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Abstract

In this paper, we give the representation theorem for haitri®argman functions
and harmonic Bloch functions on smooth bounded domains. Papplication, we
discuss Toeplitz operators.

1. Introduction

Let Q be a smooth bounded domain in thelimensional Euclidean spa®, i.e.,
for every boundary poing € 92, there exist a neighborhood of n in R" and aC>-
diffeomorphismf: V — (V) Cc R" such thatf(y) = 0and f(2NV) = {(ys,..., ¥n) €
R"; y, >0} N f(V). For 1< p < oo, we denote bypP = bP(R2) the harmonic Bergman
space org, i.e., the set of all real-valued harmonic functioh®n  such thaf| f ||, :=
(fQ| fIP dx)l/p < 0o, wheredx denotes the usual-dimensional Lebesgue measure on
Q. As is well-known,bP is a closed subspace b = LP(2) and hencebP is a Banach
space (for example see [1]). Especially, wher= 2, b? is a Hilbert space, which has
the reproducing kernel, i.e., there exists a unique symenftnction R(-, -) on 2 x Q
such that for anyf € b? and anyx € ,

1) f(x) = /Q R(x, y) F(y) dy.

The functionR( -, -) is called the harmonic Bergman kernel @ When Q is the
open unit ballB, an explicit form is known:

(n—A)[x[*|y|* + (8x -y —2n —4)|x]|y|* + n

R(X, Y) = RB(Xv y) = n|B|(1— 2% - y + |X|2|y|2)l+n/2 !

wherex -y denotes the Euclidean inner productRf and|B]| is the Lebesgue measure
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of B. We denote byP the corresponding integral operator

@ PY(X) = /Q R(X, ) (y) dy

for x € Q. It is known thatP: LP — bP is bounded for 1< p < oo; see Theorem 4.2
in [6].
The following result is shown in [8].

Theorem A. Letl < p < oo and let2 be a smooth bounded domain. Then we
can choose a sequenég;} in Q satisfying the following propertyFor any f € bP(),
there exists a sequende;} € IP such that

3 f(x) = i a R(X, 4)r ()& /P,

i=1
where (x) denotes the distance between x &ifd.

The equation (3) is called an atomic decomposition fof The above theorem
shows the existence of a sequer(égg} C  permitting an atomic decomposition for
every f € bP.

Theorem A does not refer to the cape= 1. This deeply comes from the fact that
P: L' — b’ is not bounded. In the present paper, we give an atomic deasitign
for p =1 by using a modified reproducing kernBi(-, -), introduced in [3].

Theorem 1. Let1l < p < oo and let be a smooth bounded domain. Then we
can choose a sequené¢g;} in Q satisfying the following propertyFor any f € bP(),
there exists a sequende;} € IP such that

f(x) = Z a Ry(x, A)r(x)d-pn,
i=1

Also, we consider the harmonic Bloch space. We define the dr@mBloch space
B by
B:={f:Q2—R: f is harmonic and| f |z < oo},

where
[ fl5:=supr(x)[Vf(x)|: x € @}

and V denotes the gradient operatdr/§xs, ..., 3/9x,). Note that| - |z is a semi-
norm on 5. We fix a reference poinxy € Q. 5 can be made into a Banach space by
introducing the norm

I = 1f o) + [ f 5
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Also, B denotes the space of all Bloch functiofssuch thatf (xo) = 0. Then, 6, II-115)
is a Banach space. Using a kernel

Ri(X, y) = Ru(X, ¥) — Ru(Xo, ¥),
we have the following theorem.

Theorem 2. Let 2 be a smooth bounded domain. Then we can choose a sequence
{Ai} in  satisfying the following propertyFor any f € B3, there exists a sequen¢a } €
[°° such that

F(x) = ajRu(x, 4;)r ()"

i=1

In case that a domaif is the unit ball or the upper half space, preceding results
are obtained in [5] and [4].

We often abbreviate inessential constants involved inuaéties by writing X <
Y, if there exists an absolute constabt> 0 such thatX < CY.

2. Preliminaries

In this section, we will introduce some results in [6] and.[3]hose results play
important roles in this paper.

First, we introduce some estimates for the harmonic Bergksanel. These esti-
mates are obtained by H. Kang and H. Koo [6]. We use the foligwiotations. We
put d(x, y) :=r(X) + r(y) + [x —y| for X, y € 2, wherer(x) denotes the distance
betweenx and dQ2. For ann-tuple « := (g, . .., on) Of nonnegative integers, called
a multi-index, we denotéu| := o1 + -+ - + oy and D§ := (9/9%7)** - - - (3/9%n)*". We
also useD; := 3/dx and Dj; := 92/0x 0X;.

