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ON THE S1-FIBRED NILBOTT TOWER
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Abstract
We shall introduce a notion ofS1-fibred nilBott tower. It is an iteratedS1-bundle

whose top space is called anS1-fibred nilBott manifold and theS1-bundle of each
stage realizes aSeifert construction. The S1-fibred nilBott tower is a generalization
of real Bott tower from the viewpoint of fibration. In this note we shall prove that
any S1-fibred nilBott manifold isdiffeomorphicto an infranilmanifold. According to
the group extension of each stage, there are two classes ofS1-fibred nilBott mani-
folds which is defined asfinite typeor infinite type. We discuss their properties.
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1. Introduction

Let M be a closed aspherical manifold which is the top space of an iterated
S1-bundle over a point:

(1.1) M D Mn ! Mn�1! � � � ! M1! {pt}.

SupposeX is the universal covering ofM and eachXi is the universal covering ofMi

and put�1(Mi ) D �i (i D 1, : : : , n� 1) and�1(M) D � .

2000 Mathematics Subject Classification. 53C55, 57S25, 51M10.
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DEFINITION 1.1. An S1-fibred nilBott tower is a sequence (1.1) which satisfies
I, II and III below. The top spaceM is said to be anS1-fibred nilBott manifold(of
depth n).
I. Each Mi is a fiber space overMi�1 with fiber S1.
II. For the group extension

(1.2) 1! Z! �i ! �i�1! 1

associated to the fiber space I, there is an equivariant principal bundle:

(1.3) R! Xi
pi
�! Xi�1.

III. Each �i normalizesR.

The purpose of this paper is to prove the following results.

Theorem 1.2. Suppose that M is an S1-fibred nilBott manifold.
(i) If every cocycle of H2

�

(�i�1,Z) which represents a group extension(1.2) is of finite
order, then M is diffeomorphic to a Riemannian flat manifold.
(ii) If there exists a cocycle of H2

�

(�i�1, Z) which represents a group extension(1.2)
is of infinite order, then M is diffeomorphic to an infranilmanifold. In addition, M
cannot be diffeomorphic to any Riemannian flat manifold.

As a consequence, we have the following classification. (SeeProposition 4.1 and
Proposition 4.2.)

Proposition 1.3. The 3-dimensional S1-fibred nilBott manifolds of finite type are
those ofG1, G2, B1, B2, B3, B4.

Proposition 1.4. Any 3-dimensional S1-fibred nilBott manifold of infinite type is
either a Heisenberg nilmanifoldN=1(k) or an Heisenberg infranilmanifoldN=0(k).

Real Bott manifolds consist ofG1, G2, B1, B3 among theseG1, G2, B1, B2, B3, B4.
(Refer to the classification of 3-dimensional Riemannian flat manifolds by Wolf

[13]. We quote the notationsGi , Bi there.)
Masuda and Lee [8] have also proved the above results.
By (1.2) of Definition 1.1, a 3-dimensionalS1-fibred nilBott manifold M gives a

group extension:

1! Z! �1(M)! Q! 1

where Q is the fundamental group of a Klein BottleK or a torusT2. Then this group
extension gives a 2-cocycle in the group cohomologyH2

�

(Q,Z) with a homomorphism
� W Q! Aut(Z) D {�1}. Conversely we have shown
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Theorem 1.5. Every cocycle of H2
�

(Q, Z) can be realized as a diffeomorphism

class of an S1-fibred nilBott manifold.

2. Seifert construction

We shall explain the Seifert construction briefly. It is a tool to construct a closed
aspherical manifold for a given extension. Let

(2.1) 1! 1! �

�

�! Q! 1

be a group extension and� W Q! Aut(1) a conjugation function defined by a section
sW Q! � for the projection�. Define f W Q � Q! 1 by s(�)s(�) D f (�, �)s(��).
Then f defines the group� which is the product1 � Q with the group law:

(2.2) (n, �)(m, �) D (n � �(�)(m) � f (�, �), ��).

(8n, m 2 1, 8�, � 2 Q) (cf. [10] for example).
Suppose1 is a torsionfree finitely generated nilpotent group. By the Mal’cev’s

unique existencetheorem, there is a simply connected nilpotent Lie groupN contain-
ing 1 as a discrete uniform subgroup. (See [12] for example.) Moreover if Q acts
smoothly and properly discontinuously on a contractible smooth manifoldW such that
the quotient spaceW=Q is compact, then there is a map� W Q! Map(W, N ) whose
images consist of smooth maps ofW into N satisfying:

(2.3) f (�, �) D ( N�(�) Æ �(�) Æ ��1) � �(�) � �(��)�1 (�, � 2 Q),

here N�W Q! Aut(N ) is the unique extension of� by Mal’cev’s unique existenceprop-
erty. We simply write f D Æ1

� for (2.3). And an action of� on N �W is obtained by

(2.4) (n, �)(x, w) D (n � N�(�)(x) � �(�)(�w), �w).

This action (� , N �W) is said to be a Seifert construction. (See [5] for details.)
In particular, whenQ is a finite groupF and W D {pt} it follows Map(W, N ) D

N for which there is a smooth map� W F ! N satisfying f D Æ1
� :

(2.5) f (�, �) D N�(�)(�(�)) � �(�) � �(��)�1 (�, � 2 F).

