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Abstract
We introduce a method which can be used to study maximal inequalities for

martingales of bounded mean oscillation. As an application, we establish sharp8-
inequalities and tail inequalities for the one-sided maximal function of a BMO mar-
tingale. The results can be regarded as BMO counterparts of the classical maximal
estimates of Doob.

1. Introduction

Martingales of bounded mean oscillation form an important subclass of uniformly
integrable martingales, which plays a role in the study ofHp spaces, for instance via
Fefferman’s duality theorem, the inequalities of John and Nirenberg or the integrability
properties of the corresponding exponential local martingales. Essentially, the theory
is parallel to that of the BMO functions defined onRn, but the passage to the prob-
abilistic setting reveals some additional structure and enables further applications, for
example, in financial mathematics (see e.g. [1], [3] or [5]).

We start the exposition from recalling the necessary analytic background. A real-
valued locally integrable functionf defined onRn is said to be in BMO, the space of
functions of bounded mean oscillation, if

sup
Q

1

jQj

Z

Q

�

�

�

�

f (x) �
1

jQj

Z

Q
f (y) dy

�

�

�

�

dx <1,

where the supremum is taken over all cubesQ in R

n. This definition is due to John
and Nirenberg [8], who also established some fundamental estimates for such functions,
and the celebrated result of Fefferman [4] identified the class BMO as the dual to the
Hardy spaceH1. In this paper we will study the probabilistic counterpart of this no-
tion, introduced by Getoor and Sharpe [7]. Suppose that (�,F ,P ) is a complete prob-
ability space, equipped with a filtration (Ft )t�0, a nondecreasing family of sub-� -fields
of F , with F0 D {;, �}. Let X D (Xt )t�0 be an adapted, continuous-path real valued
martingale, satisfyingX0� 0. Following [7], for 1� p<1, the martingaleX belongs
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to BMOp if it is uniformly integrable and

kXkBMOp D sup
�

kE[jX
1

� X
�

j

p
j F

�

]1=p
k

1

<1,

where the supremum is taken over all stopping times� . It turns out that all the norms
k � kBMOp are comparable and hence all the classes BMOp coincide. Thus we are al-
lowed to skip the lower index and just write BMO; furthermore,it will be convenient
for us to work with the normk � kBMO2, and will use the shortened notationk � kBMO

for it.
The BMO martingales have very strong integrability properties (for an overview,

see e.g. the book by Kazamaki [9]). In particular, the inclusion BMO � Hp holds
true for any 1� p < 1; in fact we have the exponential boundE exp(cjX

1

j) < 1
for somec > 0 depending on the BMO norm ofX; see e.g. Getoor and Sharpe [7],
Garsia [6] and P.A. Meyer [11]. The question about sharp versions of such estimates
(in the analytic setting) has gathered recently some interest in the literature: see Ko-
renovskĭı [10], Slavin and Vasyunin [13], Vasyunin [14] and Vasyuninand Volberg
[15]. The purpose of this paper is to study the problem of thistype, but concerning
X�

D supt�0 Xt , the one-sided maximal function ofX. We propose a novel method
which can be used to establish general sharp estimates involving X and X� in the
BMO setting. The technique rests on finding a certain appropriate special function,
having some convex-type and majorizing properties, and canbe regarded as a version
of a well-known Burkholder’s method (for the description ofthe latter, see e.g. [2] or
[12]). The technique will be applied to establish the following sharp8-estimate.

Theorem 1.1. Suppose that8 is a convex and increasing function on[0,1) and
X is a uniformly integrable martingale. Then

(1.1) E8(X�) �
Z

1

0
8(tkXkBMO)e�t dt .

The constant on the right is the best possible; more precisely, there is a martingale X
with 0< kXkBMO <1 for which both sides are equal.

In particular, if we take8(t) D t p, p � 1, we obtain the sharp estimate

kX�

kp � (0(pC 1))1=p
kXkBMO,

which can be regarded as a BMO version of the Doob’s maximal inequality.
Our next result concerns the following bound for the tail ofX�.
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Theorem 1.2. Suppose that X is a uniformly integrable martingale. Then for any
� > 0 we have

(1.2) P (X�

� �) �

8

<

:

1� �=(2kXkBMO) if � � kXkBMO,
1

2
exp(1� �kXk�1

BMO) if � > kXkBMO.

The bound is the best possible: for each� > 0 there is a martingale X such that0<
kXkBMO <1, for which both sides are equal.

The above result leads to the following sharp weak-type (p, p) estimate. Forp� 1,
let kX�

kp,1 D sup
�>0[�p

P (X�

� �)]1=p denote the weakp-th norm of X�. Multiplying
both sides of (1.2) by�p and optimizing over�, we get

Corollary 1.3. For any 1� p <1 we have

(1.3) kX�

kp,1 � 2�1=p p exp(p�1
� 1)kXkBMO

and the constant2�1=p p exp(p�1
� 1) is the best possible for each p.

