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Abstract
We are interested in periodic points on the boundaries dtimt domains of
rational functions. R. Pérez-Marco showed that there arearmgic points on the
boundaries of Siegel disks having Jordan neighborhoods eeittain properties [12].
In this paper, we consider periodic points on the boundaoiesotation domains
under more weakly conditions.

1. Introduction and the main theorem

In this paper, we deal with one-dimensional complex dynam&ystems, espe-
cially iterated dynamical systems of rational functionstbe Riemann spher€. The
dynamics on a periodic Fatou component is well understootijafly there are three
possibilities. They are the attracting case, the paralmdige or the irrational rotation
case. However, it is difficult to see the dynamics on the baunaf a periodic Fatou
component. A positive answer to the question of local cotiviec of the boundary
sometimes gives a model of the dynamics. Even when the boytfigits to be locally
connected, we are interested in the dynamics of the bouné&aspecially, we may ask
can the boundary have a dense orbit or a periodic orbit?

It is interesting that the periodic points on the boundafy of an immediate at-
tracting or parabolic basit are dense i®WQ2 [14, Theorem A]. According to [18, The-
orem 1], if Q is a bounded Fatou component of a polynomial that is not eedlgta
Siegel disk, then the boundahf2 is a Jordan curve. For a geometrically finite rational
function with connected Julia set, the Julia set is locatiyrected [22, Theorem A],
and thus every Fatou component is locally connected.

We are interested in the topological structures of the baried of rotation do-
mains and the dynamics on the boundaries. There are sonléesrabaut the Julia sets
which contain the boundaries of Siegel disks (see for exarfipl5, 11, 15, 16, 17]).

If the boundaryo2 of a Siegel disk2 is locally connected, then it follow from
the Carathéodory’s theorem in the theory of conformal magpithato2 is a Jordan
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curve and the dynamics 092 is topologically conjugate to an irrational rotation. In
particular, there are no periodic points on the boundiry

R. Pérez-Marco has shown that the injectivity on a simply eoted neighborhood
of the closure of a Siegel disk implies that no periodic poioh the boundary of the
Siegel disk. More precisely, we have the following propaosit{12, Theorem 1V.4.2].

Proposition 1.1. Let Q be an invariant Siegel disk of a rational function, Bnd
let U be a neighborhood of2 so that the boundargU consists of a Jordan curve.
If R is injective on a neighborhood &f, and both ofy and Ry) are contained in a
component of€ — 2, then the boundary)Q contains no periodic points.

In general, it may be hard to find a Jordan domain where thetibmés injective.
So we shall show the following theorem which is the main resulthis paper.

Theorem 1.1. Let Q be an invariant rotation domain of a rational function, R
and let U be a neighborhood a®. If R is injective on U then the boundary
contains no periodic points except the Cremer points.

The above theorem means that there are still no periodidpeixcept the Cremer
points on the boundary of invariant rotation domains evermwthe injective neighbor-
hood is not a Jordan domain.

In the last section, we will discuss some related topics.

2. Basic definitions

Let C = CU{oo} be the Riemann sphere, and Rt C — € be a rational function
of degree at least two. We define tRatou setof R as the union of all open sets
U c € such that the family of iterategR"} is equicontinuous omJ, and theJulia set
of R as the complement of the Fatou setRf We denote the Julia set & by J(R)
and the Fatou set oR by F(R). The Fatou sef(R) is a completely invariant open
set and the Julia sel(R) is a completely invariant compact set. Their fundamental
properties can be found in [2, 9].

For each periodic pointy with periodk, the multiplier is defined as R)'(zo) and
we denote it byA. A connected component of the Fatou $&{R) is called aFa-
tou component

A periodic pointzy with periodk is calledattracting if || < 1. Then the pointz
is contained in the Fatou s&t(R). The Fatou componeri2 containing the pointy is
called theimmediate attracting basinf zy. Then {(RX)"} converges locally uniformly
to zp on Q.

A periodic pointzg with period k is called parabolic if A is a root of unity, or
equivalently there exists an rational numhgfg such thaty = €¥*'P/4, Then the point
Zp is contained in the Julia sel(R). A Fatou componenf2 whose boundary contains
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the pointz, is called animmediate parabolic basinf z, if {(Rk9)"} converges locally
uniformly to z5 on Q.

