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Abstract

Let V be an integral normal complex projective variety of dimensh > 3 and
denote byL an ample line bundle ov. By imposing that the linear systefdt|
contains an elemenA = A; +---+ A, r > 1, where all theA;’s are distinct ef-
fective Cartier divisors with Pid&;) = Z, we show that such & is as special as
the components\; of A € |£|. After making a list of some consequences about the
positivity of the componentg\;, we characterize pairs/( £) as above when either
Ay = P! and Pic@j) = Z for j =2,...,r, or V is smooth and eactd is a
variety of small degree with respect téli] o, Where Hi]a is the restriction toA
of a suitable line bundléd; on V.

1. Introduction

Projective manifolds with an irreducible hyperplane sattbeing a special vari-
ety have been studied since longtime (see, e.g., [2] and E&l) the corresponding
study for a reducible hyperplane section consisting of apkrmrmormal crossing div-
isor whose components are special varieties started onntly by Chandler, Howard
and Sommese [3]. Therefore, we continue here the study déter in terms of a
hyperplane sectiorA which is not irreducible, assuming th#t is a union of distinct
irreducible componentg\, ..., A;, with r > 1. More precisely, lefy be an integral
normal complex projective variety of dimension> 3 endowed with an ample line
bundle £. Assume that
(©) |£] contains an elemenA = A; + -+ A, r > 1, where all the components;
are distinct and effective Cartier divisors with PA¢] of rank one.

Let us observe here that this assumption is a natural gézedrah of the classical hy-
pothesis Picl) ~ Z on a hyperplane sectioA’ of V. Furthermore, if {¢) holds then
every componentd; of A € |£]| does not admit a non-trivial morphism onto a vari-
ety W, with 0 < dimW, < n—1 and in general, also for the smooth case, the main
known results on reducible hyperplane sections (see, Bl).can not be applied on
any of the A;’s. However, we can show that if a reducible subvariétyas in ) is
contained inV as an ample divisor, then it imposes severe restriction¥,tohat is,
the topological and geometric structures)ofare very closely related to those of each
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component ofA. So, in§3 we prove first the following

Theorem 1.1. LetV be an integral normal complex projective variety of dimen-
sion n> 3 and let £ be an ample line bundle oW. Assume tha({<>) holds. Then
all the A’s are nef and big Cartier divisors oW and for any i=1,...,r there
exist proper birational morphisms; fV — V; from V to a projective normal variety
V; given by the map associated {6, (m; A;))| for some m > 0. Furthermore each
map f contracts at most a finite number of curves Brand it is an isomorphism in
a neighborhood of Asuch that {f(A) is an effective ample divisor oV .

The above result shows that assumptigy) {mplies that all the components,
of A are either ample, or at worst big and 1-ample in the sense @mf (1L.3)]. By
imposing some restrictions on the singularities\yfwe are able to deduce that all the
A’s are in fact ample Cartier divisors ow.

Theorem 1.2. Let V be an integral normal complex projective variety of dimen-
sion n> 3 with at worst Cohen—Macaulay singularities. L& be an ample line
bundle onV and assume thaf{) holds. Furthermore suppose tha — F is a lo-
cally complete intersection for some finitpossibly emptyset F C V — Irr(V) with
dim Irr(V) < 0, where Irr(V) is the set of irrational singularities ol. Then all the
Ai’'s are ample Cartier divisors oy and the maps if V — V; of Theorem 1.lare
all isomorphisms.

Furthermore, under some additional hypotheses’asnd on someA;, we can fi-
nally obtain that PicY) = Z(A) for an ample line bundle\ on V (Corollary 3.1).

All of these results allow us to list in 84 some consequenderitathe positivity
of the Aj’s and to obtain similar results as in [1, Theorem 1] (see §lgh Propos-
ition VI]) for the case of reducible ample divisors oh (Propositions 5.2 and 5.3).

We would like to note that the above results make use of weglotheses orV
and on eachA;, and that {©) seems optimal a priori for Theorems 1.1 and 1.2, since
easy examples show that these results do not hold assunahdPit(d) # Z(H,;) for
somei =1,...,r, also whenr = 2 andV is smooth (Remark 3.2). Moreover, the
techniques we employ in 83 leave out of account any specialripation on eachA
by a (very) ample line bundle oi¥ and they allow us to assume thAtis simply
ample and not necessarily ample and spanned or very amplé on

Finally, as a by-product of 84 and some results obtained bgynwher authors
about smooth complex projective varie¥/ containing ample divisors of special type
(e.q., [1], [2], [6], [7], [9], [20], [11], [14]), in 85.1 we Dbtain similar results as in
[1, Theorem 1] and [14, Proposition VI] (Propositions 5.2&n3), and in§5.2 we
classify smooth polarized pairs<{(L) which admit an ample divisoA € |L| such that
A=A +---+ A, r >1, and all the components; have small degree with respect
to suitable line bundle$d; on X for everyi =1,...,r.



