomotopy for eragctions.
We give a quick summary of important facts involving equigat stable co-
homotopy for finite groups.

Theorem 4.1. Let G be a finite group. Then
e The 0-th equivariant cohomotopy group of a pqimg({o}) is isomorphic to the
Burnside ring,denoted by AG), the Grothendieck ring of isomorphism classes of finite
G-sets.
e The Burnside ring £G) is provided with mapspy: A(G) — Z, each one for
every conjugacy class of subgroups in G. These extend tojactiie map AG) —
HHinCCS(G) Z, where ccéG) denotes the set of conjugacy classes of subgroups in G.
e The prime ideals in £G) are given by the setBx , = {X | ¢ (X) = O(P)}, Ph,o=
{x ] pu(X) = 0}, where p is a prime number. The augmentation idealid defined as
the ideal {x | pe(X) = 0}.
e There exists an elemerthe Bartsch element & x € A(G) with the property that
on(X) = 0 for every subgroup H.
e If pis a prime number and G is a finite p-groupen the completion map(&) —
A(G), is injective and the d-adical topology and the p-adical topologies coincide.

Proof. e This is well known. See [37], [38].
e See [38], Chapter Il, Section 8, pp.155-160. The image isacerized by a set
of congruences for the number of generators of cyclic sulggoof theWeyl groups
NH/H for every conjugacy class of subgroupk in G [38], Section 5 Chapter 1V,
p.256. Alternatively, Theorem 1.3 in [21], p. 41.
e This is proven in [21], p.43, [18].
e This is done in [12]. The element is constructed as folloves: K be a proper
subgroup ofG. Putux = [G/K] —|G/K|¥[G/G]. The elementx is defined as the
product of all suchuk, each one for every conjugacy class of subgroup&in
e For a detailed proof see [21]. The first result, Corollaryllid [21], follows from
the fact that in this situation the kernel of the completioapm ), I¢ coincides with
(ker(py), whereU ranges among alp-Sylow groups. The second result follows from
Frobenius reciprocity and an analysis of the congruencéginlg the Burnside ring as
subring inside] [, inccqg) Z, Proposition 1.12 in [21], p.44. O
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Equivariant cohomotopy for proper actions of infinite deter groups on finites-
CW complexes was defined in [25] via finite dimensional equdvd vector bundles
for proper, finiteG-CW complexes. Alternative approaches are given by a aactin
using nonlinear Fredholm cocycles, which allow actions oficompact Lie groups on
finite G-CW complexes [9], as well as a spectra version [8]. Theseomghes are
compared in [7]. For convenience, we give the definition fr{2&]:

DEFINITION 4.2. A G-vector bundle over &-CW-complex X consists of a real
vector bundleé: E — X together with aG-action on E such thaté is equivariant
and eachg € G acts onE and X via vector bundle isomorphisms. L& denote its
fibrewise one-point compactification.

DEFINITION 4.3. Let X be a properG-CW-complex. LetSPHB®(X) be the
category with
e ObSPHBE(X)) = {G-vector bundles oveX}; and
e a morphism from a vector bundie: E — X to vector bundlex: F — X is given
by a bundle mapi: S — S* which covers the identityd: X — X and fiberwise pre-
serves the basepoint. (It is not required thais a fiberwise homotopy equivalence.)

Let R¥ denote the trivial vector bundIX x RX — X.

DEFINITION 4.4. Fixn € Z. Let &, & be two G-vector bundles oveK, and let
ko and k; be two non-negative integers such that+ n > 0 for i = 0, 1. Then two
morphisms

up: STERE , ghieRln
are called equivalent, if there are objegis in SPHB®(X) for i = 0, 1 and iso-

morphisms ofG-vector bundlesy: wo @ & =~ 1 @ & such that the following diagram
in SPHB® commutes up to homotopy

SuoBRY 5 GhodRle 90X guoeRl \ groeRlO™

! !

Gro®E®R O SoBE@ROTKT

! !