A periodic pointz, with period k is calledirrationally indifferent if |x»| = 1 but
A is not a root of unity, or equivalently there exists an iwatll numberé such that
A = e’ Then we distinguish between two possibilities. If the paig lies in the
Fatou setF(R), then z, is called aSiegel point The Fatou componer® containing
the Siegel pointzy, is called theSiegel diskwith center 3. ThenQ is conformally iso-
morphic to the unit diskd, and the dynamics oR¥ on Q corresponds to the dynamics
of the irrational rotationiz on D. Otherwise, if the pointzyg belongs to the Julia set
J(R), thenz, is called aCremer point

A periodic pointz, is calledweakly repellingif A = 1 or |A| > 1, in particular, is
calledrepellingif |A] > 1. It is well known that the repelling periodic points are slen
in the Julia setJ(R) and the non-repelling periodic points are finite.

A periodic Fatou componeri2 with periodk is called aHerman ringif € is con-
formally isomorphic to some annulus, = {z: 1/r < |z| < r}. Then the dynamics of
RK on Q corresponds to the dynamics of an irrational rotationAgn We say that a
Siegel disk or a Herman ring is @tation domain It is well known that every Fatou
component is eventually periodic, and a periodic Fatou aomapt is either an immedi-
ate attracting basin or an immediate parabolic basin or gebdisk or a Herman ring.

3. Local surjectivity

In this section, we shall see local surjectivity of a ratiofumction R of degree at
least two. The notion of local surjectivity is referred frdi®9].

DErFINITION 3.1. Let be a Fatou component, and Igf € Q2. We sayR is
locally surjectivefor (zp, ©2), if there existse > 0 such thatR(N N ) = R(N) N R(2)
for any neighborhoodN C B.(z0) = {z: d(z, z9) < €} of z.

Lemma 3.1. Let Q be a Fatou componenaind let z € 92. Assume that R is
locally surjective for(zo, ), (R(z0), R(2)), ..., (R"(z0), R"(2)). Then R is locally
surjective for(zo, Q).

Proof. It follows from the assumption that there exists O such that

R(N N 2) = R(N) N R(R),
R(R(N) N R(€2)) = R(R(N)) N R(R(£2)),

R(R™H(N) N R™(®) = R(R™H(N)) N R(R™ (<)),

for any neighborhoodN C B.(zp) of z5. So R'(N N Q) = R"(N) N RY(2). O
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The following two propositions are described in [19]. Sinte proofs are not
given in [19], we will give proofs for the sake of completeses

Proposition 3.1. Let 2 be a Fatou componenand let 3 € dQ2. Assume thatxz
is not a critical point and there exists a Fatou component # Q such that g € 9’
and RQ') = R(2). Then R is not locally surjective fdzy, $2).

Proof. Sincez, is not a critical point, for any > 0 there is a sufficiently small
neighborhoodN C B.(z) of 7y such thatR|y: N — R(N) is a homeomorphism. Then
RINNQ)NR(NNR) =0 and RINN Q') € R(N)N R(") = R(N)N R(2). Therefore,
R(N N 2) € R(N) N R(2) — R(N N Q) € R(N) N R(2). O

Proposition 3.2. Let 2 be a Fatou componenand let 3 € 92. Assume that R
is not locally surjective for(zg, 2). Then there exists a Fatou componétit# Q such
that z € Q' and RQ') = R(Q).

Proof. From the assumption, for eache N there exists a neighborhood, C
B1/n(20) of g such thatR(N,NQ) € R(N,)NR(2). Hence, there is a poir, € N, —Q
so thatR(z,) € R(N,) N R(2) — R(Nk N ©2). Let 2, be the Fatou component contains
z,. Then, 2, # Q and R(2,) = R(€2). Thus, we can se®’ = Q, for a subsequence
{ni}. Thenz, € Q" and lim_ 1~ z, = 2o, therefore,zy € 9X2'. O

As it has been pointed out in [19], the above proposition iespthat if2 is a com-
pletely invariant Fatou component aggle 02, thenR is locally surjective for %, <2).

Lemma 3.2. Let Q be a Fatou componenand let 3 € 9. If R is injective on
a neighborhood V of the bounda#f2, then R is locally surjective fo(zy, 2).

Proof. SinceR is injective onV, there are no Fatou components Rf1(R(R2))
which containzy on their boundaries, except the componéntBy the contraposition
of Proposition 3.2, the proof is finished. ]

For a Fatou component whose boundary contains no criticilt,pthe injectivity
on the closure implies local surjectivity.

