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Abstract
We prove a scale-invariant boundary Harnack principle memuniform domains
in the context of non-symmetric local, regular Dirichletasps. For inner uniform
Euclidean domains, our results apply to divergence fornraipes that are not ne-
cessarily symmetric, and complement earlier results by Hawa and A. Ancona.

Introduction

The boundary Harnack principle is a property of a domain {ralvides control
over the ratio of two harmonic functions in that domain neams part of the bound-
ary where the two functions vanish. Whether a given domatisfezs the boundary
Harnack principle depends on the geometry of its boundady anfact, there is more
than one kind of boundary Harnack principle. For a Eucliddamain 2, two versions
found in the literature are as follows.

(i) We say that theboundary Harnack principleholds on Q if, for any domainV
and any compacK C V intersecting the boundar§<?, there exists a positive constant
A = A(R2, V, K) such that for any two positive functionsand v that are harmonic in
@ and vanish continuously (except perhaps on a polar setgalon 92, we have

) ()
ux) = My

vx, X' e KNQ.

(i) We say that thescale-invariant boundary Harnack principleolds on €2, if there
exist positive constantdy, A; and R, depending only orf2, with the following prop-
erty. Leté € 9Q andr € (0, R). Then for any two positive functions and v that

are harmonic inB(&§, Agr) N2 and vanish continuously (except perhaps on a polar set)
along B(&, Agr) N 92, we have

U _ , v

000 = M) vx, x' € B(g, r) N Q.
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A third version, important for our purpose and perhaps mateinal, would replace
the Euclidean balls in (ii) by the inner balls of the doma&in

A property similar to (i) was first introduced by Kemper ([20The scale-invariant
boundary Harnack principle (ii) on Lipschitz domains wasvad independently in [4,
5] and [36], a not scale invariant version was proved in [11].

Bass and Burdzy ([9]) used probabilistic arguments to prpraperty (i) on so-
called twisted Holder domains of order € (1/2, 1]. Aikawa ([1]) proved the scale-
invariant boundary Harnack principle on uniform domainsHuoclidean space. This
result was extended to inner uniform domains in [3]. Ancom&ega different proof
for inner uniform domains in [6]. Moreover, Aikawa ([2]) pred that (inner) uniform
domains are in factharacterizedby the scale-invariant boundary Harnack principle.
Other works on the boundary Harnack principle include [7, 8]

In [15], Gyrya and Saloff-Coste generalized Aikawa’s reasg to uniform do-
mains in symmetric strongly local Dirichlet spaces of Halatype that admit a carré
du champ. Moreover, they deduced that the boundary Harnaokigde also holds on
inner uniform domains, by considering the inner uniform @émas a uniform domain
in a different metric space, namely the completion of theemnaniform domain with
respect to its inner metric.

In this paper, we extend the result of [15] in two directiori&rst, we consider
Dirichlet forms that allow lower order terms and non-symmetWe do not assume
the existence of a carré du champ. Second, we prove the bguhidanack principle
directly on inner uniform domains.

We follow Aikawa’s reasoning, but with the Euclidean distanreplaced by the
inner distance of the domain. A crucial Lemma in our proofcarns the relation be-
tween balls in the inner metric and connected componentstg m the metric of the
ambient space, see Lemma 3.7. This relation was alreadyingé{ito prove a bound-
ary Harnack principle on inner uniform domains in Euclideggace. Ancona ([6]) also
treated second order uniformly elliptic operators with solower order terms, under
the additional condition that the domain is uniformly reggulFollowing Aikawa’s line
of reasoning, we do not need the domain to be uniformly regula

Our main result is Theorem 4.2. We now explain how it appliesEuclidean
space. Formally, let

n n n
(1) Lf =" dj@, af)—> baf+> a(df)—ct.
ij=1 i=1 i=1

Assume that the coefficients = (a,j), b = (=), d = (d;), c are smooth and satisfy
c—divb>0,c—divd >0, and,V& €R", 3 | & j&&) = €&, € > 0.

Theorem 0.1. Let L be the operator defined above and f&tc R" be an inner
uniform domain. There exists € C(2) > 0 and for each Re (0, C - diam()) there
exist A, A1 € (0, 00), depending ore2, R and on the coefficients, &, ¢ and d such
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that the scale-invariant boundary Harnack principle holusthe following form. For
any £ € 9522, r € (0, R) and any two positive functions u andthat are local weak
solutions of Lu= 0 in Bg(&, Agr) N € and vanish weakly along &, Aor) N 952,
we have

ue) _ w09

ux) =~ tu(x)’

VX, X" € Bg(£, ).

Moreovey if b = d = ¢ = 0 then the constants yAand A are independent of R.

Here, by alocal weak solution wn a domainU c R" we mean a function that is
locally in the Sobolev spac&/*(U) of all functions inL2(U) whose distributional first
derivatives can be represented by functiond_#fU), and satisfies/ Lu y = 0 for all
test functionsy in Wi (U), the closure ofCS°(U) (the space of all smooth, compactly
supported functions obJ) in the Wt-norm || [|3 + ||V - ||3. A weak solutionu vanishes
weaklyalong U N 95 if u is locally in W3(2) nearU N 9. See Section 1.1. The
definition of a ball Bg in the inner metric is given in Section 3.3;Bs denotes the
boundary of the ball with respect to its completion in theeinmetric.

In Sections 1 and 2, we review some general properties otlidai spaces and
describe the conditions that we impose on the space. Moreaxerstate a localized
version of the parabolic Harnack inequality for local wealluions of the heat equa-
tion for second-order differential operators with loweder terms. In Section 3 we
prove estimates for the heat kernel on balls and for the dgpatballs. After recall-
ing the definition and some properties of inner uniform doreaive give estimates for
Green functions on inner balls intersected with an innefoum domain. In Section 4,
we give a proof of the boundary Harnack principle.

1. Preliminaries

1.1. Local weak solutions. Let X be a connected locally compact separable
metrizable space, and lgtbe a positive Radon measure with full support. L&tX) be
a strongly local regular symmetric Dirichlet form drf(X, ). We denote byl(, D(L))
and (P:)i>o the infinitesimal generator and the semigroup, respegtiassociated with
(€, F). See [13].

There exists a measure-valued quadratic falihdefined by

/ f dI'(u, u) = E(uf, u) — %E(f, u?), Vf,ueFnL>X),

and extended to unbounded functions by setfifig, u) = lim,_.., I'(un,u,), whereu, =
max{min{u, n}, —n}. Using polarization, we obtain a bilinear fordT". In particular,

5(u,v)=/dF(u, v), VYu,veF.
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Let U C X be open. Set

Fioc(U) = {f € L2,(U): Vopen rel. compacA c U, 3f* e F

such thatf|s = f*|a u-a.e},

where Lﬁ)C(U) is the space of functions that are locally if(U, 11). For f,g € Fioc(U)

we definel’(f, g) locally by I'(f, g)|a = ['(f¥, g%)|a, Wwhere A C U is open and rela-
tively compact andf?, g* are functions inF such thatf = f# g = g* u-a.e. onA.
The intrinsic distance d¢= dg induced by £, F) is defined as

de(X, y) :=sup f(x) = f(y): f € Fioc(X) N C(X), dI'(f, f) = du},

for all x,y € X, whereC(X) is the space of continuous functions &h Consider the
following properties of the intrinsic distance that may oaymnot be satisfied. They
are discussed in [33, 31].

The intrinsic distancal is finite everywhere, continuous, and defines
(A1) the original topology ofX.

(A2) (X, d) is a complete metric space.

Note that if (A1) holds true, then (A2) is by [33, Theorem 2Jua@lent to

(A2) Vx € X, r > 0, the open balB(x, r) is relatively compact inX, d).
Moreover, (Al) and (A2) imply that X, d) is a geodesic space, i.e. any two points
in X can be connected by a minimal geodesicXn See [33, Theorem 1]. If (Al)
and (A2) hold true, then by [31, Proposition 1],

d(x,y) :=sug f(x) — f(y): f € FNC(X), dI'(f, f) <du}, x,ye X.

It is sometimes sufficient to consider property (ABnly on an open subset C X,
that is,

(A2-Y) For any ballB(x, 2r) C Y, B(x, r) is relatively compact.
For a domainU in X, define
V) = {ue A [ de+ [ arew <ol
Fe(U) = {u e F(U): The essential support af is compact inU},

1/2
FO(U) = the closure ofF,(U) for the norm (E(U, u) +/ u? du) .
u
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Note thatF.(U) is a linear subspace of.
The inner distance d on U is defined as

du(x, y) = inf{length¢’) | y: [0, 1] = U continuous,y(0) = x, y(1) = vy},

where

length{) = sup{z diy), yti1):neN, 0ty < - <ty < 1}.

i=1

REMARK 1.1. Suppose (Al), (AX) are satisfied. Let) C Y be open. Then
dy = dgp, where&pR is the Dirichlet-type form orlJ defined in Definition 3.1 below.
See, e.g., [15].

Let U be the completion ofJ in the inner metric.

DEFINITION 1.2. LetV be an open subset &f. Set

FoU, V)
= {f e L2.(V, n): Yopen A C V rel. compact inU with
dy(A,U\V) >0, 3f* e FOU): f* = f p-a.e. onA)},

where

du(A, U\ V) =infldy(x,y): xe A,ye U\ V}.