S(MGBM Ax SﬁéB]lL‘l idAXul} S/MGB@ Ax §1®Rkﬁn_

DEeFINITION 4.5. For a propelG-CW-complex X define

7&(X) = {equivalence classes of morphismsas abovg.
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By introducing triviality conditions on &-CW pair, (considering morphisms which
are fibrewise constant with the value the point at infinitgigariant cohnomotopy groups
are extended to an equivariant cohomology theory with mplidative structure.

We introduce a Burnside ring for infinite groups, making ofitSegal’'s remark,
part 1 in Theorem 4.1, our definition for finite groups:

DEFINITION 4.6. LetG be a group with a finite model for the classifying space
for proper actionsE(G). The Burnside ring fotG is the 0-th equivariant cohomotopy
ring of the classifying space for proper actions. In symbols

A(G) = nd(E(G)).

Denote byA'™(G) = limycrza- A(H) the inverse limit of the Burnside rings of the
finite subgroups ofs. Notice that this agrees with the 0, 0-entry of tBé-term of the
equivariant Atiyah—Hirzebruch spectral sequence. Thiodhg relations between the
Burnside ring and the inverse-limit Burnside ring are easysequences of the rational
collapse of the Atiyah—Hirzebruch spectral sequence:

Lemma 4.7. Let G be a discrete group admitting a finite model for the dfgiss
ing space for proper actions G.
() The edge Homomorphism &(G) — A™(G) has nilpotent kernel and cokernel.
Its kernel is the nilradical.
(i) The edge homomorphism gives an isomorphism between thé geme ideals in
A(G) and A™(G) (in fact an homeomorphism in the Zariski topolpgy assigning
a prime ideal 1c AI™(H) its inverse image &(1) € A(G).
(iii) The rationalized Burnside ring2(E(G)) ® Q does not contain nilpotent elements.

In the rest of the section we will describe a completion teeorfor families of
p-groups inside finite subgroups of discrete groups, whickthés main computational
tool for the computation of equivariant cohomology lengtieeded for the proof of
Theorem 1.1. This amounts to a generalization of the Segajecture for families
[1]. The result was proved in [7], Theorem 13 in p.58, althowwmilar results have
been proved in [28], [29] and [23], from where the crucialadeand methods come.

Let G be a discrete group an@ be a family of finite subgroups o6, closed
under conjugation and under subgroups. Fix a finite pr&peZW complex X and a
finite dimensional propeG-CW complexZ whose isotropy subgroups lie i#. Let
f: X — Z be aG-map. Regardrl(X) as a module overd(Z).

DEFINITION 4.8. The augmentation ideal with respect to the fardilys defined
as the kernel of the homomorphism

| = lorz = (ng(Z) =] ng(zo)).

HeF
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Proposition 4.9. Let F be a family of finite p-subgroups. Assume that there is
an upper bound for the order of subgroups.m

Let P C w0 ({e}) be a prime ideal.

Then the ideal

I zom e = kermd (o)) = [T 7Ran({e))
KeF

is contained inP if P contains the image of the structure map for H
gt lim g ((e)) = m{((e)):

Proof. Letm be a positive integer number divided by all orders of subgsoin
F. For a given subgrouf in the family, Letu = {ug,...,uy} be a finite set of cardi-
nality m with a free K-action. For exampley may be chosen to be a disjoint union of
m/|K| copies ofK. This gives an injective homomorphism into the symmetriougr
in m letters, p: K — Sy. For a primep, let Syl, be the p-Sylow subgroup ofSy.

Let Sn[p] be the setS, with the freeK -action given byk,s i p(h)(s) and S»/Syl,
be the set with the induced-action. Notice that the fixed point sSh/SyfF; is nonempty
if and only if L is a p-subgroup. This construction is compatible with morphidmes
tween subgroups itF in the sense that an homomorphisth— K’ between groups in
the family induces a map taking the fré&-set S, to the freeK-set S, and the same
for the homogeneous s&,/Syl,.

Consider the elements

{(Sn = [SnIK/K)}ker,
{(Sn/SYl, — [Sn/SyLIK/K)}ker.