Theorem 3.1. Let Q be a Fatou component. Assume that R is injectiveSon
and the boundary2 contains no critical points. Thereither R is injective on the
boundaryd$2 or there exists g€ 92 such that R is not locally surjective fdgo, €2).

Proof. Suppose thaR is injective ondQ2 and letzy € 9Q2. Then, R is injective
on a neighborhood/ of the boundaryo2 (see also [6, Lemma 3.1]). ThereforR,is
locally surjective for £, 2) by Lemma 3.2.
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Now suppose thaR is not injective onaQ2. Then, there are two distinct points
Zy € Q2 and wgo € 92 such thatR(zp) = R(wp). Since the boundarg2 contains no
critical points, there exists > 0 such thatB.(zg) N B:(wo) = @ and R, (z): Bc(z0) —
R(B.(zp)) is @ homeomorphism. Lab, € Q2 be a sequence so that im, ., wy = wo.
For any neighborhoodN C B.(zp) of zy, the imageR(N) is a neighborhood oR(z,).
Since lim_ 1o R(wn) = R(wg) = R(20), there is some poinR(wy,) in R(N). From
the injectivity of R|q, there is no point inN N 2 whose image is equal to the point
R(wn). Then, R(wn) € R(N) N R(2) — R(N N ), and thusR(N N Q) € R(N) N R().
Therefore,R is not locally surjective for %y, Q). []

Since R is injective on a rotation domain, the following corollarygaes that the
injectivity on the boundary implies local surjectivity.

Corollary 3.1. Let Q be an invariant rotation domain. Assume that the boundary
9Q2 contains no critical points. Thereither R is injective on the boundaff2 or there
exists 3 € a2 such that R is not locally surjective fdeg, <2).

4. The proof of the main theorem

DEFINITION 4.1. LetQ c € be a Fatou component. A poiate 9S2 is calledac-
cessiblefrom € if there exists a continuous curye [0,1) — € such that ling ~1y(s) =
z. We say that such a curve is a periodic curveif R(y) c y or RK(y) D y for
somek.

We show Theorem 1.1 by using the following key propositio, [Theorem 1].

Proposition 4.1. Let Q be an invariant Fatou componerand let z € 9Q be a
weakly repelling fixed point. If R is locally surjective ft, ©2), then 2 is accessible
from @ by a periodic curve.

So we have the following lemma.

Lemma 4.1. Let Q be an invariant Fatou componerdnd let z € Q2 be a para-
bolic fixed point. If R is locally surjective faizy, €2), then z is accessible fronf2 by
a periodic curve.

Proof. Leti = e*P/d pe the multiplier atzy. It is clear thatQ is an invariant
Fatou component foR%. So (R%)'(zy) = A9 = 1 and thuszy is a weakly repelling fixed
point of RY. Since R'(zp) = zp and R"(2) = Q for 0 < n < g, Lemma 3.1 implies
that RY is locally surjective for %y, 2). From Proposition 4.1z, is accessible fronf2
by a periodic curve forRY. This curve is periodic forR. []
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Proof of Theorem 1.1. We give the proof by contradiction. [$ge that the
boundaryaQ2 contains a periodic pointy with period k which is not a Cremer point.
So the pointzy is a parabolic or repelling fixed point d®¥. It is clear thatR"(Q) =
Q and R"(zy) € 92 for 0 < n <k, and thusQ is an invariant Fatou component for
RK. Since R is injective onU, it follows from Lemma 3.2 thatR is locally surjec-
tive for (2o, ), (R(z0), ), . . ., (R (z0), Q). Lemma 3.1 implies thaR¥ is locally
surjective for ¢o, ). By Proposition 4.1 and Lemma 4.1, the point is accessible
from Q by a periodic curve forR¥. This contradicts thaf2 is a rotation domain. [

5. Some related topics

In this section, we shall give some results on related toplsst, similarly to
Proposition 1.1, we formulate the following propositiodated to Herman rings.

Proposition 5.1. Let  be an invariant Herman ring of a rational function,R
and let U be a neighborhood a2 so that the boundaryU consists of two Jordan
curvesy and y’ which are separated by invariant curves in the Herman riag If
R is injective on a neighborhood &f, and both ofy and Ry) are contained in a
component V off — ©Q, and both ofy’ and Ry’) are contained in a component’V
of C — Q, then the boundary$ contains no periodic points.