Theorem B (H. Kang and H. Koo [6]) Let«, 8 be multi-indices.
(1) There exists a constant € 0 such that

C

o o nntlal =8l
DDy RO = Gy

for every xy € Q.
(2) There exists a constant € 0 such that

R(x, x) > )"

for every xe Q.



950 K. TANAKA

Second, we explain the modified reproducing kerml(x, y) introduced by
B.R. Choe, H. Koo and H. Yi [3]. We calf e C*(Q) a defining function ify satisfies
the conditions that

Q={xeR"|n(x)>0}, 9Q={xeR"|nx) =0}

and Vn does not vanish od2. Here, we choose a defining functionwith condi-
tion that

(4) Vi =1+ no

for somew € C*(R2). We can easily construct the above defining function, begau
Q2 is smooth. Remark that(x) is comparable to;(x).
We define a differential operatd{; by

(5) Kyfi=f —%A(nzf)
for f € C*. We also define a kerndRy(x, y) by

Ri(x, y) := K1i(R)(Y)

for x, y € Q, where R(y) := R(X, y), and denote byP; the corresponding integral
operator

PLT(X) = /Q Ru(x, ) f(y) dy.

We call Ry(X, y) the modified reproducing kernel. This kernel satisfies #@aducing
property and has the following estimates.

Theorem C (B.R. Choe, H. Koo and H. Yi [3]) Let be a smooth bounded do-
main. Then
(1) Ry has the reproducing property.e., P,f = f for f e bl.
(2) Let o be multi-index. Then there exists 0 such that for xy €

©) DER I = e D

and

@) VR, y)| < O
yRalX, y)| = d(x, y)n+1'

(3) Pi: LP — bP is bounded forl < p < oc.
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Finally, we prepare some lemmas.

Lemma 2.1 (Lemma 4.1 in [6]) Let s be a nonnegative real number anek tl.
If s+t > 0, then there exists a constant £0 such that
dy - C
o d(x, y)™er(y)t T or(x)stt

for every xe Q.

We define the associated integral operatpby

r(y)®

Isf(X) = 5 —d(x, Y

f(y) dy.

Lemma 2.2. If s=0,then k: LP — LP is bounded forl < p < oo and if s> 0,
then k: LP — LP is bounded forl < p < co.

Proof. Whens > 0 and 1< p < oo, the LP-boundedness ofs is shown by
Schur’s test; see Lemma 2.6 in [8]. We have only to show that® — L?! is bounded
for s> 0. By Lemma 2.1, we have

et = [ [ ol 100l dy dx

1
< f r S/ ——dxd
L1t [ qos dxay
< C| .

This completes the proof. []

3. Representation theorem for harmonic Bergman functions

In this section, we give a proof of Theorem 1. We need to takpiseces();}i C
Q with the following property in the same similar way in [8].

Lemma 3.1. There exists a number € 0 such that for eaclD < § < 1/4, we
can choose a sequende;}; C 2 and a disjoint covering{E;}; of Q satisfying the
following conditions
(@) E;j is measurable for each¢ N and {E;}; are mutually disjoint
(b) B(xi, cdr(ri)) C Ei C B(Ai, 8r(x)) for each ie N.
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In what follow, {%;}i, {Ej}; are taken in Lemma 3.1. We define operatésU
and S as follows:

[e.¢]

(8) Aa}(x) == Y aRu(x, A)r () n,
i=1

9) UF = {|E|f)r(y) @Yoy,

and

(10) SH(x) := Y Ru(x, 1) f(4)IEil.
i=1

Theorem 1 means thak: |P — bP is onto for 1< oo. First, we show the boundedness
of the operatorsA, U and S.

Lemma 3.2. Letl < p < oo. Then U. bP — [P, A:IP — bP and S bP — bP
are bounded.