Let P be a a prime ideal containing the image of the structure magemgy.
By the structure of the prime ideal spectruf,is of the formP(M, p), where M is
a subgroup ofH and p is a prime number or zero. By assumptidd, contains the
image under the structure map of the elements above. SiNd&, — |Sy|) = |Snl
and oM (Sn/Syl, — Sn/Syk) = 1Sn/SybI™ — |Sw/Syl| and both elements belong to
PZ, becauseSy/Syl, has order prime tq, we conclude that eithep =0 or M is a
p-group.

If M is a p-group, thenP(M, p) = P({e}, p) D P({e}, 0) D I £ 1 (e). If p=0, then
|SM| — |Sn| = 0, and henceM = {e}. For any subgrougK’ of every elementK ¢
FNH, PK’, 0)=P({e},0), sinceK’ is a p-group, henceP contains the intersection
of all such ideals, which i$x p (e} O

Proposition 4.10. Let L be an n-dimensional G-CW complex with isotropy in
the family F consisting of finite p-subgroups inside the discrete group Get
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f: G/H — L be a G-map andP C 7 ({s}) be a prime ideal. Then Any (4 :=
kerml ({e}) = [Tker 72 n({®}) is contained inP if P contains the image of A
under indy g o f*: 72(L) — 7 ({e}).

Proof. LetP be a prime ideal containingr 1 ;. By the previous proposition,
we can assume th& contains the image of the structural meap.

Let ¥ Hpo ) (EX(G), 76(G/?)) — limk 72 ({e}) be the isomorphism given by
assigning to an element € HQOr(G)(Ef(G);n,Q ({e})) the element whose component
under the structural mapyk is the image image under the map induced by tGe (
homotopically) unique mapg: G/K — E£(G), followed by the induction isomorphism

Hzor(e)(E#(G); 73(G/?) —

Hzore)(G/K, 73(G/?)) = Hzor) (e}, mk (K/2)) = e ({e}).
Given an element € limk | 7k (o), denote byx its image unders . By Propos-
ition 3.9, there exist a positive integér and an elemeny € 72(Ex(G)) such that
edgdy) = xK, which is furthermore an element of ¢ | .

The structure magby : lim 72 ({e}) — 7 ({e}) mapsak to P. BecauseP is a
prime ideal, the map indf* mapsa to P. ]

Theorem 4.11(Segal conjecture for families of finitp-subgroups) Let G be a
discrete group andF be a family of subgroups of order p of G closed under conju-
gation and subgroups. Fix a finite proper G-CW complex X ancdhiefidimensional
proper G-CW complex Z whose isotropy subgroups ligFirand have bounded order.
Let f: X — Z be a G-map. Regara2(X) as a module overr2(Z) and set

| = lp, = ker(ng(Z) = ng(z°)>
HeF
then

WL m (7@ - 7E(X)) — {7E(EF(G) x X))
is an isomorphism of pro-groups. Alsthe inverse system
{rG((Ex(G) x X)")}n=1
satisfies the Mittag-Leffler condition. In particular
lim* 78 ((Ex(G) x X)") = 0

and Ax r ¢ induces an isomorphism

78(X)1 = 72(Ex(G) x X) = lim 72((E£(G) x X)").
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Proof. Since both functors have Mayer-Vietoris sequencet) bf the systems
satisfy the Mittag-Leffler condition and in view of the 5-leranfior pro-modules, [5],
Section 2, an inductive argument can be used to reduce theprao the situation of
X = G/H, and whereH is a finite group.

In this case, there exists a commutative diagram

”G(Z) SN ng(G/H)

l |

AH) ——=— 73 ((*)).
Hence, the map of pro-modules
AL rp (mEO)N" - 7E(X)} — {2E(EF(G) x X))
factorizes as follows

ng(G/H)/I" - 7g(G/H)} ——— {7 {({e})/I"}

I !

(EJ-'(G) x G/H" l)} = {nH({.})/I]:ﬂH H,{ }}

Where J is the ideal generated by the image lofunder indo f* and the lower
horizontal map is an isomorphism due to the completion #mofor families inside
finite groups of [1], the right vertical map is induced By Due to Proposition 4.10,
the prime ideals containing and | znn n.; agree and the right vertical map is an
isomorphism. 0

Corollary 4.12. Let p be a prime number. For any group satisfying conditions
1.2 for which the maximal finite subgroups are finite p-grouhe groupSng(EG) ®
Zp and ng(EG);, ., are isomorphic.