The paper is organized as follows. The next section is devoted to the description
of the method which will be used in the proofs of Theorems 1.1 and 1.2. These two
theorems are established in Sections 3 and 4.

2. A method of proof

This section contains the detailed description of the methodology which will be
used to establish the results aforementioned in the introduction. In general, all the prob-
lems studied in this paper can be stated as follows. Assume that c is a fixed real num-
ber, let V W R � [0,1)! R be a given Borel function and suppose we are interested
in proving the maximal estimate

(2.1) EV(X
1

, X�) � c

for all uniformly integrable martingalesX satisfying kXkBMO � 1. For example,
the choice

V(x, z) D 8(z) and cD
Z

1

0
8(t)e�t dt

corresponds to the inequality (1.1). To handle (2.1), it is convenient to interpret a mar-
tingale X with kXkBMO � 1 as an appropriate two-dimensional martingale. To be more
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precise, consider the set

(2.2) D D {(x, y) 2 R � [0,1) W 0� y � x2
� 1}

and its interior

Do
D {(x, y) 2 R � [0,1) W 0< y � x2

< 1}.

Next, introduce the martingaleY by the formulaYt D E(X2
1

j Ft ), t � 0. Then, by
conditional Jensen’s inequality, we haveYt � X2

t almost surely; in addition,

Yt � X2
t D E[jX

1

� Xt j
2
j Ft ] � kXk

2
BMO � 1.

Thus, the pair (X,Y) is a two-dimensional martingale with uniformly integrable coordi-
nates, taking values inD and terminating at the lower boundary ofD: Y

1

D X2
1

with
probability 1. In fact, this correspondence can be reversed: for any such pair (X, Y),
we haveYt D E(Y

1

j Ft ) D E(X2
1

j Ft ) for all t and hence the martingaleX satisfies
kXkBMO � 1.

The underlying concept of our approach is to find a special functionUW D�[0,1)!
R which majorizesV at the lower boundary ofD (that is,V(x, z) � U (x, x2, z) for all
x, z) and such that for allX,

(2.3) EU (X
1

, Y
1

, X�) � c.

Obviously, the existence of such a function immediately yields the desired estimate
(2.1). To guarantee (2.3), we will impose some conditions onU which will imply
that the process (U (Xt , Yt , X�

t ))t�0 is a supermartingale such thatU (X0, Y0, X�

0) � c
almost surely (hereX�

t D sup0�s�t Xs is the truncated one-sided maximal function of
X). We turn to the precise formulation. Introduce the classU (V), which consists of
all functionsU W D � [0,1)! R, satisfying the following conditions:

U (0, y, 0)� c for all y 2 [0, 1],(2.4)

U (x, x2, z) � V(x, z) for all x 2 R, z� 0,(2.5)

U is continuous onD � [0,1) and of classC2 on Do
� (0,1),(2.6)

Uz(x, y, x) � 0 for all x > 0 and y 2 (x2, x2
C 1),(2.7)

and the further property that for all (x, y, z) 2 Do
� (0,1),

(2.8) the matrix

�

Uxx(x, y, z) Uxy(x, y, z)
Uxy(x, y, z) Uyy(x, y, z)

�

is nonpositive-definite.

The following statement is the key to handle the supermartingale property of
(U (Xt , Yt , X�

t ))t�0.
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Lemma 2.1. Suppose that a function UW D� [0,1)! R satisfies(2.6), (2.7)and
(2.8). Let X be a uniformly martingale withkXkBMO < 1 and let � , � be two stopping
times such that� � � almost surely. Then there is a sequence(�n)n�0 of stopping times
which starts from� and increases to� almost surely, such that

(2.9) E[U (X
�n , Y

�n , X�

�n
) �U (X

�

, Y
�

, X�

�

)] � 0, n � 0

(here and in what follows, Yt D E(X2
1

j Ft ), t � 0).

Proof. Introduce the processZ D (X, Y, X�). Observe that we have the strict
inequality Yt � X2

t � kXk
2
BMO < 1 and that the process (X, Y) terminates at the lower

boundary ofD. Thus, by (2.6), we may apply Itô’s formula to obtain

(2.10) U (Zt_� ) �U (Z
�

) D I1C
1

2
I2C I3,

where I1 D I2 D I3 D 0 on {� D 1} and, on the compliment of this set,

I1 D

Z t_�

�

Ux(Zs) dXsC

Z t_�

�

Uy(Zs) dYs,

I2 D

Z t_�

�

Uxx(Zs) d[X, X]sC 2
Z t_�

�

Uxy(Zs) d[X, Y]sC

Z t_�

�

Uyy(Zs) d[Y, Y]s,

I3 D

Z t_�

�

Uz(Zs) dX�

s .