Proof. First, we show thdtl is bounded. For anyf € bP, by using the condition
(b) in Lemma 3.1, we have

IUEIS = D JIE £ (i)r () & Yo

<
~

[T ()[Pr(ai)"

A

<

E|f(y)|pdy= (ke

i=1

2

i=1

> eI dy
i=1 7 E

2

i=1

Next, we show thatA is bounded. For anya;} € IP and anyx € @, by Theorem C,
we have
r (i)

, e (&L T\
A} (x)] < iZIailf@') dex, )i

i)
= S Jalr () VP | r
i lai |r (1) |Eil £ d(x, Ayt

e (A= E (-1 r(y)
< IZ|<’7‘| Ir (2i) PRE| e d(x, y)rt

= 119(x),
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where g(x) := Y la|r () YPN E; | "1xg (X) and xg, denotes the characteristic func-
tion of Ej. Since B(%, ¢ér (%)) C Ej, we have

1
(11) r(q) YN E | <

G Al

Hence, we have
lalfs 5L2|a|p|Ei|—1in(x)dxs a5
i

Therefore, by Lemma 2.1, we have

[A{ai}loe < I129llLe < [lfasHlie.

S is bounded, becausg = Ao U. This completes the proof. O
The next lemma is essential for the proof of main theorem.

Lemma 3.3. Let1l < p < oo. Then there exis{xi};i C Q and {E;}; such that
S: bP — bP is bijective.

Proof. For O< § < 1/4, we take{Aj}; and {E;} in Lemma 3.1. We have only
to show that||l — S| < 1 for a sufficiently smalls > 0. By the condition of{E;}, for
f € bP we have

( _s)f(x):/Q fFY)Ru(x, y) dy— Y Ru(x, 4) f (ui)|Ei
i=1
=Y [ FONRtx ) - Rax, 1) dy
i=17/E

+;/E(f(y)— f () Ru(x, 34) dy
=: F1(X) + Fo(x) say.

First, we estimate1(x). By (7), we have

IF2(0)] < Z/ E W)Y = 2] [VyRu(x, )] dy
i=17E

= 1
sai;/EH(y)u(xi)W dy
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<5 Z/ oDt dy
= 811| f|(X).
Next, we estimate-,(x). For anyy € E;, by the mean-value property, we have
12) IRu(Y, 2) — Ra(%i, 2)| = or (A)|VxRa(Y, 2)|
for somey on the line segment betwegnand ;. Therefore, by (12) and (6), we have

£(y)— () s/ﬂml(y, 2)— Ryhi, 2] £(2)] dz

s [ 0@
d(_ )n+2

< Slaf F(y).

|f(2)|dz

Hence, by Theorem C, we have

[F2(3)| = Z/ [T(y) = fQI [Ru(x, i)l dy
i=17E

<3 r(y)
d(x y)n+i

(y)
/d( Tl Tl dy
=5|10|1|f|(X)

l1]f|(y) dy

By Lemma 2.2, we have{(I — S)f|lpe < 6C| f|lpe. Remark that this constar@ is

independent oB. Hence, if we choosé < C~1, then we obtain|(l — S)|| < 1. This
completes the proof. ]

Proof of Theorem 1. By Lemma 3.3, we choose a sequefigg¢ such that
S: bP — bP is bijective. Hence A: IP — bP is onto, which implies Theorem 1. []

4. Representation theorem for harmonic Bloch functions

In this section, we give a proof of Theorem 2. We need to reaafointwise
estimate forB3 (see [3]):

(13) 1001 < 1 flls(2 +log* r(x)7™)
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for any x € Q@ and anyf € B. We need some operators discussed in [3]. Egetdenote
the class of all differential operatofs of form

n
(14) F=wo+ ) wnD
i—1

for some real functionsy; € C>*(2). We put
F(x, y) := F(RJ(Y)
for F € F;. The following theorem is shown [3].

Theorem D. For ¢y > 0 and R € F1, we put H := ¢;(K; — G;), where K is
the differential operator defined i(6) and Giy/(x) := (1/4) [ ¥ (y)Fa(x, y)n(y)dy. We
can choose a constant ¢ 0 and R € F; with the following properties
(@) Hy:bP — LPis bounded for each < p < oc;

(b) Hi: B — L* is bounded and KHBp) C Co + By N b*;
() PiHyf = f for f ebl.

REMARK. Recall Ri(X, y) = Ri(X, y) — Ri(Xo, ¥) Wherexg is a fixed reference
point. Denote byP; the corresponding operatd?: f (x) := [, Ru(x, y) f(y) dy. From
Theorem D, we easily have
(15) PiHyf = f
for any f € B.

We give the estimates foi;.

Lemma 4.1. LetO <48 <1 and xe Q. Then
(16) [Hif(y) — Hif(x)| < sl fls
for any fe B and ye B(X, ér(x)).