DEFINITION 1.3. LetV C U be open. A functioru:V — R is calledharmonic
or alocal weak solutiorof Lu =0 in V, if
() u e Fic(V),
(i) For any functiong € Fc(V), E(u, ¢) = [ fodu.
If in addition

ue F.(U,V),

thenu is a local weak solution witlDirichlet boundary conditioralongV% \U, where
V% is the completion ofV underdy.

For a time intervall and a separable Hilbert spadé, let L?(I — H) be the
Hilbert space of those functions: | — H such that

172
vl L2 —my = ([|||v(t)||,2_| dt) < 00.
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Let WX(I — H) c L%(l — H) be the Hilbert space of those functions | — H in
L?(I — H) whose distributional time derivative’ can be represented by functions in
L?(1 — H), equipped with the norm

172
[ollwig oty = ( 101 + vorR dt) < 0.

Identifying L2(X, ) with its dual space and using the dense embeddiigsL?(X,u) C
F', we set

F(l x X) = L%(1 - F)nW({ - F),
FOl x U) = LI - FO(U)) n W1 — FO)),

where 7' and F°(U)' denote the dual spaces & and F°(U), respectively. It is well-
known thatL?(I — L2(X, du)) can be identified withL2(I x X, dt x du). Let

Fioc(l x U)

be the set of all functionsi: | x U — R such that for any open interval that is
relatively compact inl, and any open subse relatively compact inJ, there exists a
function u* € F(I x X) such thatu* = u a.e. inJ x A.

Let

Fe(I xU) ={ue F(I x X): There is a compact s&¢ C U that contains

the supports ofu(t, -) for a.e.t € 1}.

For an open subsé&f c U, let Q =1 xV and let

FooU, Q)

be the set of all functiona: Q — R such that for any open intervdl that is relatively
compact inl, and any open seA C V relatively compact ifJ with dy (A, U \V) > 0,
there exists a function® € F°(1 x U) such thatu® = u a.e. inJ x A.

DEFINITION 1.4. Letl be an open interval and C U open. SetQ = | x V.
A function u: Q — R is alocal weak solutiorof the heat equatiod;u = Lu in Q, if

(i) ue Foc(Q),

(i) For any open intervall relatively compact inl,

Vo € Fo(Q), /J<%u ¢>Ff dt+[J€(u(t, ), (t, -))dt = 0.

If in addition
ue 7., Q),
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thenu is a local weak solution wittDirichlet boundary conditioralong V& \ U.

REMARK 1.5. We will abuse notation in writing/ d;u¢ du for the pairing
((9/0)u, @) 7, 7.

1.2. Volume doubling, Poincaré inequality, and Harnack inguality. Let
(X, u, £, F) be as in the previous section. L¥tC X be open.

We say that X, ) satisfies thevolume doubling propertpn Y, if there exists a
constantDy € (0, co) such that for every balB(x, 2r) C Y,

(vD) V(X, 2r) < DyV(x,r),

whereV(x, r) = u(B(x, r)) denotes the volume oB(X, r).
The symmetric Dirichlet spaceX( u, £, F) satisfies thePoincaré inequalityon Y
if there exists a constarf®y € (0, o) such that for any balB(x, 2r) C Y,

(PI) VfeF, |f — fg|du < PyrZ/ dr(f, f),
B(x,r) B(x,2r)

where fg = fB(m f du/V(x,r) is the mean off over B(x,r).
For anyse R, t > 0,68 € (0, 1) andB(x, 2r) C Y, define

| =(s—1tr?,s),

B = B(x,r,),

Q=1xB,

Q = (s— (3+8)rr2,s_ (3—8)rr2) « 3B,
4 4

Qi = (s— @+ o) +j)”2,s) x 8B.

DEerINITION 1.6. The Dirichlet form €, F) satisfies theparabolic Harnack in-
equalityon Y if, for any = > 0, § € (0, 1), there exists a constahiy(z, ) € (0, c0)
such that for any balB(x, 2r) C Y, anys € R, and any positive function € Fioc(Q)
with 8;u = Lu weakly in Q, the following inequality holds,

(PHI) sup u(z) < Hy inf u(2).

zeQ_ zeQ
Here both the supremum and the infimum are essential, i.eputath up to sets of
measure zero.

The parabolic Harnack inequality implies tledliptic Harnack inequality

(EHI) sup u(z) < Hy inf u(2),

zeB(X,r) zeB(X,r)
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whereu is any positive function inFi,(Q) that is a local weak solution dfu = 0 in
B(x, 2r). Also, (PHI) implies the Holder continuity of local weaklgtons.

Theorem 1.7. Let (X, u, £, F) be a strongly local regular symmetric Dirichlet
space. Assume that the intrinsic distange ghtisfies(Al) and (A2). Then the follow-
ing properties are equivalent
(i) (&, F) satisfies the parabolic Harnack inequality on X.

(i) The volume doubling condition and the Poincaré inequality satisfied on X.
(iif) The semigroud P;)i~o admits an integral kernel @, X, y), t > 0, X, y € X, and
there exist constants; cc,, C3, ¢4 > 0 such that

C1 de (X, y)?
V(x, VO ex'o(_ ot

for all x,y e X and all t> 0.

_M)

C3
) =ptnn= g oe -G

Proof. For a detailed discussion see [31], [32], [34], and].[3 ]
The following theorem is a special case of Theorem 2.8 below.

Theorem 1.8. Let (X, u, &, F) be a strongly local regular symmetric Dirichlet
space and YC X. Suppose that€, F) satisfies(Al), (A2-Y), the volume doubling
property (VD) on Y and the Poincaré inequalifPl) on Y. Then(&, F) satisfies the
parabolic Harnack inequality on Y. The Harnack constantetefs only on B, Py,
T, 0.

DEFINITION 1.9. If each pointx € X has a neighborhoolty for which the hy-
potheses of the above theorem are satisfied, then we sayhinatptice idocally of
Harnack-type

ExampPLES 1.10. (i) Let (M, g) be a Riemannian manifold of dimensian
Since M is locally Euclidean, it is locally of Harnack-type. Suppothe Ricci curva-
ture of M is bounded below, that is, there is a constint O so that the Ricci tensor
is bounded below byR > —Kg. Then the volume doubling condition and the Poincaré
inequality hold uniformly on all ballsyy = B(x,r), x € M, r € (0, R), with constants
Dw and Py depending onv'K R, hence the parabolic Harnack inequality holds. See
[30, Section 5.6.3]. In particular, i = 0 then volume doubling and Poincaré inequal-
ity hold true globally with scale-invariant constants.

(i) Let M be a complete locally compact length-metric space of finisuddlorff di-
mensionn > 2. M is called anAlexandrov spagceif its curvature is bounded below by
someK € R in the following sense. For any two poinksy € M, let yyy be a minimal
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geodesic joiningk to y with parameter proportional to the arc-length. Then for &y
angle Axyz consisting of the three geodesiggy, yyz ¥zx, there exists a comparison
triangle AXyz in a simply connected space of constant curvatirsuch that

d(x,y) =d(X,y), d(y,2) =d(¥,2), d(z x)=d(zX)
and
d(ny(S)a J/xz(t)) = d(yf(fl(s)v yii(t)) for any s, te [01 1]

Alexandrov spaces arise naturally as limits (in the Gronidausdorff topology) of se-
guences of closed Riemannian manifold¢n, K, D) of dimensionn, diameter at most
D, and with sectional curvature bounded below Ky R.

On any Alexandrov space there is a canonical strongly loegllar symmetric
Dirichlet form (£, F) on L?(M, H"), whereH" is the Hausdorff measure in dimension
n, given by

E(f, g):/M(Vf, vg) dH",

F = Wg(M).

The inner product -, -), the gradientV and the Sobolev spad&/}(M) are Riemann-
ian like objects that are provided by the Alexandrov spacecgire. Concrete descrip-
tions of these objects as well as of the associated infinig@sgenerator (Laplacian)
are given in [21].

Let Y € M be open and relatively compact. Like in the case of a manifalth
Ricci curvature bounded below, it is proved in [21] that theidhlet form (£, F) sat-
isfies the volume doubling condition and the Poincaré inkiyuan Y, as well as con-
ditions (Al) and (A2Y).

(i) Let 2 be an open, connected subset®t. Let X;, 0 <i <k, be smooth vector
fields on R" which satisfy Hérmander’s condition, that is, there is ateger N such
that at any pointx in @, the vectorsX;(x) and all their brackets of order less than
N + 1 span the tangent space»at Let w be a smooth positive function cR" such
that w and w™ are bounded. Then the symmetric Dirichlet form

k
et9 = [ Y Xfxgodu fger,

Qi

where the domair¥ is the closure ofC5°(2) in the €(-,-)+||-]l2)-norm, is sub-elliptic.
That is, for any relatively compact set there exist constants, € such that

E(f, ) = clfl3., feCe(Q)

where | T2, = [1T(€)2(1+ £]?)° d&. See [17].
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The distanceds induced by €, F) satisfies conditions (A1) and (A2), see [19].
Moreover, the Poincaré inequality, [18], and the volume diagbcondition, [28], hold
true locally.

