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Abstract

We establish pointwise estimates for the ground states mesdasses of positiv-
ity preserving operators. The considered operators aratimely perturbed (by mea-
sures) strongly local Dirichlet operators. These estimatdl be written in terms of
the Green’s kernel of the considered operators, whoseeexistwill be proved. In
many circumstances our estimates are even sharp so thatetb@yer known results
about the subject. The results will deserve to obtain laige heat kernel estimates
for the related operators.

1. Introduction

Let 2 be an open smooth connected and bounded subset of the Eunckpace
RY and Ag) be the Dirichlet—Laplacian om2. It is well known that the ground
state of £Ag), which we denote bypy, enjoys the property of being comparable to
the function (Ag)~'1. In other words, if we designate 0§ the Green’s kernel of
—Agq, then

(1.1) <po~[geg(-,y)dy on Q.

This result was extended to negative perturbations-af, satisfying Kato condi-
tion, namely to the ground statg\,’ of the operators—-Ag — V whereV is a positive
measurable function in the Kato-class and under some néyussssumptions imposed
on the domain2 (see for instance the papers of Bafiuelos [3], Davies [7] aadd3’
book [8]).

Actually, Bafiuelos proved (among others) in [3, TheoremHat tif Q2 is a non-
tangentially accessible (NTA) bounded domain ands in the Kato-class, such that

Vil2dx— [, f2V dx
(1.2) Ay = inf Jal V1] Jo >0
fCL)\(0) Jo f2dx
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is nondegenerate and has a strictly positive eigenfunctienoted bygog’, then

(1.3) 9o~ @y -

However, for (NTA) domains the conditional gauge theoreri¢lv is one of the main
ingredients in Bafiuelos’ proof) holds true and the Greeuniscfions of—Ag and that

of —Aq =V (Gq and Gy)) are comparable. So that the latter comparison can be writ-
ten as

(1.4) oY ~ [ GY(-.y)dy.

Observing that the functiory, GY( -, y)dy is nothing else but thelvé'z-solution of
the equation

(1.5) —Au—Vu=1 on
one can write estimate (1.4) in the form
(1.6) o) ~u.

In [9], Davila—Dupaigne improved the result to more genérathat do not nec-
essary belong to the Kato class, including for instance

2
(1.7) V(x) = (dT_Z) Ix|2 and V(x) = j—'ldist‘z(x, %),

whered > 3 and2 is regular.
ThoseV should satisfy the conditions that € L and there isp > 2 such that

loc

Jo IV ERdx— [, £2V dx

1.8
(1.8) rccaNO ([P dx)?”

> 0.

Obviously, condition (1.8) is equivalent to an improved 8lel type inequality, whose
relevance for intrinsic ultracontractivity property aslweas for the compactness of the
resolvent of the operatorAg —V was recognized in [9].

Being inspired by the latter observation, we shall consigethis paper, the same
problem in a more general framework. Precisely we shalla@plthe gradient energy
form by a Dirichlet form, £ with associated positive selfadjoint operatdr, having
the strong local property whose domain lies in soh®X, m)-space. The potential
function V will be however replaced by a positive measuyrecharging no set having
zero capacity.

We shall prove that under some realistic assumptions, apelcedly under the as-
sumptions that some improved Sobolev—-Orlicz and Hardg-tyequalities hold true,
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then the positivity preserving operator related to the sbirichlet form £ — u still
shares many interesting features as for the classical ¢agmarticular they have com-
pact resolvent and nondegenerate ground state energyeFuidre the ground state is
comparable to the solutiog{*) of the equationH, &) = 1 (i.e., comparable t¢i, 1),
where H, is the nonnegative selfadjoint operator relatecSte .

Our method is based on a transformation argument (Doobfssfivemation) that
leads first, to construct the operathlr, := H — 1 and to the fact that it has compact
resolvent and second to some ultracontractive semigranphé particular case where
the transformation is done by means of the ground state, éf already knows about
its existence, this leads to the intrinsic ultracontrastiof the operatorH,).

As an intermediate step, we shall prove that the positivitgsprving operators
under considerations can be approximated, in the normvesokense by a sequence
of operators whose ground states can be estimated in a starp Mis will induce
convergence of ground state energies and ground statesnafdes us to carry over
the comparison for the approximating operators to the lwpierator.

To get the estimates for the ground states of the approxignaiperator we shall
use on one side the intrinsic ultracontractivity propentyd an the other side Moser’s
iteration technique as in [9].

2. The framework

We first shortly describe the framework in which we shall estatir results.

Let X be a separable locally compact metric spane positive finite Radon meas-
ure on Borel subsets of such thatm(U) > 0, V@ # U c X. All integrals of the type
J --- are assumed to be ovét. The space of real-valued continuous functions having
compact support oX will be denoted byC¢(X).

Let £ be a regular symmetric transient Dirichlet form, with domat := D(E)
w.r.t. the space.? := L2(X, m). Along the paper we assume thétis strongly local,
i.e., £(f, g) = 0, wheneverf, g € 7 and f is constant on the support of.