Proof. To obtain the estimate faf;, we show the properties off; and G;.
First, we give the estimate faF;.

STeEpl. Let Fe F, f e Band xe Q. Then
17 IFf(x)—Ff(I <6l fls

for 0 <8 <1 and ye B(x, dr(x)).
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Proof of Step 1. Letf € 5. By the mean-value property, foy € B(X, dr(x))
we have

IFf(y) = FEO)I < lwol [T(y) = FOQI + ) _lilnIDi(f(y) = F(x))]

i=1
n
< lwol St DIV F @) + Y _lei |81 ()% VD £ (3)]
i=1
<5l flls.

The proof of Step 1 finished.

We putKif = —2(An +w)nf —4nVy-Vf. Then, K, € Fy and K, f = K f for
any harmonic functionf. In particular, we have

(18) K1 f(y) = K f () < 81l flls

for any f € B, x € Q andy € B(X, &r(x)).
STep 2. Let K and G satisfy the conditions offheorem D Then

(19) IG1f(y) —Gf(X) <3l flls
for any f e B, x € Q and ye B(X, dr(x)).

Proof of Step 2. Forf € B, by the mean-value property, for € B(x, r(x))
we have

1G1f(y) —Gaf(¥)| < /Qlf(Z)IF(Z)Iy—XI [VF1Ry(7)| dz

for somey on the line segment betweenandy. Becauser (x) comparable ta (y),
by (6) and (13), we have

1G1f(y) —Gaf(¥)| < /Qlf(Z)IF(Z)Iy—XI [VF1Ry(7)| dz

sanfngfgr(y)

< 8l flls.

1
a(y., 1 2

The proof of Step 2 finished. By (18) and Step 2, we obtain Lerma ]

Again, for 0< § < 1/4 we choose a sequen¢g;} in  and a disjoint covering
{E;} of Q obtained by Lemma 3.1. We define the operatdrsl® — B, S: B — B
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andU: B — > by

(20) Alai}(x) ==Y ajRu(x, A))IEjl,
j=1
(21) SH(x) ==Y Hif () Ru(x, A))[Ejl,
j=1
and
(22) Uf = {Hi f ()}

In the similar manner as in the proof of Theorem 1. We begirhwtowing that
A, U and S are bounded.

Lemma 4.2. A:1° - B,U: B—1® and S: B — B are bounded.

Proof. It is obvious that): B — 1 is bounded by Theorem D. Sinég= AU,
we have only to show thaf\: 1 — B is bounded. Takinga} € |, by (6) and
Lemma 2.1, we have

i ~
> VxRu(x, 4))|E;]

=1
S Zr(x)%

= @)~ /d(“)‘nyﬂz
< @b,

Ir )V (Afa )(x)| = r(x)

|Ejl

which implies A: | — B is bounded. O
Finally, we state an important lemma for the representatii@orem.

Lemma 4.3. There existgA;}i ¢ Q and {E;}; such thatS: B — B is bijective.

Proof. For O< § < 1/4, we take{Ai}; and {E;} in Lemma 3.1. We show that
[l — S| <1 for a sufficiently smalls > 0. By Theorem D, we have

| —Sf =oo Hy f (Y)Ry(X, d—oo Hy f (A Ry(X, A:) d
(-9 ;/E LY R, ) dy ;/E )R, 2p) dy
- Z/ Ra(x, Y)(Ha f(y) — Hy f (1)) dy
j=1"Fi

£y /E HUFO)(R(x, y) = Rilx, 47)) dy.
ji=1”Ei
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We calculater (x)|V(I — ) f(x)| to estimate the Bloch norm.

rIV( =9 F ()] =r(x)

v.% fE Ra(x, y)(H. f(y) = He £ G.))) dy
2 e

+r(x)

VY [ MR ) = Rutx, 2y ) ).
2 e

BecauseV, Ri(x, y) = V4 Ry(X, y), Lemma 4.1 shows that the first term is bounded by

5||f||BF(X)Z[ IV Ru(x, y)|dy<6||f||3r(x)/ d(r(y))m dy < 5111 5.

The second term can be estimated by

r(y)

y)n+2 d y

r(x)nHlfanZ/ VR, ¥) = Rut, i)l dy 81 Flr ) [ o0
<S80 ls.

Thus, there exist a constafit > 0 such that|(I — S)f|z < C§| f||z. Hence, if we
take s < C 1, thenS: B — B is bijective. This completes the proof. O

Finally, we give a proof of Theorem 2.