Proof. The morphism of pro-grougg&(X)/p"ng(X)} = {n@(Xx EMAX)"1)}
is proved to be an isomorphism fot = G/H with H a p-group. The prime ideals in
nﬂ({o}) containing |l praxnn,H,(e; and the one generated by the imagel 9f4x,c.c/H
under indo f* agree by the previous argument. Becalikds a p-group, these agree
with the ones containingi;».c,c/1 for the trivial family. Due to part 5 of Theorem 4.1,
these agree with the ones containipg

Since both functors have Mayer-Vietoris sequences, thdt fedlows by induction
on the dimension oiX. O

Proposition 4.13. Let G be a discrete group satisfying conditioh2.
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There exists & Generalized Bartsch eleméntw € 7(EG) for which the map

. v .
78(EG) = Hpore)(EG, 73({#}) = limcsune) g (o)) —% 79 ({e}) given by the com-
position of the edge homomorphism and the structural magHerinverse limit maps
w to a power of the element constructedTiheorem 4.1for any maximal subgroup M.

Proof. LetXy, € n,?,,i ({e}) be the Bartsch element constructed in Theorem 4.1,
part 4. Putx = {Xm } € limy n,?l({o}). Choose an element and a powelk such that
w is mapped tox® under the edge homomorphism. ]

5. End of the proof

DEFINITION 5.1. Let X be a proper and paracompa@tANR, which is con-
tractible after forgetting the group action. Assume thatréhis a mapX — X from a
proper G-CW complex of finite typeX = [ J X, inducing a weakG-homotopy equiva-
lence (a map restricting to weak homotopy equivaleng&s— XH for all subgroups
H). Define

#E(X) = lim 7¢(Xn) ® Qp.

Proposition 5.2. Let G be a discrete group satisfyifgondition 1.2 Let X be
a paracompact proper G-ANRvhich is contractible after forgetting the group action.
Assume that there is a map % X from a proper G-CW complex of finite type =X
U X, inducing a weak G-homotopy equivalence.

The maps X — EG together with the G-homotopy equivalenc& E> Jrz(G)
induce isomorphisms

#2(Irzn(G)) > AYUEG) S lim 73(Xn).

Proof. The point is the existence of long exact sequencethéofunctorz (X, A),
which is guaranteed by the natural equivalence with thevegiaint cohomology theory
defined by K, A) = 7T ((Ermax(G), 8) x (X, A)) on finite G-CW pairs. O

Proposition 5.3. Let G be a group satisfying conditioris2. Let X be a proper
G-ANR as inDefinition 5.1 Then there exists an element € 72(EG) ® Q such that
e wekernd(EG)®Q — 72(G/H)® Q for all finite H.

o wekernd(EG)®Q — 72(Xo) ® Q.
e For every k> 0 there exists an - 0 such that the image % under73(EG) —
7d(Xn) ® Qp is not zero.

Proof. Letv e 7d(EG) ® Q = MycmaxrA(H) ® Q be the image of the element
constructed in Proposition 4.13 under the rationalizedeedgmomorphism.
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Let m = G-cat(Xp) and putw = v™. As in [12], the following diagram commutes:

72(EG) ® Qp limn 72 (Xn) ® Qp
ng(EG)]fg,MAX ®Q — 7g(EG) - 76(X)

as the left and right vertical maps are isomorphisms, antethee no nilpotent elem-
ents in the rationalized Burnside ring2(EG) ® Q, there are no nilpotent elements
in 72(EG) ® Qp, and so there exists a natural numisesuch that the third condi-
tion holds. O

Let E C E be aG-invariant linear subspace with a finite dimensior@tjnvariant
complementF, satisfying the mountain pass condition 1 in Theorem 1.1. dfoyr finite
dimensional subspacg, the sumF = Fy @ F satisfies

F — B/ (F) C ¢2.
Lemma 5.4. There is a G-map f such that the diagram

(F, F=B(F)) —— (E—{0}, 9%

[,

(F, F - S(Fo® F) —— (E — (0}, S(E))
commuteswhere g and j¢ are given by inclusions.