First note thatI3 � 0: the measure dX� is concentrated on{sW Xs D X�

s }, and on this
set we haveUz(Zs) � 0, in view of (2.7). Next, we will prove thatI2 � 0, by showing
that the process

(2.11)

�

Z t

0
Uxx(Zs) d[X, X]sC 2

Z t

0
Uxy(Zs) d[X, Y]sC

Z t

0
Uyy(Zs) d[Y, Y]s

�

t�0

is nondecreasing. To do this, note that (2.8) implies

(2.12) Uxx(Zs)h
2
C 2Uxy(Zs)hkCUyy(Zs)k

2
� 0

for any h, k 2 R. Fix positive numberss, u such thats< u. For any j , let (t ( j )
n )

k j

nD0 be

a nondecreasing sequence witht ( j )
0 D s and t ( j )

k j
D u, such that limj!1

sup0<n�k j
jt ( j )

n �

t ( j )
n�1j D 0. Apply (2.12) toh D Xt ( j )

n
� Xt ( j )

n�1
, k D Yt ( j )

n
�Yt ( j )

n�1
, n D 1, 2,: : : , k j , sum the

obtained inequalities and letj !1. As the result, we get that

Uxx(Zs)[X, X]u
s C 2Uxy(Zs)[X, Y]u

s CUyy(Zs)[Y, Y]u
s � 0,
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where we have used the notation [X,Y]u
s D [X,Y]u�[X,Y]s. This implies the monotonic-

ity property of the process (2.11), by a simple approximation of the integrals by discrete
sums, and henceI2 � 0. Next, by the properties of stochastic integrals, the process

�

Z t

0
Ux(Zs) dXsC

Z t

0
Uy(Zs) dYs

�

t�0

is a local martingale. Let (�n)n�1 be the corresponding localizing sequence and define

�n D (� ^ �n ^ inf{t W jXt j � n} ^ n) _ � , n � 0.

Then (�n)n�0 is a nondecreasing sequence of finite stopping times which satisfies �0 D

� and which converges almost surely to� . Furthermore, by the martingale property,

E

�

Z

�n

�

Ux(Zs) dXsC

Z

�n

�

Uy(Zs) dYs F
�

�

1{�<1} D 0.

Thus, plugging�n in the place oft in (2.10) and integrating both sides gives

E[U (Z
�n ) �U (Z

�

)] � 0,

which is precisely the claim.

The above lemma leads to the following solution of the problem formulated at the
beginning of this section. Suppose thatU 2 U (V) and fix a martingaleX satisfying
kXkBMO � 1 and X0 � 0. Take a number� 2 (0, 1) and consider a martingale�X,
which has the BMO norm strictly smaller than 1. An applicationof Lemma 2.1 with
� � 1 and � � 0 yields

EU (�X
�n , �

2Y
�n , �X�

�n
) � EU (�X0, �2Y0, �X�

0) D U (0, �2
EX2

1

, 0),

for an appropriate sequence (�n)n�1 of stopping times. By (2.4), the right-hand side
can be bounded from above byc. Now if we can only justify the passage with
n to infinity and � ! 1 (for example, ifU is nonnegative, or the random variable
supn sup

�2(0,1)jU (�X
�n , �

2Y
�n , �X�

�n
)j is integrable), we get

EU (X
1

, Y
1

, X�

1

) � c.

However, Y
1

D X2
1

almost surely; thus, by (2.5), we obtain the desired bound (2.1)
and we are done.

3. Proof of Theorem 1.1

3.1. Proof of (1.1). By homogeneity, it suffices to prove the estimate under the
additional assumptionkXkBMO D 1 (indeed, having this done, we recover (1.1) in full
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generality by considering the martingaleX=kXkBMO and the functiont 7!8(tkXkBMO)).
Furthermore, by a standard approximation, we may and do assume that8 is of classC2.
As we have already observed above, we need to take

V(x, z) D 8(z) and cD
Z

1

0
8(t)e�t dt .

The corresponding special functionU W D � [0,1)! R is defined by the formula

U (x, y, z) D 8(z)C
y � x2

C (z� x � 1)2

2

Z

1

z
8

0(t)ez�t dt .

(Some steps which lead to the discovery ofU are sketched in Subsection 3.3 below).
Let us verify the conditions (2.4)–(2.8). The first propertyfollows easily from the in-
tegration by parts and the next two are evident. To check (2.7), we derive that for
x > 0,

Uz(x, y, x) D
y � x2

� 1

2

�

Z

1

z
8

0(t)ez�t dt �80(z)

�

.