VARIETIES OF PICARD RANK ONE 603

Proposition 1.3. Let L be an ample line bundle on a smooth complex projective
variety X of dimension n with B 5. Assume that there is a divisor A A; +--- +
A €|L|, r =1, where each Ais an irreducible and reduced normal Gorenstein pro-
jective variety withdim Irr(A;) < 0, wherelrr(A;) is the set of irrational singularities
of A. Suppose that for any ¥ 1,...,r there exist ample and spanned line bundles
Hx on X such thafHy]a, is very ample ande]',Lzl < 4. Then one of the following
possibilities holds
Q) r>1,H =---=H = H and (X, H) is one of the following pairs

(@) P", Opn(1)) and A € |Opn(g)| with 1 <a <4 foreveryi=1,...,r;

(b) @Q", Ogn(1)) and A € |Ogn(a;)| with & =1, 2for every i=1,...,r;

(c) X c P is a hypersurface of degreg or 4, and A = H € |Opni1(1)x| for

everyi=1,...,r;

(d) X =Q1NQ, C P"™? is a complete intersection of two quadric hypersurfaces

Qi cP"™2fori=1,2and A = H € |Opn2(1)x]| for every i=1,...,r;

(e) n: X — P"is a double cover oP" with branch locusA € |Opn(2b)|, b= 1,2,

H e [n*Opn(1)] and A € [7*Opn(&)], & =1, 2,for every i=1,...,r;

(f) m: X - Q" is a double cover of a quadric hypersurfa@" c P"*! with

branch locusA € |Ogn(20')], b’ =1, 2,and A = H € |[7*Ogn(1)| for every i=

,...,r;

(g) 7: X > P" is a d-cover ofP" with d =3, 4,and A = H € [7#*Opn(1)| for

anyi=1,...,r;
(2) r =2, X = P! x P* and after renaming A, [Hila,) = (P! x P2, Op1,ps(1, 1)),
with A; € [Ox(0, 1) and H € [Ox(1, 1), (Ag, [Ha]a,) = (P* Ops(1)) with Ay €
|Ox(1, 0) and H € |Ox(t, 1) for some integer t= 1, and the remaining polarized
pairs (A, [Hk]a,) are of these two types.

2. Notation

Let V be an integral normal complex projective variety of dimensi > 3 endowed
with an ample line bundleC. All notation and terminology used here are standard in
algebraic geometry. We adopt the additive notation for oadles and the numerical
equivalence is denoted by, while the linear equivalence by. The pull-back* F of
a line bundleF on V by an embedding: Y — V is sometimes denoted h¥y. We
denote byKy the canonical bundle of. For such a polarized variety( £), we will
use the adjunction theoretic terminology of [2] and we sat this ann-fold (denoted
by X) whenV is smooth.

3. Proof of Theorems 1.1 and 1.2

First of all, let us show that<) implies that all the components & are actually
nef and big Cartier divisors oW, obtaining the following
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Proof of Theorem 1.1. Suppose that N A; := W is nonempty. Define integers
aj putting Oy (A)a, := O, (aj H;j), whereH; is the ample generator of Pi() (mod
torsion). Then

Ow(a11H1) = Ow(A1) = Ow(ai2H2)

is an ample line bundle olV. Hencea;; is positive. SinceA is a connected divisor
onV (see [8, Ill 7.9]), for everyi = 1,...,r there exists a componem; of A €
|£| with j # i such thatA N A; # @. This shows thaiOy(A), is ample for any
i=1,...,r, i.e. A is nef and big. From [7, lll 4.2] (see also [2, (2.6.5)] or [12,
(1.2.30)]), it follows that there exists a proper biratibn@orphism fi: V — V; from V

to a projective normal variety, given by the map associated {@,,(m; A)| for some
m; > 0, which is an isomorphism in a neighborhood A&f and such thatf;(A;) is an
effective ample divisor on.