Proof. Compare Lemma 5.2 in [16]. Define a mép E — E by sending the
bounded closed subspadein Theorem 1.1 to 0, mapping N ¢? into E — B, (E) and
extending to all ofE, sinceE is a proper,G-absolute retract, Theorem 3.9 in p.1953
of [3]. O

The same argument as in Proposition 5.3, [16], p. 17 yields:
Proposition 5.5. For any equivariant cohomology theor§,
G-calE, ¢?) > 1 lenght&(Fo & F) — S(Fo ® E, S(Fo)).

We now finish the proof of Theorem 1.1. This follows the proéfooposition 3.2
in [12].

Proposition 5.6.
G-caf(E, ¢?) = oo.
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Proof. LetF, be an increasing sequence of finite dimensional lig@aubspaces
of E such thatF = U Fn is infinite dimensional. as in [12], th&}, -length of the
inclusion

S(Fo ® Fn) = S(Fo ® E, S(Fo))

becomes arbitrarily large astends to infinity.

The properG-ANR S(E) satisfies the hypothesis of Proposition 5.2.

Hence, there is an element € ng(ge) satisfying conditions 1 to 3 in Propos-
ition 5.2. letv and v, be the images ofv along the homomorphism induced by the
universal maps(Fo ® E) — EG, respectivelyS(Fo & F,) — EG. Since the diagram

7(S(Fo ® Fn)) - 72(S(Fo ® E), S(Fo))

m(S(Fo ® E)

commutes up to homotopy, € im(j;;), and Proposition 5.2 yields that for akythere
is ann with 7%, —lenghtj, > k. [

6. Concluding remarks

Paraphrasing Willem, [39], p.3 minimax-type theorems Uguzonsist of different

parts:

e Deformation lemma using some (pseudo)-gradient vectad.fiel

e Construction of Palais—Smale typical sequences, whickerge either due to some
a priori compactness condition, or which give critical points usiaglitionala posteriori
information, typicallytopological intersection propertiesike the intermediate value the-
orem, the Borsuk—Ulam theorem, degree notions, etc.

In this work, the proof given by Bartsch—Clapp Puppe was ssthpsing a Borsuk—
Ulam-type theorem, which may be deduced from PropositioBsabd 5.3. The prob-
lem of classifying the groups satisfying equivariant Bérsulam-type theorems has de-
served particular attention [10], [22], among others.

Let G be a discrete, linear group which acts properly and lineanfinite dimen-
sional representation spher8%. Define the Borsuk—Ulam functiobg(n) as the max-
imal natural numbek such that if there exists &-map S — SV where dimV > n,
then dimW > k

ProBLEM 6.1. Classify all linear, discrete groups satisfying
lim bg(n) = oo
n—o00

as in [10], [22], and in this work, Condition 1.2, the answhougld involve restrictions
for the number of primes dividing the cardinality of the impy groups.
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REMARK 6.2 (Topological noncompact groups of symmetry). In the texin of

Hamiltonian systems, some proper actions of non-compaet drbups appear [36].
Equivariant cohomotopy theory has been extended in [7],f¢®]these class of sym-
metries. The use of equivariant algebraic topology, paldity equivariant cohomotopy
may be useful. However, in this context, the Segal conjec{which was the main
homotopy theoretical input of Theorem 1.1, crucially in greof of the Borsuk—Ulam-
type result) is not true, as it is not even true for compact drieups, see [19], [13].

REMARK 6.3 (Equivariant degree notions for infinite discrete gsjup In [7], an

equivariant degree notion for proper actions of discretaugris defined. This assigns
to a quadruple &, F, T, c) consisting of locally trivialG-Hilbert bundles over a proper,
cocompactG-CW complex, a fibrewise Fredholm operafbrand a fibrewise compact
nonlinearity satisfying the property that the mép+c,: Ex — Fx defined on the fibers
Ex, Fx over each poini is proper, an element in the equivariant cohomotagyX),
as introduced in Definition 4.3.
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