It suffices to note that (y�x2
�1)=2� 0, by the definition ofD, and that the expression

in the square brackets is nonnegative: indeed, since8

0 is nondecreasing, we have

Z

1

z
8

0(t)ez�t dt �
Z

1

z
8

0(z)ez�t dt D 80(z).

Finally, the condition (2.8) is trivial, since all the entries of the corresponding matrix
vanish. Consequently,U belongs to the classU (V); in addition, U is nonnegative, so
the reasoning presented at the end of the previous section yields the claim.

3.2. Sharpness. Now we exhibit an appropriate example for which both sides
of (1.1) are equal. Suppose thatB D (Bt )t�0 is a standard, one-dimensional Brownian
motion starting from the origin and let

� D inf{t W B�

t � Bt D 1}

be the first timeB experiences the drop of size 1. DefineX D (B
�^t )t�0. We have

B�

�^t�B
�^t � 1 and by Itô’s formula, the process ((B�

t )2
�2Bt B�

t )t�0 is a martingale, so

EB2
�^t D E(B�

�^t � B
�^t )

2
� E[(B�

�^t )
2
� 2B

�^t B
�

�^t ] � 1.

In consequence,X is a uniformly integrable,L2-bounded martingale. Furthermore, for
any stopping time� ,

(3.1)
Y
�

D E(X2
1

j F
�

) D E[(B�

�

� B
�

)2
j F

�

] � E[(B�

�

)2
� 2B

�

B�

�

j F
�

]

D 1C X2
�

� (X�

�

� X
�

)2,
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which implies thatkXkBMO � 1. Next, observe that for any� > 0 the process ((B�

t �

Bt C �
�1) exp(��B�

t ))t�0 is a martingale: this follows immediately from Itô’s formula.
Therefore, we have

E[(X�

t � Xt C �
�1) exp(��X�

t )] D ��1,

and since 0� X�

t � Xt � 1, we may lett !1 and use Lebesgue’s dominated conver-
gence theorem to getE exp(��X�

1

) D (�C 1)�1. Consequently,

(3.2) X�

1

follows the exponential law of parameter 1

and hence

E8(X�) D
Z

1

0
8(t)e�t dt ,

so the inequality (1.1) is sharp.

3.3. On the search of the suitable majorant. Let us now describe the infor-
mal reasoning which leads to the special function used above(and the optimal constant
R

1

0 8(t)e�t dt). This function needs to satisfy the conditions (2.4)–(2.8); four of these
conditions are inequalities. SinceU is supposed to yield sharp results, it seems rea-
sonable to expect that it will actually produce equalities in (some of) these conditions.
Thus, at least at the very beginning, let us try to findU for which (2.5) and (2.7) hold
with equality sign, and such that

det

�

Uxx(x, y, z) Uxy(x, y, z)
Uxy(x, y, z) Uyy(x, y, z)

�

D 0

for all (x, y, z) 2 Do
� (0,1). The latter condition means, roughly speaking, that if we

fix z> 0, then for any (x,y) 2D, x � z, there is a line segment contained inD, passing
through (x, y), along whichU ( � , � , z) is linear. This further suggests (compare this to
the analogous situation occurring in the papers [13], [14] and [15]) that the whole set
{(x, y) 2 D W x � z} can be “foliated”, i.e., split into the union of line segments along
which U ( � , � , z) is linear. It is not difficult to guess the foliation, at least for a part
of the set (here a look at the papers [13], [14] and [15] is really helpful, as a similar
splitting appears there). Namely, fix an arbitraryx � z and consider the line segment
Ix passing through the points (x � 1, (x � 1)2) and (x, x2

C 1). It is easy to check that
this line segment is tangent to the upper boundary{(x, y) W y D x2

C 1} of the setD
and the collection{Ix W x � z} splits the set{(x, y) 2 D W y � 2zxC 1� z2}. So, let us
assumethat U is linear along eachIx. Then for any� 2 [0, 1], and anyx � z,

(3.3)
U (�(x � 1)C (1� �)x, �(x � 1)2C (1� �)(x2

C 1), z)

D �U (x � 1, (x � 1)2, z)C (1� �)U (x, x2
C 1, z).
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But we have assumed above that both sides of (2.5) are equal. This implies U (x �
1, (x�1)2, z) D 8(z) and hence, if we substitute9z(x) D U (x, x2