Claim. The morphism jfcontracts at most a finite number of curves Bn

By [2, (2.5.5)] note thatA; ~ H; + D; for anyi =1,...,r, whereH; is Q-ample
and D; is Q-effective. This shows tha#; - A; is nonzero and sd\ N A; can not be
empty. LetW; := A; N A; and note thaWV; is an ample divisor both ifA; and in
Aj. Let Z be an irreducible variety of dimension greater than or edoéivo. Since
L is ample, we have thaZ N Ay # @ for somek =1,...,r, and thenWjy N Z # @
since dmzZ N Ay > 1. PutR:= Z N A;. ThusR is nonempty, difR > 1 and O(R)r
is ample. By [7, Il 4.2] (or [12, (1.2.30)]), the linear sgst |O,(m; A))| restricted to
Z can not contracZ to a lower dimensional variety. ]

Proof of Theorem 1.2. Puby(A)a, = Oa, (& H;) andl; := Oa (H;)"* > 0 for
anyi, j,t € {1,...,r}. From Theorem 1.1 we know that; > O for everyi =1,...,r.
Moreover, sinceA is a connected divisor oX (see [8, 1ll 7.9]), for everyj =1,...,r
there exists a componemy, of A € |[L| with k # | such thatA; N Ay # &. So we
get the following expressions

AAT® = O (@K O (@i Hi)"™ = agalic Ik,

(1) ARA] S = O (& H;)°On (aj H))" 7 = agali =),

with 1 <s <n—1. Note thata;; # 0, aw # 0, &; > 0 andajx > 0. Moreover, from
the equations (1) witls = 1, 2 we deduce that

ajk(ag;ali ) = ajk(@wdlic Ik = a(@i k) = aw(agali ),
that is,

(2) AjkAj = aijj Ak-
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So we get
_ h—2)!
D VI = Ry
hi+--+hr=n-2
= Z Mahl... hs+1 ., hrI
B hq!..-h! 1s s sls
hy+--+hr=n-2 1 r:
= al. %5 + (non-negative terms} 0,
for everys=1,...,r. Furthermore, forj # k we have also the following equations
(n — 2)' k +1
©) AZ[’n ? [AJ]AJ'C - Z kr|a1J l aleJy
ky+--+ke =n— 2
2 pn—-2 n—2 (n — 2)| hetl
@ RO =AM = Y A
hy+th =n-—2 *
n—2 n—2 (n — 2)! ket K
(5) AjAk[: =[Ak]Aj£Aj = Z krlalj ak] ..a”_|j,
Ki+-+k =n— 2
n-2 n—2 (n— 2)| h =y h
©) AALT =[AlaLa” = Z hy!---h; |a1k —ag - gyl
hytetho=n—2 *
Since by (2) we get
kj+1 ) r
( ...... a JJ o af )(a;‘k ..... a{gﬁﬂ“l ..... arhk)
K; . r
= ajjan(@ - ayl e as)(ag - k... a)
K k hy h h
= Qjkd; (alj ..... ajj] ..... a’rkj()(alk ..... akli ..... a
k k k h+1 h h
— (al} ..... ajj] ..... ak11<+1 ..... arkj')( ..... ajli ..... a_k;z ..... a),

from (3), (4), (5) and (6), we obtain that
(AA| L2 = (ARL"?)(ATL™?) > 0

for everyk and j such thatA; N A # @.

Thus, by [2, (2.5.4)] we see that there exists a rational ramhkx such thatA; is
numerically equivalent to.;c A¢. Since from (2) it follows thatA, meets all the other
components ofA, by an inductive argument we get

™ Lo At A= Qact oo gt o+ A+ DAC= A

where g := A + -+ + m + -+ Ak + 1 and the symboIA denotes suppression.
Moreover, since

0< LEt = AL = 2 ALY = hLit,
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we have thatjx > O for everyj # k and from (7) it follows thafu, > 1, i.e. A¢ is an
ample Cartier divisor orV for anyk = 1,...,r. By combining this with Theorem 1.1,
we obtain that everyf; is an isomorphism. 0

Corollary 3.1. LetV be an integral normal complex projective variety of dimen-
sion n> 3 with at worst Cohen—Macaulay singularities. L&tbe an ample line bun-
dle onV and assume tha{) holds. Furthermoresuppose that one of the following
conditions holds
(&) V is a locally complete intersection
(b) n=3,V— A andV —F are locally complete intersections for some=ki,...,r
and some finite set E V — Irr(V).

ThenPic(V) = Z(A), where A is an ample line bundle oV. In particular, all the
Ai’'s are ample Cartier divisors o and the maps if V — V; of Theorem 1.lare
all isomorphisms.