2. The Dirichlet form (&, D(E))

2.1. Non-symmetric forms.

DEFINITION 2.1. Let €, F) be a bilinear form onL?(X, u). Let EY™(u, v) =
(1/2)(E(u, v) + (v, u)) be its symmetric part ands(u, v) = (1/2)(E(u, v) — E(v, u))
its skew-symmetric part. Ther€(F) is a coercive closed formif
() F is a dense linear subspace lof(X, 1),

(i) (EY™ F) is a positive definite, closed form oo?(X, u),
(ii) (&, F) satisfies thesector conditioni.e. there exists a consta@ > 0 such that

1£9"(u, v)| < Co(Ex(u, u)"*(Ex(v, V)2,
for all u, v € 7, where& (f, g) = £(f, 9) + [, fgdu.

Coercive closed forms are discussed in [25]. Every coerciosed form £, F) is
associated uniquely with an infinitesimal generator[@(L)) and a strongly continuous
contraction semigroupR);-q. Furthermore, the form

& (f,9):=&(g, ),

D(&¥) := F.
is also a coercive closed form. Its infinitesimal generatot, ©(L*)) is the adjoint
operator of [, D(L)), and for its semigroupR*);-o, P* is the adjoint ofP; for each

t > 0. If these semigroups admit continuous kernptsand p, respectively, then the
kernels are related by

p*(t, x,y) = p(t,y,x), Vt>D0, V¥x,ye X.

Throughout the paper we will use the notatianv b = maxa, b} anda A b =
min{a,b} for a,b e R. For any f € L?(X,u), let f+ = max f,0} and f A1 = min{f,1}.

DEFINITION 2.2. A Dirichlet form (£, F) is a coercive closed form such that for
all u e F we haveut A1 € F and the following two inequalities hold,

Eu+utAl,u—utal)=>0,

Eu—-utAl,u+utAal)>0.

)

This definition is equivalent to the property that the semigr (P;);.o associated with
the coercive closed form€( F) and its adjoint P*).o are both sub-Markovian.
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The symmetric par€Y™ of a local, regular Dirichlet form can be written uniquely as
EVM(£, g) = £3(f, g) +/ fgde, forall f,geF,

where &3 is strongly local ande is a positive Radon measure. LEtbe the energy
measure of the strongly local paf®.

EXAMPLE 2.3. On Euclidean space, consider the form
n n n
E(f, g)=/ > a o tog dx+/Zbi8i fg dx+/Z fdog dx+/cfg dx
ij=1 i=1 i=1

where the coefficienta = (&), b = (), d = (d;), ¢ are bounded and measurable with
c—divb =0 andc—divd = 0 in the distribution sense, andiz e R", >, ; & j&i&j =

€l€?, e > 0. Then €, F) with domain F = W}(R") is a Dirichlet form.
Setd; j := (g,; +4a;,)/2 and& ; = (&,j —a,,;)/2. Then the symmetric part &f is

n n b+d
é’sym(f,g)=/ Za,,-aifajgdm/z '2 Lo fg dx
i i=1

i,j=1
n
b +d
f————0 f
+/§ 5 .gdx+[cgdx,
while the skew-symmetric part & is

n n
g = [ 3 asntogdcr [ Y2 o rgdx
i=1

ij=1
1 b +d
f———dgdx
+/z g dx

The symmetric par€>™ can be decomposed into its strongly local part

n
(fg) =Y /a-,jai fa;g dx

ij=1

and its killing part, wherec is given by

/Wd;c:;/(C—divb—kc—divd)wdx, ¥ € CE(R").
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2.2. Assumptions on the forms. We fix a symmetric strongly local regular
Dirichlet form (é, F) on L%(X, 1) with energy measuré’. Let Y c X and assume
that the intrinsic metriadd = d; satisfies (A1)—(AZ2Y).

Let (£, D(£)) be a (possibly non-symmetric) local bilinear form @R(X, ).

AssumMPTION 1. (i) (&,D(€)) is a local, regular Dirichlet form. Its domaiD(€)
is the same as the domain of the foré) F), that is,D(E) = F. Let Cy be the constant
in the sector condition for&g, F).

(i) There is a constan€C; € (0, co) so that for all f, g € Fioc(Y) with fg € Fc(Y),

cit [ i@ o= [ f2arg o =c [ a9

whereT is the energy measure &F.
(iii) There are constant€,, Cs € [0, 0o) so that for all f € Fioc(Y) with 2 € F(Y),

1/2 . 1/2
/fsz§2(/ fzdu) (Cg/dl“(f, f)+C3/ deM)

(iv) There are constant€,, Cs € [0, oo) such that for allf € Fioc(Y) N Lx(Y), g€
Fe(Y) N L(Y),

1/2 1/2
|€skeW(f, fg2)| < 2(/ f2 df‘(g, g)) (C4/ 92 df‘(f, f) +C5[ f292 d/L) .

ASSUMPTION 2. There are constantSg, C; € [0, 0o) such that

12 12
|5SkeW(f, f7192)| < 2(/ df(g, g)) (CG/ 92 df(|Og f, |Og f))

1/2 1/2
+2(/ dr'(g, g)—i—/gzdf“(log f, log f)) (C7/gz du) ,

for all 0 < f € Fioe(Y) with f + f~1 e L2(Y), and allg € F(Y) N L*®(Y).

REMARK 2.4. (i) Assumptions 1 and 2 are more restrictive than Asgiomp 1
and 2 in [23]. Here, we assume in addition thét F) is a time-independent Dirichlet
form. In particular, £, F) is positive definite and Markovian.

(i) Assumption 1 (ii) holds if and only if for allf € F.(Y),

CrEE(f, f) < E%(1, f) < CLE(f, f).
See, e.g., [27].

(i) &€ satisfies the above assumptions if and only if the adjéiftf, g) := £(g, )
satisfies them.
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(iv) If Assumption 1 (iv) is satisfied wittC4 = 0, then Assumption 2 is satisfied with
Cs = 0. To see this, apply Assumption 1(iv) &€ f, f1g?) = W f, f(f1g)?).
(v) Assumptions 1 and 2 are satisfied by the classical formEuriidean space asso-
ciated with the example given in the introduction. The can&tC,, Cs can be taken
to be equal to O only if j is symmetric for alli, j, andC;, Cs, C7 can be taken to
be equal to 0 only ifoy =d; = 0 for all i (i.e., if there is no drift term).

Let
) 1/2
Cg:=Co+C;"+Cs+Cy.

2.3. Parabolic Harnack inequality. Let (X,u,é,]-‘) be a strongly local regular
symmetric Dirichlet space and C X. Assume (Al)-(A2Y). Let (£, F) satisfy As-
sumptions 1 and 2. LetiL(, D(L)) be the infinitesimal generator associated wihX).

DEFINITION 2.5. LetV Cc U C X be open subsets. A functiam: V — R is a
local weak solutionof Lu =0 in V, if
() u € Fioc(V),
(ii) for any function ¢ € F¢(V), E(u, ¢) = 0.
If in addition

ue F.(U,V),
thenu is a local weak solution witiDirichlet boundary conditionalong V% \ U.

DEFINITION 2.6. Letl be an open interval and¥ C U open. SetQ =1 x V.
A functionu: Q — R is alocal weak solutiorof the heat equatiod;u = Lu in Q, if

() ue Fie(Q)

(i) For any open intervall relatively compact inl,

V¢ € F(Q), [J[V%mb du dt+/J5(u(t, ), ¢(t, -))dt = 0.

If in addition
u € ‘7:|(C))C(U1 Q)!

thenu is a local weak solution wittDirichlet boundary conditioralong V& \ U.

Analogously to Definition 1.6, we can describe the elliptidgparabolic Harnack
inequalities for local weak solutions dfu = 0 andd;u = Lu, respectively.

Lemma 2.7. Suppos€€, F) satisfies(Al), (A2). A function u | — F is a local
weak solution ofd;u = Lu on Q=1 x U if and only if
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() uel?(l — F),
(if)

d
®) -[ <ﬁ¢, ”>p,fdt + [ 06 D=0

for all ¢ € F(Q) with compact support in k U.
Proof. See [12, Lemma 5.1]. ]

Theorem 2.8. Let (X,u,é‘,}') and (£, F) be as above and ¥ X. Suppose that
(€, F) satisfiesAssumptions 1, 2and (é, F) satisfies(Al), (A2-Y), the volume dou-
bling property(VD) on Y and the Poincaré inequalif?l) on Y. Then(&, F) satisfies
the parabolic Harnack inequalityPHI) on Y. The Harnack constant depends only on
Dy, Py, 7, 8, C1—C; and an upper bound on 422.

Proof. See [23]. ]

Corollary 2.9. Let (X, u, g, F), (£, F) and Y C X be as inTheorem 2.8 Fix
T >0andé € (0,1) Then there exisB € (0, 1) and H € (0, o0) such that for any
B(x,2r) C Y, s> 0, any local weak solution ofiu = Lu in Q = (s—1r?,s)x B(x,r)
has a continuous representative which satisfies

{ lu(t, y) —u(t’, y)
ey t.y)eQ LIt =t1Y2 4+ de(y, y)F]

H
} < — supu|
ré Q

where Q = (s— (3+ 8)tr?/4,s— (3—8)tr?/4) x B(x, ér). The constant H depends
only on Dy, Py, 7, 8§, C1—C; and an upper bound on 422.

Proof. See, e.g., [30]. ]

3. Green functions estimates and inner uniformity

3.1. Dirichlet-type form. For the rest of the paper, we fix a symmetric strongly
local regular Dirichlet spaceX u, g, F) and an open subséat C X. Suppose (Al)-
(A2-Y), the volume doubling condition (VD) ol and the Poincaré inequality (PI) on
Y hold. Let ¢, F) be a bilinear form which satisfies Assumptions 1 and 2. Réhat
by Theorem 2.8L and L* satisfy (PHI) onY.