The local Dirichlet space related t6 will be denoted byF.. A function f
belongs toFoc if for every open bounded subsé&t C X there is f € F such that
f = f-a.e. onQ.

We recall the known facE induces a positive-valued sets function called capacity.
If a property holds true up to a set having zero capacity wel Stz that it holds
quasi-everywhere and we shall write ‘qg.e..

It is well known (see [12]) that every element froif,c has a quasi-continuous
(g.c. for short) modification. We shall always implicitlysasne that elements frothjqc
has been modified so as to become quasi-continuous.

We also designate by, := F N L*®(X, m) and Fy,joc := Fioc N Lix
the very definition we derive that both, and Fy oc are algebras.

Given f, g € F, we setI'[f] the energy measuref f and I'(f, g) the mutual
energy measuref f, g (see [12, pp.110-114]).

(X, m). From
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We recall the known fact that every strongly local Dirichfetm, £ possesses the
following representation

(2.1) E[f]1:=¢&(f, ) =[ drif], vfer.
X
The representation goes as follows: fbre 7, its energy measure is defined by
1
@2 [edrifl=e(fen-3E(1%9), Y09 FNCX).

Truncation and monotone convergence allow then to ddfing for every f e F.
Furthermore with the help of the strong locality propertg.,i

(2.3) /{f_}dF[f]:O, VfeF,

it is possible to defind’[ f] for every f € Fi,c as follows: for every open bounded
subsetQ C X

(2.4) 1odT[f] = 1odI[ ],

where f € F and f = f-g.e. on<.
By polarization and regularity we can thereby define a Radeasure-valued bi-
linear form onF. denoted byl'(f, g), so that

(2.5) €&(f,9) :/ dr(f,g), Vf,ge€ Fo. eitherf or g has compact support.

The truncation property fof reads as follows: For every € R, every f € Fio, having
compact support and every e Fp 1oc We have

(2.6) au—w%m=/

{f>a}

dr(f, g) and 5[(f—a)+]=/ dryf].

{f>a)

Furthermore the following product formula holds true
(2.7) dr(fh,g) = fdr'(h, g) + hdr'(f,g), Vf, g, he Fpoc

By the regularity assumption the latter formula extendsvere f, g, h € Fic.

Another rule that we shall occasionally use is thain rule(See [12, pp. 111-117]):
For every functionp: R — R of classC! with bounded derivativeg( € CL(R)), every
f € Fioc and everyg € Fy 1oc the functiong( ) belongs toFi,: and

(2.8) dT'(¢(f), 9) = ¢'(f) dT'(f, ).
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Formula (2.8) is still valid forp(t) = [t|P/? when restricted to locally quasi-boundéd

As long as we are concerned with Sobolev—Orlicz inequalitiee will give some
material related to the underlying spaces. From now on w# dbaote the Lebesgue—
Orlicz spaced.®(22, v) simply by L®(v), whereas in the case= m they will be de-
noted byL®. We also fix anN-function @: [0, co) — [0, oc), i.e., a convex function
such that

(2.9) D) =0 < t =0,

and denote by its complementaryfunction and set

1
2.11 A(S) ;= ————, s>0.
2.11) (s) sd-1(1/s) g
An N-function @ is said to be aradmissible if the following integrability condition
near zero is satisfied

(2.12) / (sA(s))tds< oo for some « > 0.
0

We quote that a necessary and sufficient condition fa¥-&unction to be admissible
is that the functiond~(t)/t? is integrable at infinity.

Among functions that are admissible we cifd-functions @ satisfying the
V,-condition @ € V, for short), i.e., there i$ > 1 andty > 0 such that

(2.13) D(t) < %CD(It), vt > to,

are admissible. Indeed, by [15, Corollary 5, p.26],dife V, then there is a finite
constantC > 0, € > 0 andtp > O such that

(2.14) o(t) > Ctre, Vit > to.

Yielding therefore®1(t) < C'tV*¢, for larget.
From now on we fix a positive Radon measureon Borel subsets oK, which
does not charge sets having zero capacity and shall adogoltb&ing assumptions.
The first assumption that we shall adopt, along the papehasfdllowing: there
is a functions € Fioc N L?, s > 0-g.e. such that

(SUP): £(s, f)—/ sfdu>0, YO<feFnCyX).
X

This condition deserves some comments. First the additassumptiors € L2 is auto-
matically satisfied if eitheiX is relatively compact os is bounded.
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Second, assumption (SUP) asserts the existence of a ndiwveegapersolution of
the operatorH — i and is, according to [10, 4], almost equivalent to the o@noe of
the following Hardy’s inequality

(2.15) /fzd,ufé‘[f], VfeF.