Proof. In both cases (a) and (b), we simply use Theorem 1.73n@.3.4)]. [

REMARK 3.2. LetV =~ P(Opn1 & Opn1(—d)) with 0 < d < n and denote by
m: YV — P"1 the projection map. Note that there exists a smooth divan } which
is a section ofr such thatE =~ P"~! and Eg € |Opn1(—d)|. PutL := E +7*Opn(a).
Then, for a suitable integex > 0, we have thatC is ample onV and that there exists
a divisor A € |£] such thatA = A; + Ay, where Ay = E and A; € |n*Opn+(a)] is @
smooth divisor onV. This example shows that if > 2 then the above results can not
be improved by assuming in0{ that Pic®a) # Z for somei = 1,...,r, also when
r =2 andV is a Fanon-fold with n > 3.

4. Some immediate consequences

Let us collect here some results due to the different pdtsitiof the components
A of A e |L] under the hypothesisiy).

4.0.1. Nefness and bigness of th&;’s. From Theorem 1.1, we obtain the
following

Corollary 4.1. LetV be an integral normal complex projective variety of dimen-
sion n> 3 and let£ be an ample line bundle olW. Assume tha{<) holds. Set D=
> A, where all the ji € {1, ..., r} are not necessarily distinct indexes. Moreovet
Irr(V) be the set of irrational singularities df. Then we have the following properties
e (Vanishing type theorems)

(1) Letgp: ¥V — Y be a morphism fron¥ to a projective variety Y. Then

giy(Ky +D)=0 for i> max_ dim((y)nIm(V)) + 1,
yep(Irr (V)
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where ¢ (T) is the i-th higher derived functor of the direct image(7) of a
sheaf7 on V;

(2) HY(V,-D) =0;

(38) assuming thatrr()) is finite and nonemptywe have that

dim H°(V, Ky, + D) > #(Irr(V)) > 0,

where#(Irr())) is the number of points itrr()); in particular, if A € |D] lies in
the set of Cohen—Macaulay points Bf then

dim HO(V, Ky) + dim HO(A, K 4) > #(Irr(V)) > 0.

(Lefschetz type theorems)
(4) Let A € |D| be a divisor such that’ — A is a local complete intersection.
Then under the restriction map it follows that

HI(V,Z) = HI(A,Z) for j<n-3,
and
HI(V,Z) > HI(A,2) for j=n-2,

is injective with torsion free cokernefmoreoverwe have thaPic()) = Pic(A) for
n > 5, and the restriction mappingic()) — Pic(A) is injective with torsion free
cokernel for n= 4; in particular, if ¥V — A is a local complete intersection for
some i=1,...,r, thenPic(V) = Z(A) for n > 4 and some ample line bundl&
onv,

(The Albanese mapping)

(5) Assume that4 € |D| is normal. Moreoversuppose that4d and V have at
worst rational singularities. Then the majlb(.4) — Alb(V) induced by inclusion
is an isomorphism.

(Hodge index type theorems)

(6) Forni, +---+nj, =n—1and n, > 1, we have

n n,+1

(g A A = (AL A AT (AL AT,
and for n, +--- 4+ n;, = n, we get also

Niy

(Ainl‘l C AT = (AN (AT > 0,
where , € {1,...,r};
(7) we have the following inequality AT~*- Aj)(A - A1) > APAT > 0;

(8) fort > 1 and any nef and big line bundle;tbn V with 1 <i <t, it follows
that Oy(A))"-TT_; Hi > 0, where je (1,...,r};
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(9) let H be a line bundle such thatim H°(V, NH) > 2 for some N> 1. Then
H-Ou(A,)) - Op(A,_,) >0, where e {1,...,r}.

Proof. First of all, from Theorem 1.1 we deduce that the dffecdivisor D =
> A, is nef and big onV. Thus (1), (2) and (3) of the statement follow from [2,
(2.2.5), (2.2.7), (2.2.8)]. Finally, cases (4) to (9) felldrom [2, (2.3.3), (2.3.4), (2.4.4),
(2.5.1), (2.5.3), (2.5.2), (2.5.8) and (2.5.9)]. O

By applying Theorem 1.1 also to the zero locus of speciai@exibfk-ample vector
bundles on am-fold X for k > O (see [15, 81] and [2, §2.1]), we obtain the following

Corollary 4.2 (Lefschetz—Sommese type theoremlet £ be a k-ample vector
bundle of rank r> 1 on an n-fold X with n> 4. Assume that there exists a section
s € I'(€) whose zero locus Z (s)y is an integral normal complex variety such that
dim Z > 3. Suppose that there exists a divisor=AA; + --- + Ag, S > 1, on Z which
satisfies(<¢). If Z — A is a local complete intersection for some=i1l, ..., s, then

H'(X,z) =~ H'(A,2z) for i <min{dmZ—-3,n—r —k—1},

and the restriction maps HX,Z) — H' (A, Z) are injective with torsion free cokernel
fori =min{fdimzZ —2,n—r —k}.