DEFINITION 3.1. LetU be an open subset of. The Dirichlet-type form orlJ
is defined as

ED(f,9):=E(f,g), f,geFoU).



SCALE-INVARIANT BOUNDARY HARNACK PRINCIPLE 633

The form €5, 7°(U)) is associated with a semigroup?(t), t > 0. Using the
reasoning in [32, Section 2.4], one can show that) i€ Y, then the semigrou;PUD(t)
admits a continuous integral kernpf (t, X, y). Moreover, the magy — pg(t, x, y) is
in FO(U).

The extended Dirichlet spacg’(U). is defined as the family of all measurable, al-
most everywhere finite functionssuch that there exists an approximating sequenges
FO(U) that is a Cauchy sequence with respect to the npfifio), := £5(f, f)¥2, and
u = lim up u-almost everywhere. g9, F°(U)) is transient theiF°(U), is complete by
[13, Lemma 1.5.5].

The Green function ot is defined as

GB(x,y):=[ p(t, x, y)dt, x,yeU.
0

3.2. Capacity. The potential theory for symmetric regular Dirichlet forissde-
veloped in [13, Chapter 2]. The potential theory of non-syetnn Dirichlet forms is
treated in [25]. In this section, we recall some definitiomsl dacts that we are going
to use.

LetU C Y be open. Assume thagf,F°(U)) is transient. For any open sétC U
define

Lay ={weDEF): w>1ae. onA}.

If Lau # 9, then there exist unique functiore 1, éa1 € Layu such that for allw €
Lau it holds

4) Ei(ea1, w) = E1(ea1, €a1) and Ei(w, €a1) > £1(€a 1, €a1).
Notice that this implies thafi(ea 1,€a1) = £1(ea 1,€a1) = £1(éa 1,64 1). Moreover, for
any openA Cc U such thatlay # @, ea1 is the smallest functio on U such that

uAlis a 1-excessive function iD(£0) andu > 1 on A. See [25, Proposition 111.1.5].
The Zcapacity (with respect to &, 7)) of A in U is defined by

Ei(ea1 €a1), Lau # 9,
+00, Lay =0.

Capy 1 (A) = {
The 1-capacity is extended to non-open sats U by
Cap1(A) = inf{Cap, ,(B): AC B C U, B oper.

The Ocapacityis defined similarly, with&; replaced bye and F°(U) replaced by
the extended Dirichlet spacg®(U)e.
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Now assumeA C X is closed. By [10, Proposition VI.4.3ka0 = Guva is a po-
tential. Hence, for the equilibrium measurg it holds

Cany o(A) = E(enc eno) = EGuva eno) = / &5 dva = vaU).

Let (’Z\a/pjyl(A) = £1(€} 1, €3 1) be the 1-capacity with respect to the strongly local
part £3 of the symmetric par£s™.

Lemma 3.2. For any subset ACU C,
Cap, 1(A) < Cap, 1(A) < C Cap, 4(A),
where C= (1 + Co)%(2 + C,C; + 2C¥/%).

Proof. It suffices to consider an open sktC U. By (4), the Cauchy—Schwarz
inequality, the sector condition and Assumption 1,

E1(ea1, ea1) < &1(ea 1, €x 1)
< (L4 Co)(Ex(E 1, €x 1) YA(E(en 1, ea )Y

=1+ Co)(2+ CiCo + 2C§/2)5f(esA,1, &5 D)4 (Exenr, ea )2
Hence,
Capy 1(A) = Eiear, ea1) < CE(EL 1, €41) = C Capy 1(A),

whereC = (1 + Cp)?(2 + C1Cy + 2C§/2), On the other hand, by (4) and the Cauchy—
Schwarz inequality,

E(Er 1, €a1) < E1(en1, €h 1) < (E1(ER 1, esA,l))l/z(gf(eA,l, ea)"?
< (&3 1. €A D)2 (Enlen 1, ea )Y

Therefore,
Capy 1(A) = E5(€h 1, €3 1) < E1(ea, ear) = Capy 1(A). O

For a ballB(x, 2R) C Y, let

&b f, f
P N A LD
o£feroBxR) [ f2du

be the lowest Dirichlet eigenvalue efLY™ on B(x, R). Note thatir > C/R? for
some constan€ > 0 depending orDy and Py (see, e.g., [16, Theorem 2.6]). For any
f € FO(B(x, R)), we have

(5) Eapr(fs 1) = Egma(fs F) < L+ ADEGK p(F) )
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Let f € FO(B(x, R))e. Then there is an approximating sequengg {n F°(B(x, R)) such
that g, w(fn— fm, fa— fm) -0 asn, m— oo, and f, — f almost everywhere. Thus,

EBD(X’R)J( fo— fm fn— fn) < (1 + A;})EBD(X’R)(fn — fm, fn— fm) = 0,
hence FO(B(x, R))e = F°(B(x, R)). In particular,egx r)0 € FO(B(X, R)).
Theorem 3.3. SupposeX, u, &, F) satisfies(A1)—-(A2-Y), (VD) on Y and(PI)

on Y, and (£, F) satisfiesAssumptions land 2. Then there are constants A& € (0,00)
such that for any re (0, R) and any ball Bx, 2R) C Y we have

(R s _ R s
(®) Al/r Vix 9 95= (CaRr.o(BOG 1) 15A/r Vix s °

The constant A depends only on,,DPy, Co, C:C; + 2C31/2 and an upper bound on
AL, where g is the smallest Dirichlet eigenvalue efLY™ on B(X, R).

Proof. Letr € (0, R) and B = B(x, r). First, consider the estimate

R R
-1 S < -1< —S
@) A fr Vix, g 95 = CaRpr o BOG M) < A/r V(.9 4°

The lower bound is proved in [33, Theorem 1] using the stramzality of £5. The
upper bound can be proved as in [14, Lemma 4.3] using the reraekestimates of
Theorem 3.9 below.

If (&, F) is symmetric and strongly local, then Gg@pg)o(B) is the same as

Capsr)o(B), hence the assertion follows. Otherwise, we show that the t
O-capacities are comparable. In view of Lemma 3.2, it sudfitee show that

1
C Capx,r),0(B) = Capsy r),1(B) = C Capyy r),o(B)

and

1 — — —_—
ol Capyx Ry 0(B) = Caps r),1(B)C’ Capsy r)o(B)

for some constantg, C’ € (0, c0).

&(es,0 €8,0) < £(€8,0, €8,1) < (14 Co)€1(es,0, €8,0)"/*€1(€B,1, €8,1)"?
< (L+ Co)(1+ AN "?E(es,0, €8,0)*E1(€8,1, €8,1) 2
Hence,
Capyx,Rr)o(B) = (1 + Co)*(1+ A5 Capsy,r),1(B)-
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Similarly, we get
E1(es 1, €s.1) < (L + Co)?E1(em.0, €8.0) < (1 + Co)*(1 + ARH)E(EB.0, €8,0),

and hence,
Capyx r).1(B) < (14 Co)*(1 + Ag") Capyy ry.o(B)-

By similar arguments, it follows thaﬁ/pB(X’R)’o(B) and C’Z?pr(X’R)’l(B) are comparable.
O

From now on, we only consider the O-capacity, and thus drepirtdex O.

3.3. (Inner) uniformity. Let @ C X be open and connected. Recall that the
inner metricon  is defined as

da(x, y) = inf{length¢/) | ¥ : [0, 1] — € continuous,y(0) = x, y(1) = vy},

and 2 is the completion of2 with respect tod,. Whenever we consider an inner ball
Bs(X, R) := {y € Q: da(X, ¥) < R} or Bg(x, R) := Bg(x, R) N 2, we assume that its
radius is minimal in the sense th8(x, R) # Ba(x,r) for all r < R.

For an open seB C  let 35B = B™ \ B be the boundary oB with respect
to its completion for the metridg. This should not be confused with the boundary
dxB =B\ B in (X,d). Let 3B = QN d5B be the part of the boundary that lies in
Q. If x is a point in 2, denote bydsq(x) = d(x, X \ Q) the distance fromx to the
boundary of$Q. For a subse®A C ©, let diamy,(A) be its diameter in @, dg).

DerINITION 3.4. (i) Lety: [«, B] — Q2 be a rectifiable curve ii2 and letc
(0,1),C e (1,¢). We cally a (c, C)-uniform curve in  if

(8) da(y(t)) = ¢-minfd(y (@), ¥ (1)), d(y(t), ¥(B))}, forall t o, B],

and if
lengthf) < C - d(y (@), ¥(8B))-

The domain2 is called €, C)-uniform if any two points inQ2 can be joined by a
(c, C)-uniform curve inQ.

(i) Inner uniformityis defined analogously by replacing the metticon X with the
inner metricdg on €.

(iii) The notion of (nner) (c, C)-length-uniformityis defined analogously by replacing
d(y(a), y(0)) by length|(a ).

The next proposition is taken from [15, Proposition 3.3]e &so [26, Lemma 2.7].
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Proposition 3.5. Assume thatX, d) is a completelocally compact length metric
space with the property that there exists a constant D sueh filr any r > 0, the
maximal number of disjoint balls of radius/4 contained in any ball of radius r is
bounded above by D. Then any connected open subsetXJis uniform if and only
if it is length-uniform.