Let E(N ) be a semidirect productN ÌK with K be a maximal compact subgroup of
Aut(N ). And we can define a discrete faithful representation� W � ! E(N ) by

(2.6) �((n, �)) D (n � �(�), �(�(�)�1) Æ N�(�)),

(here� is a conjugation map). Then the action of� on N is defined by

(2.7) (n, �)(x) D �((n, �))(x) D n � N�(�)(x) � �(�).
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Note that the action (� ,N ) is a Seifert construction and if� is torsionfreeN =� is an
infranilmanifold (cf. [5] or [10]).

3. S1-fibred nilBott tower

In this section we shall gives a proof of Theorem 1.2 of Introduction and apply
our theorem to torus actions.

3.1. Proof of Theorem 1.2. Suppose that

(3.1) M D Mn
S1

�! Mn�1
S1

�! � � �

S1

�! M1
S1

�! {pt}

is an S1-fibred nilBott tower. By the definition, there is a group extension of the
fiber space;

(3.2) 1! Z! �i ! �i�1! 1

for any i . The conjugate by each element of�i defines a homomorphism� W �i�1 !

Aut(Z) D {�1}. With this action,Z is a �i�1-module so that the group cohomology
H�

�

(�i�1,Z) is defined. Then the above group extension (3.2) representsa 2-cocycle in

H2
�

(�i�1, Z) (cf. [10]).

Proof of Theorem 1.2. Given a group extension (3.2), we suppose by induction
that there exists a torsionfree finitely generated nilpotent normal subgroup1i�1 of finite
index in �i�1 such that the induced extensionQ1i is a central extension:

(3.3) 1 KZ K�i K�i�1 K 1

1 KZ K

Q

1i K

K

1i�1 K

K

1.

It is easy to see thatQ1i is a torsionfree finitely generated normal nilpotent subgroup
of finite index in �i . Then�i is a virtually nilpotent subgroup, i.e. 1! Q

1i ! �i !

Fi ! 1 where Fi D �i = Q1i is a finite group. Let QNi , Ni�1 be a nilpotent Lie group
containing Q1i , 1i�1 as a discrete cocompact subgroup respectively. Let A(QNi ) D QNi Ì

Aut( QNi ) be the affine group. If QK i is a maximal compact subgroup of Aut(QNi ), then
the subgroup E(QNi ) D QNi Ì QK i is called the euclidean group ofQNi . Then there exists
a faithful homomorphism (see (2.6)):

(3.4) �i W �i ! E( QNi )

for which �i j Q
1i
D id and the quotient QNi =�i (�i ) is an infranilmanifold. The explicit
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formula is given by the following

(3.5) �i ((n, �)) D (n � �(�), �(�(�)�1) Æ N�(�))

for n 2 Q1i , � 2 Fi where � W Fi ! QNi , N� W Fi ! Aut( QNi ). As Q1i � QNi , there is a
1-dimensional vector spaceR containingZ as a discrete uniform subgroup which has
a central group extension (cf. [12]):

1! R! QNi ! Ni�1! 1

where Ni�1 D QNi =R is a simply connected nilpotent Lie group. AsZ � R \ Q1i is
discrete cocompact inR and R \ Q1i =Z ! Q

1i =Z � 1i�1 is an inclusion, noting that
1i�1 is torsionfree, it follows thatR\ Q1i D Z. We obtain the commutative diagram in
which the vertical maps are inclusions:

(3.6)

1 KZ K

K

Q

1i K

K

1i�1 K

K

1

1 KR K

QNi K Ni�1 K 1.

On the other hand, (3.4) induces the following group extension:

(3.7)

1 KZ K�i
pi

K

�i
K

�i�1 K

O�i
K

1

1 KZ K �i (�i ) K O�i (�i�1) K 1.

Since Q1i and QNi centralizesZ and R respectively, O�i is a homomorphism from�i�1

into E(Ni�1). The explicit formula is given by the following:

(3.8) O�i (( Nn, �)) D ( Nn � N�(�), �( N� (�)�1) Æ O�(�))

for Nn 2 1i�1, � 2 Fi where N� D pi Æ � W Fi ! Ni�1, O� W Fi ! Aut(Ni�1);

O

�(�)( Nx) D N�(�)(x).

Using (1.3) and Mal’cev’s unique extension property (compare [12]), it is easy to check
that the aboveO� W Fi ! Aut(Ni�1) is a well-defined homomorphism. Thus we obtain
an equivariant fibration:

(3.9) (Z, R)! (�i (�i ), QNi )
�i
�! ( O�i (�i�1), Ni�1).
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Suppose by induction that (�i�1, Xi�1) is equivariantly diffeomorphic to the infranil-
action (O�i (�i�1), Ni�1) as above. We have two Seifert fibrations from (1.3):

(Z, R)! (�i , Xi )
pi
! (�i�1, Xi�1)

and (3.9):

(Z, R)! (�i (�i ), QNi )
�i
�! ( O�i (�i�1), Ni�1).

As �i W �i ! �i (�i ) is isomorphic such that�i jZ D id, the Seifert rigidity implies that
(�i , Xi ) is equivariantly diffeomorphic to (�i (�i ), QNi ). This shows the induction step.
If M D X=� , then (� , X) is equivariantly diffeomorphic to an infranil-action (�(�), QN)
for which � W � ! E( QN) is a faithful representation.

We have shown thatM is diffeomorphic to an infranilmanifoldQN=�(�). According
to Cases I, II (stated in Theorem 1.2), we prove thatQN is isomorphic to a vector space
for Case I or QN is a nilpotent Lie group but not a vector space for Case II respectively.

CASE I. As every cocycle ofH2
�

(�i�1,Z) representing a group extension (3.2) is

finite, the cocycle inH2(1i�1, Z) for the induced extension of (3.3) that 1! Z !

