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Abstract
In this paper we consider invariant Matsumoto metrics which are induced by in-

variant Riemannian metrics and invariant vector fields on homogeneous spaces, and
then we give the flag curvature formula of them. Also we study the special cases
of naturally reductive spaces and bi-invariant metrics. Weend the article by giving
some examples of geodesically complete Matsumoto spaces.

1. Introduction

In the last decade the study of invariant Finsler structureson Lie groups and homo-
geneous spaces has been extended. Lie groups and homogeneous spaces equipped with
invariant Finsler metrics are best spaces for finding spaceswith some curvature prop-
erties. Some curvature properties of these manifolds have been studied in [4], [5], [6],
[11], [12] and [13].

An important family of Finsler metrics is the family of (�, �)-metrics. These met-
rics are introduced by M. Matsumoto (see [9]). The interestingand important examples
of (�,�)-metrics are Randers metric�C�, Kropina metric�2

=�, and Matsumoto met-
ric �

2
=(� � �), where�(x, y) D

p

gi j (x)yi y j , �(x, y) D bi (x)yi , and g and b are a
Riemannian metric and a 1-form respectively as follows:

g D gi j dxi

 dx j ,(1.1)

bD bi dxi .(1.2)

In the Matsumoto metric, the 1-formb D bi dxi was originally to be induced by the
Earth’s gravity (see [1] or [8]).

In a natural way, the Riemannian metricg induces an inner product on any co-
tangent spaceT�

x M such thathdxi (x), dx j (x)i D gi j (x). The induced inner product on
T�

x M induces a linear isomorphism betweenT�

x M and Tx M (for more details see [5]).

Then the 1-formb corresponds to a vector fieldQX on M such that

(1.3) g(y, QX(x)) D �(x, y).
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Therefore we can write the Matsumoto metricF D �2
=(� � �) as follows:

(1.4) F(x, y) D
�(x, y)2

�(x, y) � g( QX(x), y)
.

One of the fundamental quantities which is associated with aFinsler space is flag curva-
ture. Flag curvature is computed by the following formula:

K (P, Y) D
gY(R(U, Y)Y, U )

gY(Y, Y) . gY(U, U ) � g2
Y(Y, U )

,(1.5)

wheregY(U,V )D (1=2)(�2
=(�s�t))(F2(YCsUCtV ))jsDtD0, PDspan{U,Y}, R(U,Y)YD

rUrYY � rYrU Y � r[U,Y]Y and r is the Chern connection induced byF (see [2]
and [14].).

In this paper we consider invariant Matsumoto metrics which are induced by in-
variant Riemannian metrics and invariant vector fields on homogeneous spaces then we
give the flag curvature formula of them. Also we study the special cases of naturally
reductive spaces and bi-invariant metrics. We end the article by giving some examples
of geodesically complete Matsumoto spaces.

2. Flag curvature of invariant Matsumoto metrics on homogeneous spaces

Let G be a compact Lie group,H a closed subgroup, andg and h the Lie alge-
bras ofG and H respectively. Suppose thatg0 is a bi-invariant Riemannian metric on
G, then the tangent space of the homogeneous spaceG=H is given by the orthogonal
complimentm of h in g with respect tog0. Each invariant metricg on G=H is de-
termined by its restriction tom. The arising AdH -invariant inner product fromg on m

can extend to an AdH -invariant inner product ong by taking g0 for the components in
h. In this way the invariant metricg on G=H determines a unique left invariant metric
on G that we also denote byg. The values ofg0 and g at the identity are inner prod-
ucts ong and we determine them byh � , � i0 and h � , � i respectively. The inner product
h � , � i determines a positive definite endomorphism� of g such thathX, Yi D h�X, Yi0
for all X, Y 2 g.

Theorem 2.1. Let G, H , g, h, g, g0 and � be as above. Assume thatQX is an

invariant vector field on G=H which is parallel with respect to g and
q

g( QX, QX) < 1=2

and X WD QXH . Suppose that FD �

2
=(� � �) is the Matsumoto metric induced by g

and QX. Assume that(P, Y) is a flag in TH (G=H ) such that{Y, U} is an orthonormal
basis of P with respect toh � , � i. Then the flag curvature of the flag(P,Y) in TH (G=H )
is given by

(2.1) K (P, Y) D
(1� hY, Xi)2{B(1� hY, Xi)(1� 2hY, Xi)C 3AhU, Xi}

(1� hY, Xi)(1� 2hY, Xi)C 2hU, Xi2
,
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where

(2.2)

AD hR(U, Y)Y, Xi

D �

1

4
(h[�U, Y] C [U, �Y], [Y, X]i0C h[U, Y], [�Y, X] C [Y, �X]i0)

�

3

4
h[Y, U ], [Y, X]mi �

1

2
h[U, �X] C [X, �U ], ��1([Y, �Y])i0

C

1

4
h[U, �Y] C [Y, �U ], ��1([Y, �X] C [X, �Y])i0,

and

B D hR(U, Y)Y, Ui

D �

1

2
h[�U, Y] C [U, �Y], [Y, U ]i0

�

3

4
h[Y, U ], [Y, U ]mi � h[U, �U ], ��1([Y, �Y])i0

C

1

4
h[U, �Y] C [Y, �U ], ��1([Y, �U ] C [U, �Y])i0.