C1,z) and carry out
some straightforward computations, we obtain

(3.4) U (x, y, z) D
p

x2
� yC 18(z)C (1�

p

x2
� yC 1)9z(x C

p

x2
� yC 1)

for any (x, y) 2 D, y � 2zxC1�z2. To find9z, let us go back to the equation (3.3). A
nice feature of the foliation we chose is that any segmentIx, x < z, can be lengthened
a little bit “to the right” and it is still contained inD. Thus, looking at the property
(2.6), it is natural to suspect that for anyx < z, (3.3) can be extended to some negative
values of� (in the sense that the difference of the left- and the right-hand sides should
be of ordero(�) as �! 0). So, take� < 0, write this difference, divide by� and let
� ! 0. The result must be zero; using the formula (3.4), we obtainthe differential
equation9 0

z(x) D 9z(x) �8(z), and hence

9z(x) D K (z)ex
C8(z),

for some functionK to be found. Now it is high time to apply (2.7) (recall that we
have assumed that equality holds here). Differentiating (3.4) with respect to the vari-
able z at the point (z, z2

C 1, z), we obtain80(z) C K 0(z)ez
D 0. Hence K (z) D

R

1

z 8

0(t)e�t dt C � for some constant� and, coming back to (3.4), we see that

U (x, y, z) D 8(z)C (1�
p

x2
� yC 1)

�

Z

1

z
8

0(t)e�t dt C �

�

exC
p

x2
�yC1.

With a lack of a better idea, let us take� D 0 in the above formula. Then

(3.5) U (x, y, z) D 8(z)C (1�
p

x2
� yC 1)

Z

1

z
8

0(t)exC
p

x2
�yC1�t dt

for (x, y) 2 D, y � 2zxC 1� z2. In particular,

U (0, 1, 0)D 8(z)C
Z

1

0
8

0(t)e�t dt D
Z

1

0
8(t)e�t dt ,

which gives us the hint about the best constant. What about the remaining part of the
domain? One can, of course, proceed as above and try to find an appropriate foliation.
This can be done, but the expression we get is different from that above and the func-
tion is not of classC2. Thus, in order to use of Lemma 2.1, one has to apply some
mollification to ensure the necessary regularity, and this results in a significant com-
plication of technicalities (we will encounter some of these below, in the proof of the
tail bound (1.2)). Fortunately, there is a different solution to the above problem. The
key fact is that in general, the special function needed to establish a given inequality
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is not unique, and hence we have some freedom with choosing one. Recall that we
have imposedthe equalities in (2.5) and (2.7), while we need only inequalities. This
leads to the following natural idea: let us extendU to the whole domain with the use
of the formula (3.5) and verify whether all the conditions are met; if so, we will be
done. Unfortunately, the condition (2.7) does not hold trueand hence we need some
modification ofU . How should we proceed?

Some indications can be found in Subsection 3.2 above (a similar phenomenon
occurs in the analytic Bellman setting: the knowledge aboutthe (candidates for) the
extremals can be very helpful in the search for the special function). Again, we stress
that the arguments presented here are informal; they only serve as an intuition in the
construction ofU . The triple (X,Y, X�) considered in Subsection 3.2 evolves along the
set {(x, y, z)W y D 2zxC 1� z2}: see (3.1). In addition, it follows from the above con-
struction thatU (X, Y, X�) is a martingale (roughly speaking, all the inequalities which
imply the supermartingale property hold with equality sign) starting from

R

1

0 8(t)e�t dt .

Thus, we have the following important observation. Supposethat QU is another spe-
cial function which leads to the8-estimate with the constant

R

1

0 8(t)e�t dt ; hence,

in particular, QU (0, 1, 0)�
R

1

0 8(t)e�t dt . Then QU should coincide withU on the set

{(x, y, z)W y D 2zxC1� z2}. Otherwise, the martingale property ofQU (X, Y, X�) would
not hold (only thesupermartingaleproperty would be valid) and this would violate the
optimality of the constant. Indeed, an application of the method from Section 2 would
lead to thestrict inequalityE8(X�) <

R

1

0 8(t)e�t dt , a contradiction. Now, if we take
a look at the aboveU , we see that ify D 2zxC 1� z2, then

U (x, y, z) D 8(z)C (1� zC x)
Z

1

z
8

0(t)ez�t dt .

So, a natural idea is to considerU given by the above formula forall (x, y, z). Un-
fortunately, this still does not work: this time the condition (2.5) is not valid (when
z > 1C x and y D x2, the above expression is smaller than8(z)). So, let us try to
replace the term 1� zC x by some other expression, possibly involvingy too. This
unknown term must be nonnegative ify D x2 (because of (2.5)), and equal to 0 for
zD xC1 (since it coincides with 1� zC x on the setyD 2zxC1� z2). This strongly
suggests to consider the expressionA � (y� x2)C B � (z� x � 1)2 for some positiveA,
B. Then we must have

A(y � x2)C B(z� x � 1)2 D 1� zC x

for yD 2zxC1�z2; one easily checks that this is satisfied if and only ifAD BD 1=2.
Then we get exactly the function studied in Subsection 3.1.
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4. Proof of Theorem 1.2

4.1. Proof of (1.2). Here the reasoning will be slightly more complicated. As
previously, it suffices to establish the estimate only forX which have BMO norm smaller
than 1, due to homogeneity reasons. TakeV(x, z) D 1{z��} and

cD

�

1� �=2 for � � 1,
exp(1� �)=2 for � > 1.