Q

1i ! 1i�1! 1 is also finite. By induction, suppose that1i�1 is isomorphic to a free
abelian groupZi�1. Then the cocycle inH2(Zi�1, Z) is zero, so Q1i is isomorphic to
a free abelian groupZi . Hence the nilpotent Lie groupNi is isomorphic to the vector
spaceRi . This shows the induction step. In particular,�i is isomorphic to a Bieberbach
group �i (�i ) � E(Ri ). As a consequenceX=� is diffeomorphic to a Riemannian flat
manifold Rn

=�(�).
CASE II. Suppose that�i�1 is virtually free abelian untili � 1 and the cocycle

[ f ] 2 H2
�

(�i�1, Z) representing a group extension 1! Z! �i ! �i�1 ! 1 is of in-

finite order in H2
�

(�i�1, Z). Note that�i�1 contains a torsionfree normal free abelian

subgroupZi�1. As in (3.3), there is a central group extension ofQ1i :

(3.10)

1 KZ K�i K�i�1 K 1

1 KZ K

Q

1i K

K

Z

i�1
K

i

K

1

where [�i�1 WZ
i�1]<1. Recall that there is a transfer homomorphism� W H2(Zi�1,Z)!

H2
�

(�i�1,Z) such that� Æ i� D [�i�1 W Z
i�1] W H2

�

(�i�1,Z)! H2
�

(�i�1,Z), see [1, (9.5)
Proposition p. 82] for example. The restriction i�[ f ] gives the bottom extension sequence
of (3.10). If i�[ f ] D 02 H2(Z2,Z), then 0D � Æ i�[ f ]D [�i�1 WZ

i�1][ f ] 2 H2
�

(�i�1,Z).

So i�[ f ] 6D 0. ThereforeQ1i (respectively QNi ) is not abelian (respectively not isomorphic
to a vector space). As a consequence,QN is a simply connected (non-abelian) nilpotent
Lie group.



ON THE S1-FIBRED NIL BOTT TOWER 73

In order to studyS1-fibred nilBott manifolds further, we introduce the following
definition:

DEFINITION 3.1. If an S1-fibred nilBott manifold M satisfies Case I (respect-
ively Case II) of Theorem 1.2, thenM is said to be anS1-fibred nilBott manifold of
finite type (respectively of infinite type).

Apparently there is no inter between finite type and infinite type. And S1-fibred
nilBott manifolds are of finite type until dimension 2.

REMARK 3.2. Let M be anS1-fibred nilBott manifold of finite type, then�(�)
is a Bieberbach group (cf. Theorem 1.2). By the Bieberbach Theorem,�(�) satisfies a
group extension

(3.11) 1! Z

n
! �(�)! H ! 1

whereZn
D �(�)\Rn, and H is the holonomy group of�(�). We may identify�(�)

with � whenever� is torsionfree.

Proposition 3.3. Suppose M is an S1-fibred nilBott manifold of finite type. Then
the holonomy group of� is isomorphic to the power of cyclic group of order two(Z2)s

in O(n) (0� s � n).

Proof. Let M be anS1-fibred nilBott manifold of finite type. Recall an equivari-
ant fibration:

(Z, R)! (�i , QNi )
pi
�! (�i�1, Ni�1).

If f is a cocycle inH2
�

(�i�1, Z) for Case I representing (3.2), then there exists a map
� W �i�1! R such that

(3.12) f (�, �) D N�(�)(�(�))C �(�) � �(��) (�, � 2 �i�1)

(see [3]). Moreover let (n, �) 2 �i and (x, w) 2 QNi D R � Ni�1, then the action of�i

is given by

(3.13) (n, �)(x, w) D (nC N�(�)(x)C �(�), �w)

(n 2 Z, � 2 �i�1). See (2.4). As we have shown in Case I of Theorem 1.2,Ni�1=�i�1

is a Riemannian flat manifoldRi�1
=�i�1, we may assume that

�w D b
�

C A
�

w (w 2 Ri�1)
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(b
�

2 R

i , A
�

2 O(i � 1)) in the above action of (3.13). Then the above action (3.13)
has the formula:

(3.14) (n, �)

�

x
w

�

D

��

nC �(�)
b
�

�

,

�

N

�(�) 0
0 A

�

���

x
w

�

,

where
h

x
w

i

2

QNi D R�Ri�1
D R

i . Suppose inductively that{A
�

j � 2 �i�1} � (Z2)i�1.

Here

(3.15) (Z2)i�1
D

8

�

<

�

:

0

B

�

�1
...

�1

1

C

A

9

>

=

>

;

� O(i � 1).

Since N�(�i�1) � {�1}, the holonomy groupHi of �i is isomorphic to (Z2)s, (0� s�
i ). This proves the induction step.

3.2. Torus actions onS1-fibred nilBott manifolds. Given an effectiveTk-action
on a closed aspherical manifoldM, define an orbit mapev W Tk

! M by ev(t) D t x
(9x 2 M). Thenev induces a homomorphism of the fundamental groupsev

�

W �1(Tk)!
�1(M) which is known to be injective by Conner and Raymond [3]. Butev

�

W H1(Tk)!
H1(M) is not necessarily injective.

DEFINITION 3.4. Whenev
�

W H1(Tk)! H1(M) is injective, we call that theTk-
action is homologically injective.

Corollary 3.5. Each S1-fibred nilBott manifold of finite type Mi admits a homo-
logically injective Tk-action where kD RankH1(Mi ). Moreover, the action is maximal,
i.e. kD RankC(�i ).