Proof. From Theorem 1.1, we know that eafj is at worst 1-ample oZ. Thus
by Corollary 4.1 (4), we have that

HI(Z,Z) = HI(A,Z) for j<dimzZ-3,

and the restriction mapsli(Z,Z) — HI(A;, Z) are injective with torsion free cokernel
for j =dimZ—2. Moreover, from the Lefschetz—Sommese’s theoremkfample vec-
tor bundles on am-fold X (see [15, (1.16)] and [13, (7.1.1), (7.1.9)]), we deduce tha

HI(Z,Z) = HI(X,Z) for j<n-r—k—1,

and that the restriction mags!(X,Z) — HI(Z,Z) are injective with torsion free cok-
ernel forj =n—r —k. O

4.0.2. Ampleness of theA;’s. Under the same assumption of Theorem 1.2, we
first deduce the following

Corollary 4.3. LetV be an integral normal complex projective variety of dimen-
sion n> 3 with at worst Cohen—Macaulay singularities. L&tbe an ample line bundle
on V and assume tha{) holds. Moreoversuppose thad’ — F is a local complete
intersection for some finitepossibly emptyset F C V — Irr(V) with dim Irr(V) < 0,
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wherelrr(V) is the set of irrational singularities o¥. Set D= )_ A;,, where all the
inh € {1,...,r} are not necessarily distinct indexes. Then we have thewoip properties
() (Fujita’s vanishing type theorem)Given any coherent shed on V, there exists
an integer n{F, D) such that

H'(V, F® Oy(mD+ N)) =0 for i >0, m>m(F, D),

where N is any nef divisor oi;
() dim H°(V, D) < D" + n, with equality if and only ifY is one of the following
(@) P
(b) a quadric hypersurfac®" c P"+1;
(c) a P"l-bundle overP?;
(d) a generalized cone over a smooth submanifoldW as in (a), (b), (c);
(1) (Lefschetz type theorems)Let A € |D| be a divisor such thaV — A is a local
complete intersection. Then under the restriction map libfes that

HI(V,Z)~ HI(A,Z) for j<n-2,
and
HI(V,Z) - HI(A,Z) for j=n-1,

is injective with torsion free cokernemoreoverwe have thaPic(V) = Pic(A) for n >
4, and the restriction mappingic())) — Pic(A) is injective with torsion free cokernel
for n = 3; in particular, if V—A; is a local complete intersection for some=il,...,r,
then Pic(V) = Z(A) for n > 3 and some ample line bundle on V.

Proof. By Nakai—Moishezon—Kleiman criterion and Theoref) fue see thab =
> A, is ample onV. Thus casel] of the statement follows from [5, §1, Theorem 1]
(see also [12, (1.4.35)]. Finally, we obtain case (Il) byI[§4.2), (5.10), (5.15)], while
(1) follows from [2, (2.3.3)] and [2, (2.3.4)] respectie ]

Finally, let us deduce also the following result for ampletee bundles on a smooth
variety.

Corollary 4.4. Let £ be an ample vector bundle of rank> 1 on an n-fold X
with n> 4. Assume that there exists a sectioa E(£) whose zero locus Z (s)p is a
smooth submanifold of X. Suppose that there exists a diiserA; +---+ As, s> 1,
on Z which satisfieg<d). If r < n — 2 then bothPic(X) and Pic(Z) have rank one.

Proof. It follows easily from Corollary 4.3 (Ill) and [15, (I6)], or [13, (7.1.5) (ii)].
O
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5. Some applications

Here are two applications.

5.1. All the Aij’s are Fano varieties of Picard rank one. First of all, let us
prove the following

Lemma 5.1. Let L, V, A, V, fj be as inTheorem 1.1 If V is Q-factorial for
some k=1,...,r, then A is ample onV and f: )V — Vx is in fact an isomorphism.