Let 2 be a €y, Cy)-inner uniform domain in X, d).

Lemma 3.6. For every ball B= Bg(x, ) in (22, do) with minimal radius there
exists a point xe B with dy(X, ;) =r/4 and dx,, X \ ) > ¢,r/8.

Proof. This is immediate, see [15, Lemma 3.20]. ]

The following lemma is crucial for the proof of the boundanarHack principle
on inner uniform domains, rather than uniform domains. Bimiesults were already
used in [3] and [6] to prove a boundary Harnack principle onemuniform domains
in Euclidean space.

Let p: € — Q be the natural projection, namely the unique continuous s
that p|g is the identity map orf2. For anyx € € and any ballD = B(p(x), r), let D’
be the connected component pf}(D N Q) that containsx. It follows that D’ N Q is
the connected component & N €2 whose closure irf2 containsx.

Lemma 3.7. Supposeu has the volume doubling property oncY X. Then there
exists a positive constantdCsuch that for any ball D= B(p(x), r) with x € € and
B(p(x), 4r) C Y,

Bg(X, 1) C D’ C Bg(x, Car).

The constant ¢ depends only on P and the inner uniformity constants,,cC, of €.

REMARK 3.8. (i) For anyx e ,r > 0,

D'NQ = {y e Q: dgam(X, y) =T},
where theinner diameter metric g is defined as
dgiam(X, ¥) := inf{diam(y): y path fromx to y in Q},

and the diameter is taken in the metdcof the underlying spaceX d).

In the context of Euclidean space, [35, Theorem 3.4] stdtasthe inner diameter
metric and the inner (length) metric are equivalent, a siat# that is slightly stronger

than the conclusion of Lemma 3.7. The proof given in [35] egte to the present
setting. We include a proof of Lemma 3.7 for the convenientcéhe reader.
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(i) The hypothesis thaf2 is inner uniform can be relaxed to the hypothesis that any
two points in Bg(x, Cqr) can be connected by a path that is inner uniforntin

Proof of Lemma 3.7. ClearlyBq(x,r) C D’. To show the second inclusion, we
follow the line of reasoning given in [35, Proof of Theoremt]3. Replacingr by a
slightly larger radius, we may assume thaie Q. Lety € D' N Q and lete be a
path in D’ N © connectingx to y. Note that this path does not need to be an inner
uniform path. Nevertheless, there exist finitely many poMt= Xz, X2, ..., Xy = Y
on the pathe so thatde(Xj_1, Xj) = d(Xj_1, X;) for all 2=<j < N. Let M < 2r be
the diameter ofx in (X, d). By Lemma 3.6 eaclx; can be joined to a poiny; € @
with do(yj, 95R2) = cuM/4 by an inner uniform pathy; of length at mostM /2. Set
U*={y;:1=<j =N} and

M
U = LIJ Bg(yj, u4 )
Let w be the number of connected componentsUof There exists a constaf@ =
C(Dy, ¢,) such that for eaclj, we have

(o 520)) = (831 24)) = (500 24 ) =t

Hencew - Cu(B(x, M)) < u(U) < u(B(x, 2M)) and
w=<C.

We claim that ifz, z, € U* are in the same connected compon®énhtof U, then
there exists a patl8 connectingz to z, in W such that lengtt) < c;M for some
constantc; > 0 depending only ort, and Dy. SinceW is a connected component of
U, there is a finite sequenee= zy, ...,z = z, of points inU* such thatBq(z_1) N
Ba(z) # 0 for all 1 <i <k, whereB(z) := B(z,cuM/4) = Ba(z,c,M/4). We may
assume that the ballB(z) with eveni are disjoint (otherwise consider a subsequence
of (z)). Since there argk/2| of these balls and, for each u(B(z)) < w(B(2),
we get

k
5@ = ¥ uee) = uw) < ) < e, 2m),
1=j=k/2

sok < C". For eachi, we can connect_; to z by a pathg; in Q of length at most
cuM/2. Now the conjunction of the path% is a pathg of length at most

9) length) < kCuTM <caM.
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We define integers & jo < j1 <--- < js = N and distinct connected components
Wi, ..., W of U as follows. LetW; be the connected component that contajps
Assuming thatj,_; and W,,_; are defined, we iteratively defing, to be the largest
numberj such thaty; € Wh_1, and letW, be the component that contaiyg 1.

For each 1< i < s we have shown above that there exists a péthconnect-
ing yj_,+1 to y;. Let y be the conjunction of these paths, of the geodesic segments
[Xj,Xj+1], 1 <i <s—1, and of the pathem for m= 1,1, j1+1,j2,j2+1,...,js = N.

Theny is path inQ that connect to y and has length

sM 3
length§’) < sgM + sM + - < C’(cl + E)M'

This means thaD’ C Bg(X, Cqr) with Cq = C'(2¢1 + 3). ]

3.4. Green function estimates. Recall that for an open sé&1 C X, Gy is the
Green function andp® is the heat kernel associated with(, 7°(U)).

Theorem 3.9. SupposeX, u, é, F) satisfies(A1)—(A2-Y), (VD) on Y and(PI)
on Y, and (&, F) satisfiesAssumptions land 2. Let B= B(a, R) with B(a, 2R) C Y.
(i) For any fixede € (0, 1) there are constants, € € (0, co) such that for any xy €
B(a, (1—€)R) and 0 < et < R?, the Dirichlet heat kernel B is bounded below by

c d(x, y)?
pg(t! X, y) = m exp(—C ” ),

where R = d(x, 9xB)/2.
(i) For any fixede € (0, 1) there are constants,€ € (0,00) such that for any xy € B,
t > (eR)?, the Dirichlet heat kernel B is bounded above by

pa(t, X, y) < c exp( — 2
BV = V(a R) R2)

(iii) There exist constants € € (0,o0) such that for any xy € B, t > 0, the Dirichlet
heat kernel § is bounded above by

exp=c(d(x, y)*/t) + Cat)

D <
(10) Pe(t X V) = O ViR Ry, vEA RIV2

All the constants cC above depend only onyD Py, C;—C; and an upper bound
on GR2.

Proof. See [23]. O
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Lemma 3.10. Let B(a, 2R) C Y. Then for any relatively compaaipen set VC
B(a, R), the Green function y> Gy (X, y) is in f-gc(v, V \ {x}) for any fixed xe V.

Proof. We follow [15, Lemma 4.7]. Recall that the mgp— pQ(t, x, -) is in
FO(V). The heat kernel upper bounds of Theorem 3.9 imply th&, (x, -) € L?(X,x)
for any continuous functiony with compact supporK in X \ {x}. Indeed, by the
set monotonicity of the kernel and Theorem 3.9, there arestaotsc, C € (0, o0),
depending onR, such that for alt > R2 andz, y eV,

(11) pO(t, 2, y) < Ce R,

and there are constants, C’ € (0, co) depending onR such that for allt > 0 and
z,yeV,

(12) po(t, z,y) < C'e°/t,

This shows that the integrab Gy (x, -) = f0°° ¥ p2(t, x, -)dt converges at 0 ando
in L2(X, n). Hencey Gy(x, -) is in L2(X, w).

Next, we show that the integral also convergesAf(V). Let ¢ be as above with
the additional property thatll'(y, ¥) < du on X. For fixed O< a < b < oo, set
g= fab p2(t, x, -)dt and observe thatrg, y2g € F°(V). By the Cauchy—Schwarz
inequality and Assumption 1,

EWa, ¥g) < /V @ dr(y, v) + /V dr(g, v2g) + /V 922 de

SC/(—Lg)g du +C g’du
\%

KNV
—c |  v2pl(ax, ) — plb, X, -))du+C/ o du
KNV KNV
<C gpl(a x, -)du +C g% du.

KNV KNV

for some constanC > 0 depending on sup?. Now, observe that (11) and (12)

imply that
b 2
[ o@au=[ ([ poex ) au
Knv KNV a

tends to O whema, b tend to infinity or whena, b tend to 0 (this is indeed the ar-
gument we used above to show thay(x, -) is in L%(X, du)). The same estimates
(11) and (12) imply thayfmv gpY(a, x, -)du tends to 0 whera, b tend to infinity or
whena, b tend to 0. This implies that the integréiGy(x, y) = ¥ [~ pO(t, X, -) dt
converges inF°(V) as desired. ]
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Lemma 3.11. (i) There is a constant C depending only or,P,, C;—C; and
an upper bound on §R?, such that for any ball B, 2R) C Y,

2R? ds
deyzsz V(X /3)

(i) Fix 6 € (0,1). There is a constant C depending only énDy, Py, C;—C; and
an upper bound on §R?, such that for any ball B, 2R) C Y,

(13) VX, y € B(Zv R)v GB(Z,R)(X1 y) =C

2
2R ds

14 VXx,y € B(z,0R), Gpgr(Xx,y)>C _
(14) y ( ) Bz R (X, Y) dyys2 V(% 5)

Proof. See [15, Lemma 4.8] and use the estimates of Theor@m 3. 0

Recall that for an open sé&l C X, By(x,r) ={y e U: dy(x,y) <r}, wheredy
is the inner metric of the domaib. Let Gg, ) be the Green function oBy (x, r).