Proof. We suppose by induction that there is ahomologically injectivemaximal
Tk�1-action on Mi�1 D T i�1

=Hi�1 such thatk � 1 D RankH1(Mi�1) D RankC(�i�1)
(k � 1> 0). Since�i , �i�1 are Bieberbach groups, there are two group extensions

1! Z

i
! �i

hi
�! Hi ! 1,

1! Z

i�1
! �i�1

hi�1
��! Hi�1! 1

whereHi , Hi�1 are holonomy groups of�i , �i�1 respectively andZi
D �i \R

i , Zi�1
D
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�i�1 \ R
i�1. We have a following diagram

(3.16)

1

K

1

K

1 KZ KZ

i
K

K

Z

i�1
K

K

1

1 KZ K�i
pi
K

hi
K

�i�1 K

hi�1
K

1

Hi

K

Hi�1

K

1 1

Let pW Ri
D R�Ri�1

! T i
D S1

�T i�1 be the canonical projection such that KerpD
Z

i
D �i \ R

i . By Proposition 3.3,Hi D (Z2)s for some s (1 � s � i ). The action
(�i ,Ri ) induces an isometric action (Hi , T i ) from (3.14). We may represent the action
as follows:

(3.17) O�

0

B

B

B

�

z1

z2
...
zi

1

C

C

C

A

D

0

B

B

B

�

t
O�

�  ( O�)(z1)
z2
0

...
zi
0

1

C

C

C

A

here O� D hi ((n, �)) 2 Hi , t
O�

D p(nC �(�)) 2 S1, and W Hi ! {�1} is defined by

(3.18)  ( O�)(z1) D

�

z1 if N

�(�) D 1,
Nz1 if N

�(�) D �1.

Note that (t
O�

)2
D p(nC�(�))p(nC�(�)) D p(2nC2�(�)). By (3.14) if N�(�) D 1, then

(3.19) (n, �)2

�

x
w

�

D

0

B

�

�

2nC 2�(�)
b
�

C A
�

w

�

,

0

B

�

1
...

1

1

C

A

1

C

A

�

x
w

�

.

Since 2nC 2�(�) 2 Z, (t
O�

)2
D 1 i.e. t

O�

D �1.
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If  ( O�) D 1 for all O�, it follows from (3.17) that the left translation ofS1 on
T i
D S1

� T i�1 induces anS1-action on Mi D T i
=Hi so that Tk-action on Mi D

T i
=Hi follows

(3.20)

�

t
t 0

�

2

6

6

6

4

z1

z2
...
zi

3

7

7

7

5

D

2

6

6

6

4

t � z1

t 0 �

0

B

�

z2
...
zi

1

C

A

3

7

7

7

5

where (t, t 0) 2 S1
� Tk�1, [z1, : : : , zi ] 2 Mi D T i

=Hi . On the other hand, if there is an
element O� of Hi which  ( O�)(z) D Nz, then Mi admits aTk�1-action by the induction
hypothesis. The group extension (3.11) gives rise to a groupextension:

(3.21) 1! Z=[�i , �i ] \ Z! �i =[�i , �i ]
�i
�! �i�1=[�i�1, �i�1] ! 1.

As in the proof of Proposition 3.3, [(0,�), (n, 1)] D ((�(�) � 1)(n), 1). It follows that
[�i , �i ] \ Z D {1} or [�i , �i ] \ Z D 2Z according to whetherHi D Ker or not. So
(3.21) becomes

(3.22) 1! Z! H1(Mi )
�i
�! H1(Mi�1)! 1,

or

(3.23) 1! Z2! H1(Mi )
�i
�! H1(Mi�1)! 1.

For (3.22), it followsk D RankH1(Mi ) for which Mi admits a homologically injective
Tk-action as above. For (3.23),k � 1D RankH1(Mi ) and Mi admits a homologically
injective Tk�1-action by the induction hypothesis.

Now we show the action is maximal. Suppose ( O�) D 1 for all O�. Noting that the

group extension 1! Z ! �i
pi
! �i�1 ! 1 is a central extension, we obtain a group

extension:

1! Z! C(�i )
pi
�! pi (C(�i ))! 1.

On the other hand, sinceMi admits the aboveTk-action,Zk
� C(�i ). Let RankC(�i )D

kC l , (l D 0, 1, 2,: : :), thenZkCl�1
� pi (C(�i )). By the induction hypothesis,k � 1D

RankC(�i�1) � Rankpi (C(�i )). Thereforel D 0 that isk D RankC(�i ).
Assume that there exists an elementO� 2 Hi such that ( O�)(z) D Nz. It is easy to

check thatZ \ C(�i ) D {1}, i.e. C(�i ) � C(�i�1) and sinceMi admits Tk�1-action,
Z

k�1
� C(�i ). By the induction hypothesis,k � 1 D RankC(�i ). Hence in each case

the torus action is maximal.
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4. 3-dimensionalS1-fibred nilBott towers

By the definition of S1-fibred nilBott manifold Mn, M2 is either a torusT2 or a
Klein bottle K so thatM2 is a Riemannian flat manifold.