Proof. Take any line bundl® on V and consider the following commutative dia-
gram §):

U
jl le
V —— Vk

wherej: U — V and jx: U" — VY are the inclusion maps anf|y: U — U’ is the
isomorphism induced byfy: V — Vi. Since)) is Q-factorial, we see thafy,(ND) =
L' is a line bundle onV for some positive integeN. Write £/ = >, anL'n, where
L'y are the generators of Pig(). Then by &) we get

ND|y = j*(ND) = fk|u,]*(ND) = jk* fk.(ND)
=Y @ik Ly =Y an(flu) k" Lh =Y anj* fi* L,
h h h

= j*<zahfk*ﬁf1) = (Zahfk*ﬁﬁ)
h h

By Hartogs’ lemma (see, e.g., [4, (11.4)]), this gl = 3", a, {5 (L}), i.e. D =
> n(@n/N) fX(LL). Therefore, if Ay is not ample, then we deduce that there exists an
irreducible curvel’ C V such thatm¢Ax - T' = 0 for any positive integemy, i.e. the
map fi contracts the curv&. Hence f*(£)-T' =0 for anyh, i.e. D-T = 0, but this
leads to a contradiction by taking = L. ]

U

Similar results as in [1, Theorem 1] (see also [14, Propmsil/l]) for the case of
reducible ample divisors oW can be now proved.

Proposition 5.2. Let V be an integral normal complex projective variety of di-
mension N> 3 and let £ be an ample line bundle oW. Assume tha{<) holds. If up
to renaming A; = P"1, thenV is the coneC(P"%, Opn1(s)) on (P"1, Opn1(s)) with
A; = v5(P"1) and NVa, v = Opni(s) for a suitable integer s> 0, where v is the &
Veronese embedding &1,



VARIETIES OF PICARD RANK ONE 611

Proof. Since ¢) holds andA; = P"!, by Theorem 1.1 we have thdt(A;) =
P"1 is ample onV;. By [1, Theorem 1] we see that; is the coneC(P"1, Opn-1(S))
over P"~1, Opn-1(s)), wheres is a positive integer such that's,a,)v, = Opni(S).

SinceV; is Q-factorial and Picy;) = Z, by Lemma 5.1 we deduce thdj is an
isomorphism and Pi¢{) = Z. Therefore,A; is an ample divisor o’V and by applying
now [1, Theorem 1] to the pairf A;), we get thaty = C(P" %, Opni(S)), A; =
vs(P" 1) and NVa, /v = Opna(s) for a suitable integes > 0. O

Proposition 5.3. LetV be an integral normal Gorenstein projective variety of di-
mension > 3 and let £ be an ample line bundle o¥. Suppose tha(®) holds and
that dim Irr(V) < 0, where Irr()) is the set of irrational singularities ol’. Assume
that each Ais a normal Gorenstein variety such thataK+ 7 #H; >~ Op, for some in-
teger 7. If V — A¢ is a local complete intersection for some=k1,...,r and either
n>4,orn=3andV — F is a local complete intersection for some fipifossibly
empty set FC V —Irr(V), then Pic(V) = Z(A), where A is an ample line bundle on
V, Ky =pA, A =aA and Ap = hiH; with . = —hi(p + &), wherep, & > 0 and
h; > 0 are integers. In particularfor n > 5 we have h= 1 for every i=1,...,r.

Proof. Assume thah > 4. From case (4) of Corollary 4.1 it follows that either
(@) n > 5 and Picy) ~ Pic(A)) = Z for anyi =1,...,r, or (b) n =4 and Picp)
restricts injectively into Picdi) = Z. In both situations, we see that PR(= Z(A)
for some ample line bundla on V. Moreover, in (a) we have that 5 ~ #;, while
in (b) we have thatA 5 >~ h;j#,; for some positive integeh;. By adjunction formula,
we obtain that

(Ky + A +1iA)p in case (a),
Oa > Ka 0t (KV + A+ t:_IA) in case (b).
i A

i.e. Ky + A + (ti/hj))A ~ Oy, for someh; > 1. If we put Ky, = pA and A = g A
for some integergp andg > 1, then we see that = —h;(p + &), with h; = 1 when
n=>>5.

As to the casen = 3, from (lll) of Corollary 4.3 it follows that Pic¥) restricts
injectively into Pica)) = Z. Then by arguing as above, we conclude that also in this
situation PicY) = Z(A) for some ample line bundlé on V and, with the same no-
tation as abover; = —h;j(p + &), whereh; and a are positive integers. O

REMARK 5.4. Whenn > 6, Proposition 5.3 generalizes [16, Theorem 1].
5.2. All the Aj’s have small degrees. Denote now byX an n-fold with n > 3

and byL an ample line bundle oiX. In this subsection we prove the last result stated
in the Introduction.
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(A, [Hi] a) satisfies one of the following two conditions:
(@) PicA) = Z([Hi]a )
(b) (A, [Hila) = (B x P, Opi.ps(L, 1)).