To define the corresponding special function, consider the following sets:

D1 D {(x, y) 2 D W x � �},

D2 D {(x, y) 2 D W � � 1< x < �, y > 2� � 2x � �2
C 2�x},

D3 D {(x, y) 2 D W y � 2� � 2x � �2
C 2�x},

D4 D {(x, y) 2 D W x < � � 1, y > 2� � 2x � �2
C 2�x},

see Fig. 1 below.
The special functionU D U

�

W D � [0,1)! R is given by

U (x, y, z)D

8

�

�

�

�

�

<

�

�

�

�

�

:

1 if z� � or (x, y)2 D1,
1� (��x)=2 if z<�, (x, y)2 D2,
(y�x2)=(y�2�xC�2) if z<�, (x, y)2 D3,

1�
p

1� yCx2

2
exp(xC

p

1� yCx2
C1��) if z<�, (x, y)2 D4.

This function is constructed with the use of a similar reasoning to that in Sub-
section 3.3. Consult also the papers [14], [15] and the Remark 4.2 below.

The problem withU is that it is not of classC2, so to apply the technique from
Section 2, we need to use appropriate smoothing arguments, which results in some un-
pleasant technicalities. To overcome this problem, we willpresent a slightly different
approach, which rests on a direct use of Lemma 2.1 and exploits three simpler special
functions. Namely, introduceU0, U1, U2 W D � [0,1)! R by

U0(x, y, z) D 1�
� � x

2
, U1(x, y, z) D

y� x2

y � 2�x C �2

and

U2(x, y, z) D
1�

p

1� yC x2

2
exp(x C

p

1� yC x2
C 1� �).

Observe that all these functions appear as “building blocks” of the aboveU . These
functions satisfy (2.6); moreover, none of these functionsdepend on the variablez and
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Fig. 1. The regionsD1 � D4 in the case� > 1.

thus (2.7) holds true for all of them. Finally,U0, U1 andU2 satisfy (2.8). This is trivial
for U0, while for the remaining two functions, we calculate a little bit to get that

�

U1xx U1xy

U1xy U1yy

�

D

�

�b(x, y)(y � �2)2 b(x, y)(x � �)(y � �2)
b(x, y)(x � �)(y � �2) �b(x, y)(� � x)2

�

and

�

U2xx U2xy

U2xy U2yy

�

D

"

�4c(x, y)(x C
p

1� yC x2)2 2c(x, y)(x C
p

1� yC x2)
2c(x, y)(x C

p

1� yC x2) �c(x, y)

#

,

whereb(x, y) D 2(y � 2�x C �2)�3
> 0 and

c(x, y) D (8
p

1� yC x2)�1 exp(x C
p

1� yC x2
C 1� �) > 0.

Clearly, both matrices are nonpositive-definite and hence (2.8) holds true. We will also
require the following properties ofU1 and U2. First, observe thatU1 is bounded: in
fact, we have

(4.1) 0�
y� x2

y � 2�x C �2
� 1 for (x, y) 2 D.
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Next, we have that

(4.2) the functions U1(0, � , 0), U2(0, � , 0) are nondecreasing on [0, 1],

which can be easily verified by differentiation.
Now we split the reasoning into two parts, corresponding to� � 1 and� > 1.
CASE � � 1. Then the process (X, Y) starts from the setD2 [ D3; suppose first

that (X0, Y0) 2 D2. Introduce the stopping times

� D inf{t W Xt � �}

and

� D inf{t W Xt � or (Xt , Yt ) 2 D3}.

Of course, we have� � � almost surely. Furthermore,U0 and U1 coincide at�D2 \

�D3, the common boundary ofD2 and D3. Therefore, applying Lemma 2.1 and using
(4.1) yields

EU0(X
�

, Y
�

, X�

�

) D EU1(X
�

, Y
�

, X�

�

) � EU1(X
�n , Y

�n , X�

�n
),

for an appropriate sequence (�n)n�0 of stopping times. Lettingn ! 1 gives
EU1(X

�

, Y
�

, X�

�

) � EU0(X
�

, Y
�

, X�

�

), by the use of (4.1) and Lebesgue’s dominated
convergence theorem. Next, applying Lemma 2.1 again, this time to the functionU0

and the stopping times 0 and� , we obtain

EU0(X
�n , Y

�n , X�

�n
) � EU0(X0, Y0, X�

0) D 1� �=2,

for some sequence (�n)n�0 of stopping times increasing to� . However, (X
�n ,Y�n) belongs

to the closure ofD2, so X
�n � ��1 and hence the random variablesU0(X

�n ,Y�n , X�

�n
) are

nonnegative. Now, applying Fatou’s lemma, we obtain thatEU0(X
�

, Y
�

, X�

�

) � 1� �=2
and combining this with the previous estimates we get

(4.3) EU1(X
�

, Y
�

, X�

�

) � 1� �=2.