4.1. 3-dimensional S1-fibred nilBott manifolds of finite type. Any
3-dimensionalS1-fibred nilBott manifold M3 of finite type is a Riemannian flat mani-
fold. It is known that there are just 10-isomorphism classesG1, : : : , G6, B1, : : : , B4 of
3-dimensional Riemannian flat manifolds. (Refer to the classification of 3-dimensional
Riemannian flat manifolds by Wolf [13].) In particular, for Riemannian flat 3-manifolds
corresponding toB2 andB4, we have shown that there are twoS1-fibred nilBott tow-
ers: B2! K ! S1

! {pt} andB4! K ! S1
! {pt} in [10]. Remark that every real

Bott manifold is anS1-fibred nilBott manifold of finite type andB2 andB4 are not real
Bott manifolds. And the following proposition has been proved. See [10] for details.

Proposition 4.1. The 3-dimensional S1-fibred nilBott manifolds of finite type are
those ofG1, G2, B1, B2, B3, B4.

4.2. 3-dimensional S1-fibred nilBott manifolds of infinite type. Any
3-dimensionalS1-fibred nilBott manifold M3 of infinite type is an infranil-Heisenberg
manifold. The 3-dimensional simply connected nilpotent Lie group N3 is isomorphic
to the Heisenberg Lie groupN which is the productR � C with group law:

(x, z) � (y, w) D (x C y � Im Nzw, zC w).

Then a maximal compact Lie subgroup of Aut(N) is U(1)Ì h� i which acts onN

(4.1)
ei� (x, z) D (x, ei�z), (ei�

2 U(1)),

� (x, z) D (�x, Nz).

A 3-dimensional compact infranilmanifold is obtained as a quotient N=0 where0 is a
torsionfree discrete uniform subgroup of E(N) D N Ì (U(1)Ì h� i). See [4].

Let

S1
! M3! M2

be an S1-fibred nilBott manifold of infinite type which has a group extension 1!
Z! �3! �2! 1. As before this group extension contains a central group extension
1! Z !

Q

13 ! 12 ! 1. SinceR � N is the center, this induces the commutative
diagram of central extensions (cf. (3.16)):

(4.2)

1 KZ K

K

Q

13 K

K

12 K

K

1

1 KR KN KC K 1.
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Using this, we obtain an embedding:

(4.3)

1 KZ K

K

�3 K

�

K

�2 K

O�

K

1

1 KR KE(N) KC Ì (U(1)Ì h� i) K 1.

Note thatC Ì (U(1)Ì h� i) D R

2
Ì O(2)D E(2). SinceR \ �3 D Z from (4.3), O�(�2)

is a Bieberbach group in E(2) so thatR2
= O�(�2) is either T2 or K .

Define L W E(N)! U(1)Ì h� i to be the canonical projection.
CASE (i). SupposeL(�3) D {1}. Then O�(�2) � C. So we may assume�3 D Q13

from (4.2). For eachk 2 Z, we introduce the nilpotent group1(k) which is a subgroup
of N generated by

cD (2k, 0), a D (0, k), bD (0, ki).

Put Z D hci which is a central subgroup of1(k). It is easy to see that

(4.4) [a, b] D c�k.

Then Q13 � N is isomorphic to1(k) for somek 2 Z. SinceR is the center ofN, we
have a principal bundle

S1
D R=Z! N=1(k)! C=Z

2.

Then the euler number of the fibration is�k. (See [9] for example.)
CASE (ii). Suppose that the holonomy group of�3 is nontrivial. Then we note

that L(�3) D Z2 � U(1)Ì h� i, but not in U(1). By (3.16)L(�3) D L(�2), first remark
that L(�2) is not contained in U(1). For this, suppose that (b, A) is an element of
�2 � R

2
ÌO(2). Then for anyx 2 R2, (b, A)x ¤ x, because the action of�2 on R2 is

free. Therefore det(A � I ) D 0. This implies that ifA 2 SO(2)D U(1), then A D I .
So L(�2) D L(�3) is not contained in U(1).

Suppose that there exists an elementg 2 �3 such thatL(g) D (ei� , � ) 2 U(1)Ì h� i.
Noting (4.1), it follows L(g)2

D 1. Then L(�3) D (U(1)\ L(�3)) � hL(g)i. Let � 03 D
L�1(U(1)\ L(�3)) � �3 which has the commutative diagram:

(4.5)

1 KZ K�3
p3
K�2 K 1

1 KZ K�

0

3 K

K

�

0

2 K

K

1.

Here� 02 D p3(� 03). Since� 02 also acts onR2 freely, it follows L(� 02) D L(� 03) D U(1)\
L(�3) D {1}. Hence L(�2) D L(�3) D Z2 D hL(g)i. In particular M2 is the Klein
bottle K .
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Let n D (x, 0) be a generator ofZ � N. Chooseh 2 �3 with L(h) D 1 such
that the subgrouphp3(g), p3(h)i is the fundamental group ofK . It has a relation
p3(g)p3(h)p3(g)�1

D p3(h)�1. Then hn, g, hi is isomorphic to�3. In particular, those
generators satisfy

(4.6)
ghg�1

D nkh�1 (9k 2 Z),

gng�1
D L(g)n D �n D n�1, ahnh�1

D L(h)n D n.

On the other hand, fix a non-zero integerk. Let 0(k) be a subgroup of E(N) gen-
erated by

(4.7) n D ((k, 0), I ), � D

��

0,
k

2

�

, �

�

, � D ((0, ki), I ),

where (a, x) 2 N D R � C � E(N).
Note that�2

D ((0, k), I ). Then it is easily checked that

���

�1
D nk

�

�1, �n��1
D n�1, �n��1

D n,(4.8)

1 KR KE(N) KC Ì (U(1)Ì h� i) K 1

1 K hni K

K

0(k) K

K

h O�, O�i K

K

1.