STEP (I). First of all, assume that = 1. In Case (a), by Lefschetz’s theorem we
see that PiX) = Z(H;). Write A, = a;H; for a positive integerm;. Sincea;H;' =
AH = [Hl]r)gl < 4, we deduce thag;H]' < 4. Consider the mag: X — PN
associated tgH;|. Since |H;| is ample and spanned, the morphigmis finite and
such that

Proof of Proposition 1.3. SinceH[]’,L‘,‘1 < 4, by [2, (8.10.1)] we see that

[H1]" = degg - degp(X) < 4.

This gives the following three possibilities:
(1) degy = 1, degp(X) < 4;
(2) degy = 2, degyp(X) < 2;
(3) degy = 3, 4 and de@(X) = 1.
In (1), sincen > 5 and PicK) = Z(Hs), by [2, (8.10.1)] (see also [6], [9], [11]) we
deduce that X, H;) is one of the following pairs:
e (P", Opn(1)), where Ay € |Opn(ag)| with 0 < a3 < 4;
o (Q", Ogn(1)), where Ay € |Ogn(as)| with 0 < & < 2;
o (V4, Opnia(l)y,) with A; € |Hy|, whereVy C P"*! is a smooth hypersurface of
degreed = 3, 4;
o (W, Opni2(1)w) with A; € |Hy|, whereW = Q1 N Q, C P"*? is a complete inter-
section of two quadric hypersurfac€ c P"+2 for i =1, 2.
In (2), the mapy is a double cover of either (iP", or (i) Q" c P"*1. In case (i),
we see thatH; = ¢*Opn(1) and A; € |a1H;| with a3 = 1, 2. In case (ii), we geH; =
¢*Ogn(1) and A; € [H4|. Finally, in (3) the morphisnmy is a d-cover of P" with d =
3,4, andA; = Hy = ¢*Opn(1).

Finally, consider Case (b). Note that PX(# Z. Moreover, sinceA; is ample,
for any ample line bundled on P! x P2, we have

0= Op1p3(L, 0)- Op1,p3(2, 0)- H? = Op1,ps(L, 0): (Ka, + 4H1a,) - H?
= Opups(1, 0)- (Kx + 4Hy + Ap)a, - H2 > Opips(1, 0)- (Kx + 5Hy)a, - H?,
i.e. Kx 4+ 5H; can not be ample orX. So by [10], [6] and [2,§7.2], we see that
(X, Hy) is a scroll overP?! of dimension five, i.e.X = P(£), where& =~ Opi(ar) ®
-+ @ Opi(as) with 1 <a; <--- <as, and H; is the tautological line bundlé of P(£).

Putg =& —aF. Since A; is ample onX, write A; = a&¢’ + bF for some positive
integersa andb (see [2, (3.2.4)]). Then

[Hi]4, = (@' + bF)(¢)* =aE —aF)E)*+b=a@ +---+as) +b>5,

but this is absurd. Thus Case (b) can not occurrfef 1.
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SteP (II). Suppose now that > 2. First of all, let us prove the following

Claim. If (A, Hip,) = (P1xP3, Opi,ps(1, 1)), then Ky +4H; is not nef for some
i=1,...,r.

Proof. Suppose thatx + 4Hy is nef for everyk =1,...,r. Let ®1: Ay — P!
be the nefvalue morphism ofA(, Hi,,). Up to renaming, assume thab, ..., As are
the only components oA such thatA; N A, # @ for h=2,...,s with s <r. Put
he :=[A]a, for k=2,...,r and note thaty is trivial fort =s+1,...,r.

First of all, if ®1(hy) is a union of points ofP! for everyk = 2,...,s, then for
a general fibefr =~ P2 of ®; we have that

(La)r = ([Ada)r +[hode 4+ -+ [hs]r = ([Ada)e = Ok (a),

for a suitable integea > 1. Moreover, note thaK s, + 4Ha, >~ 2F.
Thus by adjunction we obtain that

[Kx 4+ 4Hi]g Hi2 = ([Kx + 4H1]a)r(Hia)2 = (2F — [Ada)r(Hia,)2
= —([Ada)r(Hip)2 = —Or(@)Or(1) < O,

but this is absurd, sinc&x + 4H; is nef andH; is ample onX.