Proof. This proof is referred from the proof of [12, Theorewdl2]. We give the
proof by contradiction. Suppose that the bounday contains a periodic point with
periodk. Then, the periodic orbiD = {zj, 2, ..., z} is contained in a componerit
of the boundary 2. Let {K,} be a sequence of invariant closed annuli in the Herman
ring € such thatK, c Int K,,; and U:;“{ K, = Q. Then{K,} converges ta in the
sense of Hausdorff convergence. ISetbe the filled set of2 such that2 = € — (V U
V’). By the assumption, we note th&l: Q —  is a homeomorphism.

The componentL contains eitherdV or aV’. For the sake of convenience, we
may assume that containsaV, and furthermoreV contains infinityco. Let V, be
the component of — K, which containscc. Since{K,} converges t& in the sense
of Hausdorff convergence{V,} converges toV with respect tooco in the sense of
Carathéodory kernel convergence. We consider the follgveionformal isomorphisms

®,:C-D—>V, ®:C-D—->V

so that®p(00) = P(00) = o0, liMmye Pn(2)/z > 0 and lim_ ®(2)/z > 0. Then,
{®,} converges locally uniformly tod by the Carathéodory kernel theorem (see for
example [13, Theorem 1.8]). There exists- 1 such thatd(rs') c U and ®,(rS?) c

U for all large enoughn. It follows from the assumption thaR(®,(rS')) c V, and
R(®(rs1) c V. Hence,g, = @,10Ro®, andg = ® 1oRo® are defined and injective
on {z: 1 < |z] <r}. By the reflection principleg, and g are extended and injective on
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A;. We fix r’ such that 1< r’ <r. Since{®,} converges locally uniformly teb, {g,}
converges uniformly tay on r’S?. Thus, {g,} converges uniformly tay on (1/r’)S?.
By the maximum principle{g,} converges uniformly tay on A,/ particularly on the
unit circle S*.

Let L, be the component afK,, which is close toL. We notice that the dynamics
of g, on S? corresponds to the dynamics & on L,. Sincel, is an invariant curve
in the Herman ring®2, the dynamics ofR on L, corresponds to the dynamics of an
irrational rotationz — e€*"?z. Therefore, the rotation number Rgl{:) is calculated
as follows:

Rot(@ls:) = lim Rot@nls:) = lim 6 =6.

Now let O = ®,%(0), so O}, is a periodic orbit ofg, with periodk. Since{Ky}
converges ta2 in the sense of Hausdorff convergence, we see @jaget close tos*
asn — +oo. More precisely, there are subsequer€¥ } and a setO’ C St so that
{Oy,} converges toO’ in the sense of Hausdorff convergence. Sirige = cDgil(O)
are finite sets, so the limit s@’ is a finite set. Moreovemg, (O, ) = O, implies that
g(0") = O’ (see also [12, Lemma I11.1.2]), and thgshas a periodic point o8*. This
contradicts that the rotation number Rytt) = 6 is irrational. []

We consider the topology of the boundary of a Siegel disk.

DEFINITION 5.1. LetK c € be a non-degenerate continuum. We ga¥ K is
a cut pointof K if K —{z} is disconnected.

Theorem 1.1 implies the following corollary, which assdhat the finiteness of cut
points on the boundary of a Siegel disk follows from the itijéty of a neighborhood
of the boundary.

Corollary 5.1. Let Q be an invariant Siegel disk of a rational function, Bnd
let U be a neighborhood of2. If R is injective on U then there are at most finitely
many cut points of the boundang.

Proof. Assume thagy € Q2 is a cut point of the boundar§2. Then, zy is bi-
accessible front2, and thusz, is a periodic point (see [6, Definition 1.1 and Propos-
ition 1.1]). It follows from Theorem 1.1 that, must be a Cremer point. Since there
are at most finitely many Cremer points, the proof is finished. [

Now we consider the following two functions. L&(z) = €'z + 2 be a quad-
ratic polynomial withd € R — Q. Let B(z) = €¥"'*¥z%(z — a)/(1 — az) be a cubic
Blaschke product so thda| > 3 and the rotation number R&[s:) =0 € R — Q. We
compare the dynamics d? and the Julia setl(P) with the dynamics ofB and the
Julia setJ(B).
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DEeFINITION 5.2. If there exists a local holomorphic change of coordimat=
®(w), with ®(0) = 0, such thatb~2o P o @ is the irrational rotationw > €*'w near
the origin, then we say thd® is linearizableat the origin.