(4.9)

Then the subgroup generated byO�2, O� is isomorphic to the subgroup of translations of

R

2; t1 D
h

k
0

i

, t2 D
h

0
k

i

. Let T2
D R

2
=ht1, t2i. Then it is easy to see that the quotient


 D [ O�] of order 2 acts onT2 as

(4.10) 
 (z1, z2) D (�z1, Nz2).

As a consequence,R2
=h O�, O�i D T2

=h
 i turns out to beK . So M3 D N=0(k) is an
S1-fibred nilBott manifold:

S1
! N=0(k)! K

where S1
D R=hni is the fiber (but not an action).

Compared (4.6) with0(k), �3 is isomorphic to0(k) with the following commuta-
tive arrows of isomorphisms:

(4.11)

1 KZ K

K

�3 K

K

�2 K

K

1

1 K hni K0(k) K h O�, O�i K 1.



80 M. NAKAYAMA

As both (�3, X3) and (0(k), N) are Seifert actions, the isomorphism of (4.11) implies
that they are equivariantly diffeomorphic, i.e.M3 D X3=�3 � N=0(k). This shows the
following.

Proposition 4.2. A 3-dimensional S1-fibred nilBott manifold M3 of infinite type
is either a Heisenberg nilmanifoldN=1(k) or a Heisenberg infranilmanifoldN=0(k).

5. Realization

5.1. Realization ofS1-fibration over a Klein bottle K . Let Q be a fundamen-
tal group of a Klein BottleK , then Q has a presentation:

(5.1) {g, h j ghg�1
D h�1}.

A group extension 1! Z! � ! Q! 1 for any 3-dimensionalS1-fibred nilBott mani-
fold over K represents a 2-cocycle inH2

�

(Q,Z) for some representation�. Conversely,
given any representation� W Q! Aut(Z) D {�1}, we shall prove that any element of
H2
�

(Q, Z) can be realized as anS1-fibred nilBott manifold.
We must consider following cases of a representation�:
CASE 1. �(g) D 1, �(h) D 1.
CASE 2. �(g) D 1, �(h) D �1.
CASE 3. �(g) D �1, �(h) D 1.
CASE 4. �(g) D �1, �(h) D �1.
Suppose�i (i D 1, 2, 3, 4) is the representation� for Case i. Any element of

H2
�i

(Q, Z) gives rise to a group extension

1! Z! �

p
�! Q! 1.

Then � is generated byQg, Qh, n such thathni D Z and p( Qg) D g, p( Qh) D h. There
existsk 2 Z which satisfies

(5.2) Qg Qh Qg�1
D nk

Qh�1.

Put � D i�(k) for eachk 2 Z and [fk] denotes the 2-cocycle ofH2
�i

(Q,Z) representing

i�(k). Note that [f0] D 0.
CASE 1: Since�1 is trivial, H2

�1
(Q, Z) D H2(Q, Z) � H2(K , Z) � Z2, and the

group 1�(k) satisfies the following presentation:

(5.3) Qgn Qg�1
D n, QhnQh�1

D n, Qg Qh Qg�1
D nk

Qh�1.

Lemma 5.1. The groups1�(0), 1�(1) are isomorphic toB1, B2 respectively.
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Proof. First we shall discuss1�(0). Let Qg, Qh, n 2 1�(0) be as above. Put" D Qg,
t1 D Qg2, t2 D n and t3 D Qh. Remark that a group generated by", t1, t2, t3 coincides with

1�(0). Using the relation (5.3),

"

2
D t1,

"t2"
�1
D Qg Qh Qg�1

D

Qh�1
D t�1

2 ,

"t3"
�1
D Qgn Qg�1

D n D t3.

Compared these relations with those ofB1, 1�(0) is isomorphic toB1 (due to the
Wolf’s notation [13]).

Second, we shall discuss1�(1). Let Qg, Qh,n 2 1�(1) be as above. Put" D Qg, t1D Qg2,
t2 D Qg�2n and t3 D Qh. A group generated by", t1, t2, t3 coincides with1�(1). By using
the relation (5.3),

"

2
D t1,

"t2"
�1
D Qg Qg�2n Qg�1

D Qg�1n Qg�1
D Qg�2n D t1,

"t3"
�1
D Qgh Qg�1

D Qg2
Qg�2n Qh�1

D t1t2t�1
3 .

This implies that1�(1) is isomorphic toB2. (See [13].)

For arbitraryk 2 Z, we have the following.

Proposition 5.2. The group extension1�(k) is isomorphic toB1, or B2 in accord-
ance with k is even or odd.

Proof. Take [f1] 2 H2
�1

(Q, Z) � Z2 by Lemma 5.1, then

(5.4)
n D Qg Qh Qg�1

Qh D (0, g)(0, h)(� f1(g�1, g), g�1)(0, h)

D f1(g, h) � f1(g�1, g)C f1(gh, g�1)C f1(h�1, h),

and so

(5.5) nk
D k f1(g, h) � k f1(g�1, g)C k f1(gh, g�1)C k f1(h�1, h).

Since [k f1] 2 H2
�1

(Q,Z), we can construct a groupHk which is represented by (k f1,�1).
Then Hk is generated by the elementsn and g0 D (0, g), h0 D (0, h) satisfying that

(n, �)(m, �) D (nC �1(�)(m)C k f1(�, �), ��) (8n, m 2 Z, 8�, � 2 Q).
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It follows

g0h0g0�1h0 D (0, g)(0, h)(�k f1(g�1, g), g�1)(0, h)

D k f1(g, h) � k f1(g�1, g)C k f1(gh, g�1)C k f1(h�1, h)

D nk (from (5.5)).