We have obtained this bound under the assumption (X0, Y0) 2 D2; but this is also true
if ( X, Y) starts from D3. Indeed, we apply Lemma 2.1 to the functionU1 and the
stopping times 0 and� , use Fatou’s lemma and get

(4.4) EU1(X
�

, Y
�

, X�

�

) � EU1(X0, Y0, X�

0) D U1(0, Y0, 0).

However, it is easy to check thatU1(0, y, 0)� 1� �=2 if (0, y) 2 D3, so the inequality
(4.3) holds true.

We turn to the final step. Observe that for any fixed" > 0, we have� <1 and
U1(X

�

, Y
�

, X�

�

) D 1 on the set{X�

� �C "}. SinceU1 is nonnegative, we get

P (X�

� �C ") � EU1(X
�

, Y
�

, X�

�

) � 1� �=2.
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Substituting� WD �C ", we see that for any" 2 (0, �),

P (X�

� �) � 1� �=2C "=2,

and letting"! 0 yields (1.2).
CASE � > 1. Here the reasoning is essentially the same (and rests on properties

of U1 and U2), so we shall be brief. The process (X, Y) starts fromD3[ D4; suppose
first that (X0, Y0) 2 D4 and introduce the stopping times

� D inf{t W Xt � �} and � D inf{t W (Xt , Yt ) 2 D3}.

We have� � � and, arguing as previously, we obtain

EU1(X
�

, Y
�

, X�

�

) � EU1(X
�

, Y
�

, X�

�

)

� EU2(X
�

, Y
�

, X�

�

) � EU2(X0, Y0, X�

0) � exp(1� �)=2.

The same bound holds true if (X, Y) starts from D3: then (4.4) is valid and hence,
using (4.2) and the fact thatU1 and U2 coincide at�D3 \ �D4, we get

EU1(X
�

, Y
�

, X�

�

) � EU1(X0, Y0, X�

0) � U2(0, 1, 0)D exp(1� �)=2.

It remains to repeat the above argumentation to get

P (X�

� �C ") � EU1(X
�

, Y
�

, X�

�

) � exp(1� �)=2, " > 0,

which yields (1.2) for� > 1.

4.2. Sharpness. Let a � 0 be a fixed number and letB be a standard Brownian
motion. Introduce the stopping times� D inf{t W B�

t � Bt � 1 or Bt D a} and

� D

�

� if B
�

< a,
inf{t > � W Bt 2 {a� 1, aC 1}} if B

�

D a.

Of course,� � � almost surely. We have the following fact.

Lemma 4.1. The martingale XD (B
�^t )t�0 is uniformly integrable and satisfies

kXkBMO � 1.

Proof. The uniform integrability can be easily shown using the martingale
(2Bt B�

t � (B�

t )2)t�0; see Subsection 3.2 above. To prove the bound for the BMO norm
of X, note that for any stopping time� we have

(4.5) E(X2
1

j F
�

) D B2
�

1{��� } C E[B2
�

1{�>���} j F� ] C E[B2
�

1{�>� } j F� ].
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Let us analyze each term on the right separately. We haveB2
�

1{��� } D X2
�

1{��� } and

E[B2
�

1{�>���} j F� ] D E[(B
�

� B
�

)21{�>���} C (2B
�

B
�

� B2
�

)1{�>���} j F� ]

D 1{�>���} C (2B
�

B
�

� B2
�

)1{�>���}

� 1{�>���} C B2
�

1{�>���},

where in the second passage we have used the equalityjB
�

�B
�

j D 1 valid on{� > �},
and Doob’s optional sampling theorem. To deal with the thirdterm on the right-hand
side of (4.5), we make use of the martingale (2B

�^t B�

�^t � (B�

�^t )
2)t�0 and write

(4.6)

E[B2
�

1{�>� } j F� ] D E[(B
�

� B�

�

)21{�>� } C (2B
�

B�

�

� (B�

�

)2)1{�>� } j F� ]

D E[(B
�

� B�

�

)21{�>� } j F� ] C (2B
�

B�

�

� (B�

�

)2)1{�>� }

� E[(B
�

� B�

�

)21{�>� } j F� ] C B2
�

1{�>� }.