Lemma 3.12. Fix 6 € (0, 1) Let U C X be an open set.
(i) There is a constant C depending only énDy, Py, C,—C; and an upper bound
on GgR? such that for any B, 2R) C Y,

R2
V(x, R)’

(15) GeyzRrR (X Y) = Gune@er(X, y) =C

for all x, y € U N B(z, R) with d(x, y) > 6R.

(i) Let U be an open subset so thdt ¢ Y. Consider a ball B(z, 2R) c Y and
suppose that any two points inyB, §R) can be connected by @,, C,)-inner uniform
curve in U, for somed < 1/3. Then there is a constant C depending only &QnDy,
Py, ¢y, Cy, C1—C; and an upper bound on gR?, such that

R2
V(x, R)’

(16) Geyzr(X, y)=C

for all x,y € By(z,§R) with d(x, X\ U), d(y, X\U) € (R, 00) and d,(x,y) < §R/C,.

Proof. We follow the line of reasoning of [15, Lemma 4.9]. $&t= B(z, R),
W = U N B(z, R). The upper bound (15) follows easily from Lemma 3.11 and the
monotonicity inequalityGy < Gg. By assumption, there is an > 0 such that for any
X,y as in (ii), there is a path it from x to y of length less tharC,dy(x, y) <R
that stays at distance at leastR from X \ U. Sincex, y € By(z, 6R) and§ < 1/3,
this path is contained in

Bu(z, R N{¢ eU:d(c, X\U) > eR}.
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Using this path, the Harnack inequality easily reduces ¢iwe=t bound (16) to the case
when y satisfiesd(x, y) = nR for some arbitrary fixed; € (0, ¢;) small enough. Pick
n > 0 so that, under the conditions of the lemma, the B, 2nR) is contained in
By(z, R). Let W = By(z, R). Then the monotonicity property of Green functions im-
plies thatGw(X, y) > Ggx.yr)(X, ¥). Lemma 3.11 and the volume doubling property
then yield

2

V(x, R)’

GW(X1 y) 2 C

This is the desired lower bound. O

4. Boundary Harnack principle

4.1. Reduction to Green functions estimates. Let (X,M,é’,]-“) be a symmetric
strongly local regular Dirichlet space antlC X. Suppose (Al)—(A2¢), the volume
doubling condition (VD) onY and the Poincaré inequality (PI) ori hold. Suppose
that €, F) satisfies Assumptions 1 and 2. We obtain that under thesamgsi®ns,
local weak solutions oLu = 0 (resp.L*u = 0) in Y are harmonic functions for the
associated Markov process and, hence, satisfy the maximimoigle. This can be
proved following the line of reasoning given in [13, Theordm3.2, Lemma 4.3.2] and
using [25, Proposition V.1.6, Proof of Lemma 111.1.4]. Sdeoa[22].

Let @ be a domain so tha® C Y. For& € 35Q, setBq(&,r) := By(€,r)NQ. Let
cu €(0,1) andC, € (1,00). Let Az =12((2+2C,)VvCq), Ao = A3+7, Ay =2/c,+ 1,
and Ag = 2(Ao Vv 7A;7). Recall thatp : @ — K is the natural projectionp(x) = x for
x € Q) and Cgq is the constant defined in Section 3.3. Rok 952, let R: be the
largest radius so that
i) B(pE). AsR) Y,

(i) (AoV 26/cy)Re < diamp(2)/2 if € is a bounded domain,
(iii) any two points inBg(&,(Ao+8/cy)Re) can be connected by a curve thatdg, Cy)-
inner uniform in Q.

Theorem 4.1. There exists a constant}/Ae (1, oo) such that for anyt € 95
with R: > 0 and any

O<r <R=inf{Re: & € By(&, TRe) \ 22},
we have
Gy(x,y) _ o GrxY)
GY’(X/! y) - lGY’(Xli y/),

for all x,x" € Bg(&,r) and v,y € 3oBq(&, 6r). Here Y = Bq(&, Aor). The constant
A depends only on @ Py, ¢, Cy, Co—C7, and an upper bound on 4R
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The proof of this theorem is the content of Section 4.2 bellivis based on the
estimates for the Green functions in Section 3.4.

Theorem 4.2. Let (X, u, g, F) be a strongly local regular symmetric Dirichlet
space that satisfiefAl), (A2-Y), (VD) and (Pl) on Y C X. Suppos€é&, F) satisfies
Assumptions land 2. Let 2 C Y be a bounded inner uniform domain (X, d). There
exists a constant Ae (1, co) such that for any € 9522 with R: > 0 and any

0<r <R<inf{Ro: & € By, 7TR:) \ 1},

and any two non-negative weak solutionsvuof Lu = 0 in Y’ = Bg(&, 12Cqr) with
weak Dirichlet boundary condition alonggé, 12Cqr) \ 22, we have

u(x) - v(X)
ue) = o)’

for all x,x" € Bq(&,r). The constant Adepends only on the volume doubling constant
Dy, the Poincaré constant R the constants g-C; which give control over the skew-
symmetric part and the killing part of the Dirichlet forrthe inner uniformity constants
cu, Cy, and an upper bound on ¢R?.

REMARK 4.3. (i) The hypothesis tha®: > 0 can be understood as “local inner
uniformity”. Clearly, R > 0 holds true at every boundary poifitof an inner uniform
domain. Since the statement of Theorem 4.2 is local, it isimhto only require that
points nearé can be connected by inner uniform curves.

(i) A consequence of Theorem 4.2 is that the ratic of the two local weak solu-
tions u and v is Holder continuous.

(iii) As an application of the geometric boundary Harnackngple of Theorem 4.1,
two-sided estimates of the Dirichlet heat kernel on inneifourn domains have been
obtained in the companion paper [24].

Theorem 4.4. Let (X, u, g, F) be a strongly local regular symmetric Dirichlet
space that satisfieAl), (A2-Y), (VD) and (PI) on Y C X. Suppos€¢, F) satisfies
Assumptions land 2. Let 2 C Y be a bounded inner uniform domain (X, d). Then
the Martin compactification relative t¢€, F) of € is homeomorphic ta2 and each
boundary pointt € Q\ Q is minimal.

Proof. The assertion can be proved along the line of [3, Tdraot.1] using the
boundary Harnack principle of Theorem 4.2. ]

Proposition 4.5. Let & € ©\ € with R >0 LetO<r <R:.. Let f be non-
negative harmonic on g, 2Cqr) with Dirichlet boundary condition alonddg$2) N
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Bs(&, 2Cqr). Then there exists a positive Radon measuresuch that

(17) f(x) =/ Gaoe.r)(X, ¥) dvt(y), VX € Ba(,r), R> 2Cqr,
9o Ba(§,r)

where f is a modification of f that is continuous onu&, 2r).

Proof. Lety € Fo(B(p(£), 2r)), 0 < ¢ < 1, be a cutoff function that is 1 on
B(p(&), r), where p: @ — Q is the natural projection. LeB’ be the connected com-
ponent of p~1(2 N B(p(£), 2r)) which containsé. By Lemma 3.7, we haveB’' C
Bs(&, 2Cqr). Let B, = B'N Q. Set

u:= flﬁle

and observe thafl € F9(Bqg(£, 2Cqar)). Let R > 2Cqr, V = Bo(£, R), A = {Xx €
Q:dg(€,x) <r} and F = doBg(£, r). Let u € FO(Bg(£, 2Cqor)) be a function that
equalsu on A and is superharmonic ovi. By the 0-order version of [29, Theorem 1.4.1,
Theorem 2.3.1]u is a potential.

Let ua and ug be the reduced functions af on A and F, respectively. Sincel
is harmonic onA, it follows from the O-order version of [29, Theorem 2.4.2dgn 62]
thatu = up = ug a.e. onA. Let upn andug be the reduced functions of on A and
F, respectively. Sincel is harmonic onA, it follows from the O-order version of [29,
Theorem 2.4.2] thati = up = Ug a.e. onA. Let ur be the O-sweeping out of on F,
that is, ug is a positive Radon measure with support containedr iand ug = U ug.
By the 0-order version of [29, Theorem 2.3.5],

e2(ur ) = [ Tur@0, Vo e PV
F
Applying this tov = Gy ¢ for suitable test functiong, we obtain
| ur 0000 a0 = 8we, 1) = [ [ G4y, 0660 dia) dur ()
\ FJV

-/ ( [ ovxy dMF(y))¢(X) duu(x).

Hence,

uF(x)=/ Gy(y, X)dup(y) for wp-ae.xeV.
F

Since f(x) = u(x) = ug(x) for u-a.e.x € Bq(&, r), the assertion follows fop-a.e.
X € Bq(&,r). Since f is harmonic, it satisfies EHI, hence admits a continuous fiodi
cation f. Also, the Green function is continuous. Hence, the asseftllows. O
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Proof of Theorem 4.2. Fi% € 9522 and O<r < R as in the theorem. LeY’' =
Ba(&, Agr). Let u, v be local weak solutions of Lu = 0 in Bg(&, 12Cqr) with weak
Dirichlet boundary condition alon®g (&, 12Cqr) \ ©2. By Proposition 4.5, there exists
a Borel measurey, such that

(18) u(x) = /3 ey SO RO, ¥x € Bt 61,

By Theorem 4.1, there exists a constaiif € (1, co) such that for allx, x' e
Bq(g,r) and ally, y € 9oBq(&, 6r), we have

GY'(Xv y) < A GY’(X! y/)
Gy (X, y) ~ Gy(X,y)

For any (fixed)y’' € 9oBq(&, 6r), we find that

1 GY’(X! y/) ’
—UuxX) < ——— Gy (X, dvy
KW= gy L ey dn)
GY’(Xv y/) ’ ’
= ———u(x") < Aju(x).
oy = A0

We get a similar inequality fop. Thus, for allx, X" € Bg(&, ),

LU _ Gk y) _ v -
A UKX) ~ Gyl y) ~ Hue)

(19)

4.2. Proof of Theorem 4.1. We follow closely [1] and [15]. Notice that the
estimates for the Green functio®d in Section 3.4 and the results in this section also
hold for the adjointG*. Let 2, Y be as above and fi& € 95Q with R > 0.