Assume now thatb,(h;) = P! for somet = 2,...,s. If Pic(A) = Z, then by
[3, (4.2)] we get a contradiction by takinB = A; and A = A;. Thus we can assume
that (A, Hia) = (P x P3, Opips(1, 1)). Note that there exists a general fiferof
®; such thatF £ h; and |h]r is effective and not trivial. Moreover, we have that
Pic(F) @ Z and F £ A, since otherwisd= € A; N A, = h;. ThereforeF N A; # @
and F N A; # F. Since

dmF +dimA —dim®;(A;)) =3+4—-1=6>5=dimX,

by the same argument as in the proof of [3, (4.2)] wWBh= F and A = A;, we can
conclude thatF € A, but this gives a contradiction. O

By the above Claim, if one of théy, say A4, is such that
(A1, Hia,) = (P x P3, Op1,pa(d, 1)),

thenn =5 and Kx + 4H; is not nef for somd = 1,...,r. Since Picf;) # Z, by
[10], [6] and [2, §7] we deduce thatX( H;) is a P4-bundle over a smooth curve.
Moreover, A; dominatesC. So C =~ P! and X =~ P(£) for some vector bundl€ of
rank-5 onP! such thatf = Op: @ Op1(81) B - - B Op1(8s) With 0<5; <--- < &,. Let
& be the tautological line bundle &(£). Write Ay = a1€ +biF and Hy = o1& + B1F
with by > 0 anday, a1, B1 positive integers (see [2, (3.2.4)]). Furthermore, puf ~
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Oa,(a, 0) and&p, ~ Op, (b, c) with a > 0 andb, c > 0. By the adjunction formula
we have
On (=2, —4) = Kp, = (Kx + Ag)a, > [-56 + (degf — 2)F + &€ + biF]a
= (a1 —5)ta, + (b1 + deg€ — 2)Fa,
~ Op,(b(a; — 5) + a(b; + deg€ — 2), c(a; — 5)).

This gives the following two equations:

®) 4 =c(5—a),
(1) 2 =b(5—a;) — a(b; + degé —2).

Note that from ) it follows that 1< a; < 4 and then
4> a =[Alr-[§]} = Fa, 63, = Oa(@ 0)- Op (b, ¢)° = ac’.

Thus we deduce that= 1 anda; = a. By (b) we have also thah = a; = 1 and the
equation ) gives b = b; 4+ deg€. Since

On (1, 1) = [Hi]a, = [018 + B1F]a, = Op(a1b + B1, 1),

we see thatvy =1 and 1=b+ B8, >b+1>1, i.e.b =0 andpB; = 1. Therefore,
by (h) we get 0= 4b = b; + deg€ > degé, i.e.ay =---=a, =0 andb; = 0. This
shows thatX = P(O%) = P! x P4, A; € |Ox(0, 1) and H; € |Ox(1, 1). Consider
A € |0x(d,e)| and H; € |Ox(t,s)| for somei = 2,...,r, whered,e> 0 andt,s > 0.
Then we have

4= [H]) = Ox(d, €) - Ox(t, 5)* = s*(ds + 4et) > %

This givess =1 and 0<e<1. If e=1, then we ged =0,t =s=e=1 and
(A, [Hila) is of the same type asAg, [Hi]a,). If e= 0, then we see that £ d < 4,

t > 1 ands = 1. This shows that#h € |Ox(d, 0)] and H; € |Ox(t, 1)] with t > 1 and
1<d<4, ie A — P*%is ad-cover of P4 with 1 < d < 4. Note that in this case
we have

|Ox(d, 0)) = |Ox(1, 0) + - -- + [Ox(1, O) .

d-times

Thus, sinceA; € |Ox(d, 0)| is irreducible and reduced, we conclude tdat 1.

Finally, since the above argument works independently filoenchoice of the com-
ponentA; of A e |L|, we can assume, without loss of generality, that every corapo
A of Ais such that Picki) = Z([Hi]a ). Then by Proposition 5.3 and Corollary 4.3
(I, we conclude that PicX) = Z(A) for some ample line bundlé on X. Write
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A = a A and H; = b A for suitable positive integerg; and b;. Thus we obtain that

abM A" = (a A)(B AT =[H]LT < 4,

i.e. HL=---=H, = A anda A" < 4. Consider the map: X — PN associated to
|A]. SinceA is ample and spanned, we haié = degy-degp(X) < 4 and by arguing
as in casea = 1, we obtain the statement. L]
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