However, using Doob’s optional sampling theorem and the equality B
�

D B�

�

D a, valid
on {� > �}, we get

E[(B
�

� B�

�

)21{�>�} j F�] D E[(B
�

� B
�

)2
C 2B

�

B
�

� B2
�

j F
�

]1{�>�}

C (�2B
�

B�

�

C (B�

�

)2)1{�>�}

D 1{�>�}.

Plugging this into (4.6), we get

E[B2
�

1{�>� } j F� ]

� E[(B
�

� B�

�

)2(1{�D�>� } C 1{�>�>� }) j F� ] C B2
�

1{�>� }

D E[1{�D�>� } C E[(B
�

� B�

�

)21{�>�} j F�]1{�>� } j F� ] C B2
�

1{�>� }

D E[1{�D�>� } C 1{�>�}1{�>� } j F� ] C B2
�

1{�>� }

D 1{�>� } C B2
�

1{�>� }.

Plugging all the above estimates into (4.5) yieldsE(X2
1

j F
�

) � 1 C X2
�

, which is
precisely the claim.

Now we are ready to prove the sharpness of (1.2). First consider the case� � 1.
Take the martingale from the above lemma, corresponding toa D � � 1. This martin-
gale, and the process exploited in Subsection 3.2, coincideon the interval [0,�], so
using (3.2), we get

P (� > �) D P (X�

1

� � � 1)D e1��.

Therefore,

P (X�

1

� �) D P (X�

1

� � j X�

1

� � � 1)P (X�

1

� � � 1)

D P (B
�

D � j B
�

D � � 1) � e1��
D e1��

=2.
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Finally, we turn to the case� 2 (0, 1). Consider the martingale�X, where X
comes from the above lemma applied toa D 1 � �. Let us compute the probability
P ((�X)� < �). A closer look gives that

{(�X)� < �} D {B reaches 2� � before getting to�}.

Indeed, the inclusion “�” is obvious, and to get the reverse one, it suffices to observe
that (�X

1

)� � � on the set{� D �}, since X�

1

D X
1

� 1� �� there. Consequently,

P ((�X)� � �) D 1� P ((�X)� < �) D 1� �=2.

This gives the optimality of the the bound (1.2) and completes the proof of Theorem 1.2.

REMARK 4.2. The approach described in Section 2 can be also used in the case
when X starts from arbitrary real numberx (i.e., not necessarily from 0). Denoting
EX2

1

by y, one can show that for any� > 0,

P (X�

� �) � U
�=kXkBMO

�

x

kXkBMO
,

y

kXk2BMO

,
max{x, 0}

kXkBMO

�

,

(this is clear: see the last paragraph of Section 2) and hencealso

(4.7) P (X
1

� �) � U
�=kXkBMO

�

x

kXkBMO
,

y

kXk2BMO

,
max{x, 0}

kXkBMO

�

.

Here U
�=kXkBMO is the function of Subsection 4.1, corresponding to the parameter

�=kXkBMO. Moreover, it can be proved that the bound (4.7) is sharp, withthe use
of similar examples as above. This should be compared to the non-maximal tail esti-
mates for BMO functions obtained in [14] and [15]. Vasyunin and Volberg found there,
for each fixed� > 0, the least functionsB

�

W D ! R with the following property. If

f W [0, 1]! R is a function satisfying
R 1

0 f D x,
R 1

0 f 2
D y and k f kBMO2 � 1 (that is,

R

I

�

� f (t) �
R

I f (u) du
�

�

2
dt � 1 for any intervalI � [0, 1]), then

j{x 2 [0, 1] W j f (x)j � �}j � B
�

(x, y).

The functionsB
�

have plenty of similarities with the aboveU . Actually, the formulas
for U jD3 and U jD4 appear also in the definitions ofB

�

. Let us briefly provide an in-
formal explanation for this phenomenon. A crucial observation is that the functionsB

�

originating from “analytic BMO” can also be used in the martingale setting described
in Section 2, as special functions corresponding toV(x, y, z) D 1{jxj��} (formally, we
treat the variablez as “empty”, i.e., we takeB

�

(x, y, z) D B
�

(x, y)). Applying the
approach of Section 2, one obtains the sharp bound

(4.8) P (jX
1

j � �) � B
�=kXkBMO

�

x

kXkBMO
,

y

kXk2BMO

�

,
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where, as previously,y D EX2
1

. This is of course very close to (4.7); the connection
becomes even closer when one notes that forsomepairs (x,y), the extremal martingales
in (4.8) satisfyP (jX

1

j � �) D P (X
1

� �). This explains why the same expressions
appear in the definitions of the functionsU and B

�

(on some parts of the domains).
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