DEFINITION 4.6. Forn € (0, 1) and any open sé&f C X, define thecapacitary
width w,(U) by

Capy (B N\U) _ }

wﬂ(U)zinf{r >0: Vx e U, —
Capsy,2r)(B(X, 1))

where infd := +oo (e.g., when Cag, »)(B(x, r) is not well-defined.)

Note thatw,(U) is an increasing function of € (0, 1) and an increasing function
of the setU.

Lemma 4.7. There are constants /A (0, o) and n € (0, 1) depending only on
Dy, Py, ¢, Cu, Co—C7, and an upper bound on ¢R?, such that for all0 <r <
R < 2R,

wy({y € Bg(§, R): da(y, 9552) < r}) = Asr.
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Proof. We follow [15, Lemma 4.12]. LeY, = {y € By(¢, R): da(y, 952) < r}
andy € Y;. Sincer < ¢, diamg(£2)/12, there exists a point € 2 such thatdo(x, y) =
4r /cy. By assumption, there is an inner uniform curve connectintp x in Q. Let
Z € dgBq(y,2r /c,) be a point on this curve and note thdf(y,2) = 2r /¢y < do(X,y)—
da(y, 2) < dg(X, 2). Hence,

do(z, 052) > ¢, min{dg(y, 2), do(z, X)} = 2r.

So for anyy € Y, there exists a point € 9o Bq(y, 2r /c,) with dq(z, 05€) > 2r. Thus,
B(z,r) C B(y, Arr)\Y; if Az =2/c,+ 1. The capacity oB(y, A;r)\Y; in B(y, 2A:r)

is larger than the capacity d8(z, r) in B(y, 2A7r), which is larger than the capacity
of B(z,r) in B(z, 3A7r). Thus, by Theorem 3.3, we have

Ca%(y,ZAﬂ’)(B(y! A7r) \ Yr) - Ca%(zﬁAﬂ,)(B(Z, r)) - n
Can3(yv2A7f)(B(y’ A) CagB(y,ZAﬂ)(B(yv Arr)) ’

for somen € (0, 1). Hence, for this), we havew,(Y;) < Asr. ]

Write w(U) := w,(U) for the capacitary width of an open setc 2, wheren is
the same constant as in Lemma 4.7.

The following lemma relates the capacitary width to thdnarmonic measure. A
similar inequality holds for thd *-harmonic measure*. We write f =< g to indicate
thatcg < f < Cg, for some constants, C € (0, o) that depend only oDy, Py, ¢,
Cu, Co—Cy7, and an upper bound ofigR?.

Lemma 4.8. There is a constant @Dy, Py, Co — C7, CgR?) such that for any
non-empty open set d X and any ball Bx,3r) C Y with xe U, O0<r < R, we have

aur
@ungn(X, U N9xB(X, 1)) = exp(2 - w(lU)).

Proof. We follow [1, Lemma 1] and [15, Lemma 4.13]. We may assuthat
r/w(U) > 2. For anyx € (0, 1), we can pickw(U) <s < w(U) + « so that

Capy(y,25(B(Y, s) \ U) -

—— > vy e U.
Capy(y,25(B(Y, 5))

Consider a pointy € U such thatB(y,3s) C Y and letE = B(y, s) \U. Let vg be the
equilibrium measure ok in B = B(y, 2s). We claim that there existé, > 0 such that

(20) Ggve = Aonp on B(y, 35/2)
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Let F = B(y, s) andvg be the equilibrium measure d&f in B. Then, by the Harnack
inequality, for anyz with d(y, z) = 3s/2, we have

Ge(z, ¢) < Gs(z,y) V¢ € B(Y,s).
Hence,

Gove(@) = /F Ga(z ¢)ve(de) = Ga(z Y)ve(F)

and
Geve(2) = [E Ga(z ()ve(ds) = Ga(z Y)ve(E).

Moreover, sincevg(F) = Caps(F), the two-sided inequality (6) and Lemma 3.11 yield
that Ggve(2) >~ 1. Hence, by choice of, for any z € ax B(y, 3s/2),

GBUE(Z) _ UE(E) _ Can3(E) .

Ceve@ = Goor@ = ve(F) ~ Cam(F) -

This proves (20).
Now, fix x € U such thatB(x, 3r) C Y. For simplicity, write

w(+) = wuneun (-, U NaxB(x,r)).

Let k be the integer such thak®@(U) <r < 2(k + 1)w(U), and picks > w(U) so
close tow(U) that Xs < r. We claim that

(21) sup  {w} < (1— Agp)!
UnNB(x,r-2js)

for j =0,1,...,k with Az, » as in (20). Note that fofj =k, (21) yields the inequality
stated in this lemma:

000 = (1~ Aan) = expllog(1-— Aur) /) = &exp( L),
w
with a; = —(log(1— Azn))/2.
Inequality (21) is proved by induction, starting with thévial casej = 0. Assume
that (21) holds forj — 1. By the maximum principle, it suffices to prove

(22) sup  {w) < (1— Agn)l.
UnNay B(x,r—2js)

Let y € U N axB(x,r — 2js)). Then B(y, 2s) C B(x,r —2(j — 1)s) so that the
induction hypothesis implies that

o <(1—-Amn)i"t on UNB(y, 29).
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Sincew vanishes (quasi-everywhere) odyxU) N B(x,r) D (dxU) N B(y, 2s), the mean
value property implies that

ofb) = [ o(@)ousgy29(, d2)
ax(UNB(y,2s))
<(1- Az)])Jfla)UmB(ylzs)(b, U N axB(y, 2s))
for any b € V N B(y, 2s). To estimate
U = wunsy,29) (-, U N axB(y, 2s)),
on U N B(y, 2s), we compare it to
v=1- GB(y,Zs)VEy

where, as aboveye denotes the equilibrium measure Bf= B(y, s) \ U in B(y, 2s).
Both functions ard_-harmonic inU N B(y, 2s), and it holdsu < v on dx(U N B(y, 2s))
guasi-everywhere (in the limit sense). By (20), this implie

us<v=<1- Ay
on U N B(y, s). Hence,
w<1-Am on UNB(yYy,S).
Since this holds for any € U N axB(x, r — 2js), (22) is proved. ]

Lemma 4.9. There exists a constant,Ac (0, oo) depending only on P, Py,
Co—C7, ¢y, Cy, and an upper bound on ¢R?, such that for any0 <r < R< R:
and any xe Bq(&, r), we have

V(,
o(X, 0gBq(&, 2r), Ba(§, 2r)) < A2 (52 r)GBQ(s,char)(X- &16).

Here &14 is any point inQ with do(&, &16) = 4r and
d(&1e, X\ Q) = d(&1e, X\ Y') > 2¢,r.
A similar estimate holds for the *tharmonic measure»*.

Proof. We follow [1, Lemma 2] and [15, Lemma 4.14]. Recallttiég > 2(12+
12C,) so that all €, Cy)-inner uniform paths connecting two points Bg(g, 12r)
stay in Bq(&, Asr/2). Recall thatY’ = Bgq(&, Aor), where Ag = Az + 7. For any
Z € Bq(&, Asr), set

G'(2) = Gay(, A0)(Z £16)-
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Let s = min{cr, 5r /C,}. Since

Ba(816, S) C Ba(£, Asr) \ Ba(, 2r),

the maximum principle yields

Vy e Ba(5,2r), G(y)< sup G(2.

z€do Ba (616 ,9)

Lemma 3.12 and the volume doubling condition yield

r2

su G'(2<C
zeang(gm s) ( ) V(é— l‘)

for some constan€ > 0. Hence, there exists; > 0 such that

VyE BQ(%‘,ZT‘), €1V(E r)G(y)<871
Write
Ba(5, 2r) = U U; N Bg(§, 2r),
i=0
where

(S)

Uj = {x €Y :exp2tl) <e G'(x) < exp(—2‘)}-

Let Vj = (Ukzj Uk). We claim that

(23) w,(V; 1 Ba(t, 2)) < Agt exp(‘sz)

for some constant#\s, o € (0, o).

Supposex € V;. Observe that foz € 3, Bg(é16,S), by the inner uniformity of the
domain, the length of the Harnack chain of ballsBa(&, Asr) \ {16} connectingx to
Z is at mostAs log(1+ Aesr /d(x, X\ Y’)) for some constant®\s, As € (0, 0). Hence,
there are constants, €3, o such that

(S r V(E r)G( )(d(x, X\Y’))°
r

exp=2)) > e

. 63(d(x, X\Y)) _

r

G'(x) = e

The last inequality is obtained by applying Lemma 3.12 with= Asr andé = 5/ As.
Now we have that for anyk € V; N Ba(§, 2r),

d(x, X\ 'Vj) =d(x, X \Y') =< ( 3 exp( 02]) )/\Zr.
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This together with Lemma 4.7 yields (23).
Let Ry =2r and forj > 1,

6 <~ 1
R = (2_P2ﬁ>r'

ThenR; | r and
S expf 21 ARIRY Y S G B (2
§exp(2 At o0 /o)) = ;exp 2 ozl real S

(24) > i41 3 ., 2]
SZexp(Z oyl exp(?))