(2.3)

Proof. From the assumption,QX is parallel with respect tog, and therefore the
Chern connection ofF coincides on the Levi-Civita connection ofg (see [1]). So the
Finsler metric F and the Riemannian metricg have the same curvature tensor. We
show it by R.

By using the definition ofgY(U, V) and some computations forF we have:

gY(U, V) D
1

(
p

g(Y, Y) � g(Y, X))2
{4g(Y, U )g(Y, V)C 2g(Y, Y)g(U, V)}

C

1

(
p

g(Y, Y) � g(Y, X))4

� {�4g(Y, Y)g(Y, U )g(Y, V)

C g(Y, Y)3=2(g(Y, V)g(U, X)C g(Y, U )g(V, X))

C g(Y, Y)2(3g(U, X)g(V, X) � g(U, V))

C

p

g(Y, Y)g(Y, X)(7g(Y, U )g(Y, V)C g(Y, Y)g(U, V))

� 4g(Y, Y)g(Y, X)(g(Y, V)g(U, X)C g(Y, U )g(V, X))}.

(2.4)

Now by using the above formula and the fact that{Y, U} is an orthonormal basis for
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P with respect tog, we have

gY(R(U, Y)Y, U )

D

2hR(U, Y)Y, Ui

(1� hY, Xi)2

C

1

(1� hY, Xi)4
{hR(U, Y)Y, YihU, Xi

C 3hR(U, Y)Y, XihU, Xi � hR(U, Y)Y, Ui

C hY, XihR(U, Y)Y, Ui

� 4hY, XihR(U, Y)Y, YihU, Xi}

(2.5)

and

gY(Y, Y) . gY(U, U ) � g2
Y(U, Y) D

2

(1� hY, Xi)4
C

2hU, Xi2C hY, Xi � 1

(1� hY, Xi)6
.(2.6)

We can obtain the relations (2.2) and (2.3) by using Püttmann’s formula (see [10].).
Substituting the relations (2.5) and (2.6) in the equation (1.5), we complete

the proof.

REMARK 2.2. A homogeneous spaceM D G=H with a G-invariant indefinite
Riemannian metricg is said to be naturally reductive if it admits an ad(H )-invariant
decompositiong D hCm satisfying the condition

(2.7) B(X, [Z, Y]m)C B([Z, X]m, Y) D 0 for X, Y, Z 2 m,

where B is the bilinear form onm induced byg and [ , ]m is the projection tom
with respect to the decompositiong D h C m (for more details see [7]). In this case
the relation (2.1) for the flag curvature reduces to a simplerequation, because in the
case of naturally reductive homogeneous space we have (see [7])

(2.8) R(U, Y)Y D
1

4
[Y, [U, Y]m]m C [Y, [U, Y]h].

Now we consider the case when the invariant Matsumoto metric is defined by a
bi-invariant Riemannian metric on a Lie group.

Theorem 2.3. Let G be a Lie group and g be a bi-invariant Riemannian met-
ric on G. Assume thatQX is a left invariant vector field on G which is parallel with

respect to g and
q

g( QX, QX) < 1=2 and X WD QXH . Suppose that FD �

2
=(� � �) is

the Matsumoto metric induced by g andQX, also let (P, Y) be a flag in TeG such that
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{Y, U} be an orthonormal basis of P with respect toh � , � i. Then the flag curvature
of the flag(P, Y) in TeG is given by
(2.9)

K (P, Y) D
�(1�hY, Xi)2

4(1�hY, Xi)(1�2hY, Xi)C8hU, Xi2

�{h[[U, Y], Y], Ui(1�hY, Xi)(1�2hY, Xi)C3h[[U, Y], Y], XihU, Xi}.

Proof. g is bi-invariant therefore we haveR(U, Y)Y D �(1=4)[[U, Y], Y]. Now
by using Theorem 2.1, the proof is completed.

3. Some examples of geodesically complete Matsumoto spaces

In this section we give some examples of geodesically complete Matsumoto spaces.
We begin with a definition from [3].