Thus we obtaing0h0g0�1
D nkh0�1. In view of (5.2), a correspondenceg0 7! Qg, h0 7! Qh

gives an isomorphism9 of the group extensions:

(5.6)

1 KZ K

id
K

Hk K

9

K

Q K

id
K

1

1 KZ K 1�(k) K Q K 1.

If we recall that [fk] (resp. [k � f1]) represents1�(k) (resp. Hk), then it follows [fk] D
k � [ f1]. Noting that [f1] is a two torsion element, the result follows.

CASE 2: Let �2(g) D 1, �2(h) D �1, then2�(k) has the following presentation.

(5.7) Qgn Qg�1
D n, QhnQh�1

D n�1, Qg Qh Qg�1
D nk

Qh�1,

for somek 2 Z.

Proposition 5.3. The groups2�(0), 2�(1) are isomorphic toB3, B4 respectively.

Proof. Let Qg, Qh, n 2 2�(0) be as before. Put� D Qh Qg, " D Qh�1, t1 D Qg2, t2 D Qh�2

and t3 D n. Note that the group generated by�, ", t1, t2, t3 coincides with2�(0).
Using the relation (5.7),

Q�

2
D ( Qh Qg)2

D

Qh Qh�1
Qg Qg D Qg2

D t1,

"

2
D t2,

"�"

�1
D

Qh�1
Qh Qg Qh D Qh�1

Qg D t2�,

�t2�
�1
D

Qh Qg Qh�2
Qg�1
Qh�1
D

Qh�2
D t�1

2 ,

alt3�
�1
D

Qh Qgn Qg�1
Qh�1
D n�1

D t�1
3 ,

"t1"
�1
D

Qh�1
Qg2
Qh D Qh�1

Qg Qh�1
Qg D Qh�1

Qh Qg Qg D Qg2
D t1,

"t3"
�1
D

Qh�1n Qh D n�1
D t�1

3 .

Since these relations correspond to those ofB3 (cf. [13]), 2�(0) is isomorphic toB3.
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Let Qg, Qh, n 2 2�(1) be as above. Put� D Qh Qg, " D n�1
Qh�1, t1 D n�1

Qg2, t2 D Qh�2,
and t3 D n�1. Using the relation (5.7), we obtain the following presentation:

Q�

2
D ( Qh Qg)2

D

QhnQh�1
Qg Qg D n�1

Qg2
D t1,

"

2
D t2,

"�"

�1
D n�1

Qh�1
Qh Qg QhnD Qh�1

QgnD t2t3�,

�t2�
�1
D

Qh Qg Qh�2
Qg�1
Qh�1
D

Qh�2
D t�1

2 ,

�t3�
�1
D

Qh Qgn�1
Qg�1
Qh�1
D n D t�1

3 ,

"t1"
�1
D n�1

Qh�1n�1
Qg2
QhnD n�1

Qg2
D t1,

"t3"
�1
D n�1

Qh�1n�1
QhnD n D t�1

3 .

This implies that2�(1) is isomorphic toB4. (See [13]).

Proposition 5.4. H2
�2

(Q, Z) is isomorphic toZ2.

Proof. We first show thatH2
�2

(Q,Z) is a 2-torsion group. LetQ0 be the subgroup

of Q generated byg, h2
2 Q satisfying thatgh2g�1

D (ghg�1)2
D h�2. We have a

commutative diagram:

(5.8) 1 KZ K 2�(k)
p
K Q K 1

1 KZ K�

0

p
K

K

Q0

K

K

1

where� 0 is the subgroup of2�(k) generated byn, Qg, Qh2. Note that

Qg Qh2
Qg�1
D nk

Qh�1nk
Qh�1
D

Qh�2.

Since the subgrouph Qg, Qh2
i of � 0 maps isomorphically ontoQ0 and a restriction�2jQ0

D

id, it follows � 0DZ�Q0. This shows that the restriction homomorphism��W H2
�2

(Q,Z)!

H2(Q0, Z) is the zero map, equivalently��[ fk] D 0. Using the transfer homomorphism
� W H2(Q0,Z)! H2

�2
(Q,Z) and by the property� Æ ��([ f ])D [Q WQ0][ f ]D2[ f ] (8[ f ] 2

H2
�2

(Q, Z)), we obtain 2[f ]D0.
Let [ fk] be a 2-cocycle of2�(k). Similarly as in the proof of Proposition 5.2

we obtain

(5.9) [ fk] D k � [ f1].

As a consequence,H2
�2

(Q, Z) is isomorphic toZ2.



84 M. NAKAYAMA

The following is obvious using Proposition 5.3 and Proposition 5.4.

Corollary 5.5. The group extension2�(k) is isomorphic toB3 or B4 in accor-
dance with k is even or odd.

CASE 3: The group3�(k) has the following presentation for somek 2 Z;

(5.10) Qgn Qg�1
D n�1, QhnQh�1

D n, Qg Qh Qg�1
D nk

Qh�1.

Lemma 5.6. The groups3�(0), 3�(k) are isomorphic toG2, 0(k) respectively.
(cf. (4.7).)

Proof. Let Qg, Qh, n 2 3�(0) be as before. Put� D Qg, t1 D Qg2, t2 D Qh and t3 D n.
Note that the group generated by�, t1, t2, t3 coincides with3�(0). By using the relation
(5.10), it is easy to check that:

�

2
D t1,

�t2�
�1
D t�1

2 ,

�t3�
�1
D t�1

3 .