Let wg = w(-, daBa(§, 2r), Ba(§, 2r)) and

V(E NG(x)

2
i sup{w- x € U N Bg(€, Rj)}, if Uj N Ba(t, Ry) # 2,
=
0, if U N Bq(&, R)) = 0.

Since the setd); N Bu (&, 2r) cover Bo(é, 2r) and Bo(£,r) C Bo(€, Ry) for eachk, to
prove Lemma 4.9, it suffices to show that

supd; < Ay < o0
j=0
where A; is as in Lemma 4.9.
We proceed by iteration. Sinaey < 1, we have by definition oy,

r 2wo(X) 2

dy = u ————— = €1€°.
° UoﬁBn(E,ZT) V(,r)G'(x) !

Let j > 0. Forx € Uj_1 N Be(§, Rj_1), we have by definition ofl;_; that
V(E. )

wo(X) < di—l r2

G'(x).

Also, wp < 1. Thus, the maximum principle yields that, fare V; N Ba (£, R}),

V(T

r2

(25) a)o(X) < a)(X, Vj N dx Bg(g, Rj_l), Vj n BQ(E, Rj_l)) + dj_l G/(X).

For x € V; N Bg(§, R)), let D = B(p(x), Col(Rj—1— R;)) and letD’ be the connected
component ofp~}(D N Q) that containsx. Then by Lemma 3.7,

D' N Q C Ba(x, Rj_1 — Rj) C Ba(&, Rj_1),
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henceD’ N 2 N V; N dxBg(4, Rj_1) = @. Thus, the first term on the right hand side
of (25) is not greater than

R'f _ R R', - R
a)(X, V] ﬂD’ﬂ?)xB(p(X)’ %),V] ﬂD’ﬂB(p(X), e lC J))
Q Q

a Rj 1— Rj
< R R e S I
eXp( Co wn(V; N D))
Ri_1 — R;
< 2_ &R R
. exp( Ca w,(V)) )
a1 ZJ Rj—l — Rj
< 2_ v I
< exp( CA exp ) -

j
< exp(z — €] 2 exp(z—))
o

by Lemma 4.8, monotonicity o) — w,(U) and (23). Herees = 6ay/(m2AsCq).
Moreover, by definition ofU;,

V(é r

G'(x) = exp(-2/**)

for x € Uj. Hence, forx € U; N Bo(£, R;), (25) becomes

wo(X) < eXp(Z—Gsz exp(%)) +dj 1V($ r)G( X)

o e e

Dividing both sides by V (&, r)/r?)G/(x) and taking the supremum over all pointss

. 2i
dj <e exp(2 + 271 g2 exp(;)) + dj_1,

and hence for every integér> O,

= , 6a. 2
1 1 2 _
d < €€ (1+ E exp(214r - — CQJ exp(;))) =¢64(1+C) < 00

j=1
by (24). O

Proof of Theorem 4.1. We follow [15, Theorem 4.5] and [1, LemB]. Recall
that Ag = Az + 7 = 2(12+ 12Cy) + 7. Fix & € 95Q with R > 0, let0<r < R <
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inf{Re: & € Ba(%, 7R:) \ Q} and setY’ = Bg(&, Aor). Note that any two points in
Ba(&,12r) can be connected by a,(Cy)-inner uniform path that stays iBg(&, Asr /2).

Fix x* € Bg(&, 1), y* € 099Bq(&, 6r) such thatcir < d(x*, 95Q) <r and &or <
d(y*, 95<2) < 6r, for some constantsy, ¢; € (0, 1) depending omr, and C,. Existence
of x* and y* follows from the inner uniformity ofQ2. It suffices to show that for all
X € Bq(&,r) andy € dgBg(&, 6r) we have

GY’(X*i Y) *
(26) Gy/(x,y) < WGY/(X' y¥).

Fix y € 9oBq(£, 6r), and callu (v, respectively) the left(right)-hand side of (26),
viewed as a function ok. Thenu is positive andL*-harmonic inY’\ {y}, whereasv
is positive andL*-harmonic inY’\ {y*}. Both functions vanish quasi-everywhere on
the boundary ofY’.

Since y* € 9oBq(£, 6r) and Gor < d(y*, 95Q) < 6r, it follows that the ball
Ba(y*, 3cor) is contained inBq(&, 9r) \ Ba(§, 3r). Let z € 9oBa(y*, cor). By a re-
peated use of Harnack inequality (a finite number of timepedding only onc, and
Cu), one can compare the value ofat z and atx*, so that by Lemma 3.12 (notice
that d(x*, y) > cir) and the volume doubling property,

r2
V(E,r)

Now, if y € Bq(y*, 2cor), then by Lemma 3.12 (notice thdk(z, y) < 3r < Agr /(6C,)
andz, y € Bq(&, Aogr/6)) and the volume doubling property,

v(2) < Cu(x*) = CGy/(x*,y) <C’

2
V)

so that we havei(z) > c'v(2) in this case for some’ > 0. If insteady € \ Bo(y*,2Cor),
then we can conned and x* by a path of length comparable tothat stays away (at
scaler) from both 952 and the pointy. Hence, the Harnack inequality implies that
u(2) < u(x*) = v(x*) < v(2) in this case. This shows that we always have

u@2 =Gy(zy)zc

u(2) > e3v(z) Vze dgBaly”, cor).
By the maximum principle, we obtain
u>ew on Y\ Bg(y", cor).
Since Bg(&,r) C Y\ Ba(y*, cor), we have proved that > e3v on Bg(&, r), that is,

Gy (Xx*,
(27) Gy.(x,y) = 63%6\(’()@ v¥)
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for all x € Bg(&,r) andy € dgBq(§, 6r). This is one half of (26).
We now focus on the other half of (26), that is,
Gy/(X*,y)
28 G ————=Gy/(X, ¥),
(28) €4 Y(Xy)_G(x* ) v(X, ¥7)
for all x € Bo(&,r) andy € dqBq(&, 6r).
For x € Bg(§, 2r) and z € Bg(§, 9r) \ Ba(§, 3r), Lemma 3.12 and the volume

doubling condition yield
2

V(E )

RegardingGy- (X, z) as L-harmonic function ofx, the maximum principle gives

Gy(x,2) <C

2
V(. T)

Using Lemma 4.9 (note thady > Ag) and the Harnack inequality (to move froéqs
to y*), we get forx € Bq(&,r) andz € Bo(&, o) \ Ba(&, 3r), that

Gyv(-,g=C w(-, 0eBa(§, 2r), Ba(§, 2r)) on Bga(§, 2r).

r’ V(,r)
V(E,r) r2

(29) Gy(x,2) =CA Gv/(X, &16) < C'Gy/(x, y¥),

for some constanC’ € (0,00). Fix x € Bg(§,r) andy € doBq(&, 6r). If do(y, d5<2) >

Cor /2, thenGy/ (X, y) < Gy/(X, y*) and Gy (x*, y) < Gy/(x*, y*) by the Harnack in-
equality, so that (28) follows. Hence we now assume that d,Bq(&, 6r) satisfies
do(y, 0582) < cor /2. Let &’ € 95Q2 be a point such thatlo(y, §) < cor /2. It follows

thaty € Bq(&¢’, r). Also,

Ba(§', 2r) C Ba(y, 3) C Ba(§, o) \ Ba(§, 3).

We apply inequality (29) to geBGv (X, z2) < C4Gy/ (X, y*) for any z € Bq(&¢’, 2r). Re-
garding Gy (X, y) = G¥.(y, X) as L*-harmonic function ofy, we obtain

(30) Gy (X, Y) = C4Gy (X, y)o*(y, daBa(§', 2r), Ba(§', 20)).
Let us apply Lemma 4.9 witl§ replaced by&’. This yields

V ’
*(y, 8aBa(§', 2r), Ba(§', 2r)) < A2 (§ r)GTBg(S Cansn)(Ys E1ar)

e V(s 2

< A/ GY (sl&y y)
whereé;, € Q is any point such thatlo (514, &") = 4r andd(§14, X\ Q) > 2¢,r. Ob-
serve that we have used the volume doubling property as wethe set monotonicity
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of the Green function, and thd@gq (&', Asr) C Bq(&, Agr) becauseAy = Az + 7 and
da(&, &) < 7r. Now, (30) and (31) give

@) Grx,y) = Co ™3 Gy (el VIG5, ).

By construction,do(é14, Y) = d(§14, &) —da(&, y) = 2r and do(x*, y) > da(&, y) —
da(&, x*) > 5r. Using the inner uniformity of2, we find a chain of balls, each of
radius < r and contained inY’ \ {y}, going from x* to &, so that the length of
the chain is uniformly bounded in terms of, C,. Applying the Harnack inequality
repeatedly thus yieldSy:(£14, ¥) < Gy/(X*, y). As Lemma 3.12 giveGy (x*, y*) <
r2/V(,r), inequality (32) implies (28). This completes the proof. ]
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