The origin is either a Siegel point or a Cremer point, aceaydio whetherP is
linearizable at the origin or not.

DEFINITION 5.3. If there exists an analytic circle diffeomorphisin S* — S*
such that®1 o B o & is the irrational rotatiorw — €*"'?w, then we say thaB is
linearizable on the unit circle.

The unit circle is contained in either the Fatou $&tB) or the Julia setJ(B),
according to whetheB is linearizable on the unit circle or not.

Suppose thaP is not linearizable at the origin anB is not linearizable on the
unit circle. It follows from [12, Theorem 1 and Theorem V]lthat there are Siegel
compacta inJ(P) and Herman compacta id(B). There is a recurrent critical point
cp € J(P) whose forward orbit{ P"(cp)}n>0 accumulates the origin, and there is a re-
current critical pointcg € J(B) whose forward orbif B"(cg)}n>0 accumulates the unit
circle (see [7, Theorem I]).

Let Qp be the immediate attracting basin of infinity with respecthe dynamics
of P, and letQg be the immediate attracting basin of infinity with respecthe dy-
namics ofB. A. Douady and D. Sullivan [20, Theorem 8] has shown th@t = J(P)
is not locally connected (see also [9, Corollary 18.6]).dlldws from [16, Lemma 1.7
and Proposition 1.6] that the unit circle is contained in tmundarydQg, and the
boundaryd2g is not locally connected. In particularly, the Julia sHiB) is not lo-
cally connected. Therefore, we conclude that both of the&a BdtsJ(P) and J(B) are
connected but not locally connected.

It is well known that every repelling periodic point on theunalaryoQp = J(P) is
accessible fronf2p by a periodic curve. Furthermore, we have the following psifpon.

Proposition 5.2. Let B(z) = € *?)z?(z—a)/(1—az) be a cubic Blaschke product
so that|a|] > 3 and the rotation numbeRot(Bls:) = 6, let Qg be the immediate at-
tracting basin of infinity. Assume thatis irrational and B is not linearizable on the
unit circle. Then every repelling periodic point on the boundaff2g is accessible
from Qg by a periodic curve.

Proof. Letz, be a repelling periodic point on the boundarf2g with period k.
It is clear thatB"(Q2g) = Qg and B"(zg) € 92 for 0 < n <k, and thusQg is an
invariant Fatou component fdB¥. Let Q' be the Fatou component containing the pole
1/a. Then, B~}(Qg) = Q' U Qg. Since the unit circles? is contained in the Julia set
J(B), the Fatou componern®’ is contained in the unit dis® and Qg is contained in
C —D. Therefore, injectivity ofB|s: implies 392’ N 9Qg = 0.



PERIODIC POINTS AND THE ROTATIONS DOMAINS 223

It follows from the contraposition of Proposition 3.2 thatis locally surjective for
(20,28), (B(20), 2B), ..., (B* X(20), 28). Lemma 3.1 implies thaBX is locally surjective
for (z0, 2g). By Proposition 4.1, the poirty is accessible fronf2 by a periodic curve
for RX. O

From the results [21, Theorem 3] and [6, Theorem 1.3] of l@asibility, we note
that each of the repelling periodic points 8p = J(P) or dQ2g has only one external
ray landing at the point.

Finally, we consider buried points in the Julia sets. Itdat from 0Qp = J(P)
that the Julia setI(P) has no buried points, however, we see that the JulialéB)
has buried points.

DEFINITION 5.4. LetR: C — C be a rational function of degree at least two. A
point z in the Julia setJ(R) is calledburied if z is not lying in the boundary of any
Fatou component.

Interestingly, we have the following (see [4, Propositiod]land [3, Lemma 1]).

Proposition 5.3. Let R: C — C be a rational function of degree at least two.
Then there exists a buried point iff there is no periodic Batmmponent U such that
U = J(R).

So we have the following proposition.

Proposition 5.4. Let B(z) = ¥ *")z%(z—a)/(1—4az) be a cubic Blaschke product
so that|a| > 3 and the rotation numbeRot(Bls:) = 0. Assume tha# is irrational and
B is not linearizable on the unit circle. Then there existsuaidd point.

Proof. SinceB is not linearizable on the unit circle, the circ& is contained
in the Julia setJ(B). There exist two points inJ(B) which are separated b§* (for
example, the recurrent critical pointg and 1/Cg). Consequently, there is no periodic
Fatou component such thatoU = J(B), and there exists a buried point by Propos-
ition 5.3. O
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