And so 3�(0) is isomorphic toG2. (See [13].)
SupposeQg, Qh, n 2 3�(k) (k ¤ 0). By the relations (4.6) and (5.10),3�(k) is iso-

morphic to0(k) (cf. (4.7)).

Proposition 5.7. H2
�3

(G, Z) is isomorphic toZ.

Proof. From Theorem 1.2 and Lemma 5.6,0(k) represents the torsionfree elem-
ent [ fk] in H2

�3
(G, Z). Moreover as in the proof of Proposition 5.2, we can show that

[ fk] D k � [ f1]. ThereforeH2
�3

(G, Z) is isomorphic toZ.

CASE 4. The group4�(k) has the following presentation.

(5.11) Qgn Qg�1
D n�1, QhnQh�1

D n�1, Qg Qh Qg�1
D nk

Qh�1.

Put � D Qg Qh. It is easy to check that

(5.12) �n��1
D n, QhnQh�1

D n�1, �

Qh� D nk
Qh�1.

In view of (5.7), this implies that4�(k) is isomorphic to2�(k).
We have shown that any element ofH2

�i
(Q,Z) can be realized anS1-fibred nilBott

manifold M3, and obtain the following table:
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Case 1 Case 2 and 4 Case 3
H2
�

(Q, Z) Z2 Z2 Z

[ f ] D 0 B1 B3 G2

�1(M3) [ f ] ¤ 0: torsion B2 B4 —
[ f ]: torsionfree — — 0(k)

5.2. Realization of S1-fibration over T2. Let Z2 be the fundamental group of
a torus T2 generated by�, �. Given a representation� W Z2

! Z D {�1}, we shall
show that any element ofH2

�

(Z2, Z) can be realized as anS1-fibred nilBott manifold.
We must consider following cases of a representation�:
CASE 5. �(�) D 1, �(�) D 1.
CASE 6. �(�) D 1, �(�) D �1.
CASE 7. �(�) D �1, �(�) D �1.
Suppose�i (i D 5,6,7) is the representation� for Case i. Any element ofH2

�i
(Z2,Z)

gives rise to a group extension

1! Z! �

p
�! Z

2
! 1.

Then � is generated byQ�, Q�, m such thathmi D Z and p( Q�) D �, p( Q�) D �. There
existsk 2 Z which satisfies

(5.13) Q�

Q

� Q�

�1
D mk

Q

�.

Put� D i�(k) for eachk 2 Z and [fk] denotes the 2-cocycle ofH2
�i

(Z2,Z) representing

i�(k). Note that [f0] D 0.
CASE 5: The group5�(k) has the following presentation.

(5.14) Q�m Q��1
D m, Q

�m Q��1
D m, Q�

Q

� Q�

�1
D mk

Q

�,

for somek 2 Z. Compared these relations with (4.4),

Proposition 5.8. The groups5�(0), 5�(k) are isomorphic to�1(T3), �1(1(�k))
respectively.

Similarly as in the proof of Proposition 5.7, we obtain

Proposition 5.9. H2
�5

(Z2, Z) is isomorphic toZ.

CASE 6: The group6�(k) has the following presentation.

(5.15) Q�m Q��1
D m, Q

�m Q��1
D m�1, Q�

Q

� Q�

�1
D mk

Q

�,

for somek 2 Z.
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Proposition 5.10. The groups6�(0), 6�(1) are isomorphic toB1, B2 respectively.

Proof. First letk D 0. Put mD Qh, Q� D n, Q� D Qg, then we can check easily that

6�(0) is isomorphic to1�(0). So 6�(0) is isomorphic toB1.
Supposek D 1. Put mD n, Q� D Qg, m�1

Q

� D

Qh, then it is easy to check that6�(1)
is isomorphic toB2.

Moreover similarly as in the proof of Proposition 5.4, we obtain

Proposition 5.11. H2
�6

(Z2, Z) is isomorphic toZ2.

CASE 7: The group7�(k) has the following presentation.

(5.16) Q�m�1
Q�

�1
D m, Q

�m Q��1
D m�1, Q�

Q

� Q�

�1
D mk

Q

�,

for somek 2 Z. Then it is easy to check that7�(k) is isomorphic to6�(k) if we put
g D Q� Q�.

We have shown that any element ofH2
�

(Z2,Z) can be realized anS1-fibred nilBott
manifold M3, and we obtain the following table:

Case 5 Case 6 and 7
H2
�

(Z2, Z) Z Z2

[ f ] D 0 G1 B1

�1(M3) [ f ] ¤ 0: torsion — B2

[ f ]: torsionfree 1(k) —

6. Halperin–Carlsson conjecture

Theorem 6.1 (Halperin–Carlsson conjecture [11]). Let Ts be an arbitrary effec-
tive action on an m-dimensional S1-fibred nilBott manifold M of finite type. Then

(6.1) sC j � b j (D the j-th Betti number of M).

In particular 2s
�

Pm
jD0 RankH j (M).

Proof. By Corollary 3.5,M admits a homologically injectiveTk-action where
k D RankC(�) where� D �1(M). Then we have shown in [6] that any homologically
injective Tk-actions on any closed aspherical manifold satisfies that

kC j � b j (D the j -th Betti number ofM).

It follows from the result of Conner–Raymond [3] that there is an injective homo-
morphism 1! Z

s
! C(�). This shows thats � k so we obtain

(6.2) sC j � b j .
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REMARK 6.2. This result is obtained whenMi is a real Bott manifold by Masuda,
Choi and Oum [2].
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