DEFINITION 3.1. The Riemannian manifold (M, g) is said to be homogeneous if
the group of isometries ofM acts transitively onM.

Theorem 3.2. Suppose that(M, g) is a homogeneous Riemannian manifold. Let
F be a Matsumoto metric of Berwald type defined by g and a1-form b. Then(M, F)
is geodesically complete. Moreover if M is connected then(M, F) is complete.

Proof. The Chern connection ofF and the Levi-Civita connection ofg coincide
and therefore their geodesics coincide too. On the other hand (M, g) is a homogeneous
Riemannian manifold, hence (M, g) is geodesically complete (see [3] p. 185). There-
fore (M, F) is geodesically complete. IfM is connected then by using Hofp–Rinow
theorem for Finsler manifolds, (M, F) is complete.

Corollary 3.3. Let G be a Lie group and g be a left invariant Riemannian metric
on G. Also suppose that X is a parallel vector field with respect to the Levi-Civita
connection of g such that

p

g(X, X) < 1=2. Then the Matsumoto metric defined by g,
X and the relation(1.4) is geodesically complete.

Now we consider an abelian Lie group equipped with a left invariant Riemannian
metric. We know that this space is flat. In this case we have thefollowing theorem,

Theorem 3.4. Let G be an abelian Lie group equipped with a left invariant
Riemannian metric g, and let g be the Lie algebra of G. Suppose that X2 g is a
left invariant vector field with

p

g(X, X) < 1=2. Then the Matsumoto metric F defined
by the formula(1.4) is a flat geodesically complete locally Minkowskian metric on G.

Proof. Assume thatU, V, W 2 g, now by using the Koszul’s formula and the fact
that G is abelian we haverY X D 0, for any Y 2 g. HenceX is parallel with respect
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to r and F is of Berwald type. Also the curvature tensorRD 0 of g coincides on the
curvature tensor ofF and therefore the flag curvature ofF is zero. F is a flat Berwald
metric therefore by Proposition 10.5.1 (p. 275) of [2],F is locally Minkowskian.

EXAMPLE 3.5 (E(2) group of rigid motions of Euclidean 2-space). We consider
the Lie groupE(2) as follows:

(3.1) E(2)D

8

<

:

2

4

cos� �sin� a
sin� cos� b

0 0 1

3

5 a, b, � 2 R

9

=

;

.

The Lie algebra ofE(2) is of the form

(3.2) e(2)D span

8

<

:

x D

2

4

0 0 1
0 0 0
0 0 0

3

5, y D

2

4

0 0 0
0 0 1
0 0 0

3

5, zD

2

4

0 �1 0
1 0 0
0 0 0

3

5

9

=

;

,

where

[x, y] D 0, [y, z] D x, [z, x] D y.(3.3)

Now let g be the left invariant Riemannian metric induced by the following inner product,

hx, xi D hy, yi D hz, zi D �2, hx, yi D hy, zi D hz, xi D 0, � > 0.(3.4)

In [13] we showed that the left invariant vector fields which are parallel with respect
to the Levi-Civita connection of this space are of the formU D uz. Also we proved that
RD 0. Assume that

p

hU, Ui < 1=2, in other words let 0< juj < 1=(2�). Hence, the
left invariant Matsumoto metricF defined byg andU with formula (1.4) is of Berwald
type. Also sinceF is of Berwald type therefore the curvature tensor ofF andg coincide
and F is of zero constant flag curvature. HenceF is locally Minkowskian.

EXAMPLE 3.6. Another example of flat geodesically complete locally Minkowsk-
ian Matsumoto spaces is described as follows.

Let g D span{x, y, z} be a Lie algebra such that

(3.5) [x, y] D �yC �z, [y, z] D 2�x, [z, x] D �yC �z, � 2 R.

Also consider the inner product described by (3.4) ong.
Suppose thatG is a Lie group with Lie algebrag, and g is the left invariant

Riemannian metric induced by the above inner producth � , � i on G.
A direct computation shows thatRD 0, therefore (G,g) is a flat Riemannian mani-

fold. Also in [13] we proved that vector fields which are parallel with respect to the



INVARIANT MATSUMOTO METRICS ON HOMOGENEOUSSPACES 45

Levi-Civita connection of (G, g) are of the formU D uy � uz. Now suppose that
p

2juj� D
p

hU, Ui < 1=2 or equivalently let 0< juj < 1=(2
p

2�). Therefore the in-
variant Matsumoto metricF defined byg andU is a flat geodesically complete locally
Minkowskian metric onG. Also if G is connected, (G, F) is complete.
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