Proof of Theorem 2. We puf € B. By Lemma 4.3, we can choose a constant
8 > 0 such thatS: B — B is bijective. This impliesA: | — B is surjective. Hence,
for any f € B, we can find a sequende} € 1°° such thatA{a{} = f. Therefore, if we
putaj := aj E;/r(x))", then{a} is in [ and satisfiesf (x) = Zj";laj R(X, Aj)r (A5)"™.
This completes the proof. ]

5. Application

In this section, we analyze positive Toeplitz operatorsbérby using Theorem 1.
We define several operators and functiong.(2) denotes the space of all complex
Berel measures o®. For u € M(Q), the corresponding Toeplitz operatdy, with
symbol i is defined by

(23) T, f(x) = [ RO, ) F(y) diuly) (X € ).
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Let © be a finite positive Borel measure. Fére (0, 1), the averaging functiofs is
defined by

r(B(x, dr (x)))

(24) 100 = B ar ()

(x € Q).

We recall Schatterr-class operators. A compact operafbron a separable Hilbert
space is called Schatten-class operator, if the following norm is finite;

00 1/o
(25) ITls 00 == (mer’)

m=1

where {sn(T)}m is the sequence of all singular value ®f Let S, be the space of
all Schatteno-class operators ob?. In [2], B.R. Choe, Y.J. Lee and K. Na studied
conditions that positive Toeplitz operators are boundednmact and in Schattea-
class onb? for 1 < o < co. We would like to discuss a condition that positive Toeplitz
operators are in Schatten-class onb?.

Theorem 3. Let2(h—1)/(n+ 2) < o and u be a finite positive Borel measure.
Choose a sequende.j} in Theorem 1 Then if ch"’zl fis(Aj)° < oo, then T, € S,.

We recall a general property; see for example [7].

Lemma 5.1 ([7]). If T is a compact operator on a Hilbert space H aficc o <
2, then for any orthonormal basige,}, we have

o0 o0
(26) TGy = D D I(Ten &)l

n=1 k=1

Proof of Theorem 3. When % o < o0, the statement of Theorem 3 is shown in
[2]. Hence, we assume < 1. We put a sequencg;} satisfying the assumption of
Theorem 3. We show the following inequality

27) D Y (AT, Aa, &) Z s ()7,

i=1j=1 =1

where {g,} is an orthonormal basis fdf and A is the operator of the atomic decom-
position obtained by Theorem 1. First, we calculéfeT, Ag, g)).

Aq(x) = Ru(X, A)r (r)"?

and
T, Aa(x) = r(1)"? / RO, Y) Ry, 1) dja(y).
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Therefore, we have
(A'T, Ae, g) = r(Ai)“/Zr(/\j)“/Z/ Ru(y, M) Ry, Aj) du(y).
Q

Then, we have

o0 o0
I(A*T, Aa, &)|°
i=1 j=1

o

A Il
Mz IMe 1M

=

r(xi)”/zr(x,-)”/zf52 Ri(X, Ai) Ri(X, 2j) du(x)

no/2 no/2 r()"i) r()"J) ’
AR <§:/?%mm>MKxowlmenm4dWK”

r () o)\
d(u 4+ d(rk, Aj)HE )

1 i

Il
=

Mg

A

r(yw%urwfzjmwahwam)

k=1

Il
a8

i

By o < 1, we have

Mg

= no/2 \ho/2 = r()‘i) r()‘]) ’
Z; D2 () (Z}mmah&amMQthHthMwﬂ

Il
=

A

= ~ o no - r()\i)na/2+0 ’
; fs (M) 7T () (; W)
2
50 R : 00 r(kk)ng/zr()\‘i)na/2+a
=D () <Z d(hk, 24) D7 ) '

i=1

By Lemma 2.1 and the condition ef, we have

i r()\k)na/Zr(Ai)na/2+a - 00 / r(kk)no/zr(xi)na/2+07n q
d(rk, Aj)0+De - B(Ai,84) d(rk, Aj)n+(+Lo—n y

i=1

A no/2 no/2+o0—n
[ Oty
Q

~ d()»k, y)n+(n+1)a7n

By an estimate (26) and Lemma 5.1, we obtain®dl, A € S,. By Lemma 3.3, there
exists S1: b? — b? and S is bounded. Becausg, = (US1)*A*T,AUS™?), we
obtain T, € S,. This completes the proof. ]
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