By ‘almost equivalent’ we mean that if (SUP) holds true thaequality (2.15) holds
true as well. However, if (2.15) occurs then for eveérg (0, 1) there iss € F such that

(2.16) &G, f)—8/ sfdu>0, YO<feFnCyX).
X

We shall maintain, throughout the paper, that the followimgproved Sobolev—Orlicz
inequality holds true: there is a finite constalg > 0 such that

(1SO): || £2|| o scs(g[f]—/ deM), VfelF.

For discussions about connections between (ISO) (espetiathe case whergw = 0)
and various types of Logarithmic—Sobolev inequalities wtenr the reader to [6, 14].
In conjunction with®, there is another function which will play a decisive role in
the paper and which we denote gy := ¢(t) = t¥~1(t), YVt > 0. We assume from
now on that the functiorp, is admissible
The following lemma indicates that the latter condition idfifled in many situa-
tions, in particular ford(t) =tP/p, t > 0 and 1< p < oco.

Lemma 2.1. Assume thatb € V, and that¢, is convex. Them, is admissible.

Proof. From the fact tha® is an N-function we deduce

(2.17) $1(t) =0 < t =0,
(2.18) lim 10 _ o and lim out) _ 0,

which together with the convexity assumption yields thatis an N-function.
The integrability condition: From the known inequality fmwnjugate Young functions

(2.19) t<ot)wit)y<2at, vt>0,

in conjunction with the fact thatb € V,, we obtain that there i& > 0, ¢ > 0 and
to > 0 such that

(2.20) Pu(t) > at> YA+ vt > .
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Thus for larget we havet—2¢1(t) < a~1t@+9)/(1429-2 and the latter function is inte-
grable at infinity, yielding the admissibility ap;. O

We also have an inclusion relation between the spacksind L.
Lemma 2.2. The space P is embedded continuously into’L

Proof. From Young's inequality

(2.21) tr < &(t) + W(r), Vvr,t>0,
we get
(2.22) tw () = po(t) < D(t) +t, Vt>0.

Taking the behavior ofd at infinity into account: lin, ., ®(t)/t = oo, we conclude
that there isT > 0 such that

(2.23) Pu(t) < 20(t), Vt>T.

Sincem(X) < oo, we conclude that.>® ¢ L, with continuous inclusion. The result
follows by observing that the spac&s$® and L® have equivalent norms. []

3. Preparing results

Set H the positive selfadjoint operator associated witlvia Kato’s representation
theorem. For every > 0 we designate byl; := e'" the semigroup related tél.

In the next theorem we will collect some spectral propertieshe operatorH on
the light of the improved Sobolev—-Orlicz inequality.

Theorem 3.1. For every t> 0, the operator T is ultracontractive. It follows that
i) The operator H has compact resolvent.
i) Setio the smallest eigenvalue of H. Theg is nondegeneraie.e., there is vy
(the ground statesuch thatyg > 0-g.e. andker(H — Ag) = Ryg. Furthermore is
guasi-bounded.

Proof. Sinceg; is admissible, and.® c L%, continuously, with the help of [2,
Theorem 3.4], we derive thaf, := e M is ultracontractive. Thus it has a nonnegative
absolutely continuous essentially bounded kemekt > 0. Hence sincen(X) < oo, we
conclude thafl; is a Hilbert—Schmidt operator, yielding thet has compact resolvent.

On the other hand owing to [8, Proposition 1.4.3, p.24], thacblet form & is
irreducible, which implies that the smallest eigenvalueHgfwhich we denote by, is
simple and has a g.e. nonnegative normalized eigenfun¢igormhe quasi-boundedness
of vy follows from the ultracontractivity property of; and the proof is finished. []
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REMARK 3.1. We have already mentioned in the proof of Theorem 3.1 ttiea
Dirichlet form £ is irreducible, which implies together with the fact thétis strongly
local, that X is connected (see [17]).

From the fact thafl; is a Hilbert—Schmidt operator, we also derive that the isser
operatorH ~! possesses a Green ker@t which is positive, symmetric and measurable.

We shall assume, throughout the paper, that the followingdy#type inequality
holds true: There is a constant<OCy < oo such that

f2
(H|):/de5c.45[f], VferF.
0

Proposition 3.1. There exists a finite constantsC> 0 such that
(3.1) Gx(X, y) = Cavo(X)¥o(y), a.e.
Proof. Set€¥° the quadratic form defined ob?(y3 dm) by
(3.2 D(EY) = {f:yof € F}, EV[f] = E[Wof], VT e DEM).
Then&Ve is a Dirichlet form. Indeed£vo is related (via Kato's representation theorem)
to the operatoH?° := y; *H vy, so thate ™ = y;le My, which is Markovian.
In this step we will prove thab(£Y°) is embedded continuously into the spdct.
We claim that

(3.3) 12l Ler(yz am < 2(Cs + Cu)EP[f], Vf € D(E™),

Indeed, by Holder's inequality we find

/%W(K%+Cmﬂﬁﬂ) "

G4 = S (ereeem)
' ~J (Cs+Cn)EVe[f] (Cs+ Cn)EVo[f]
= 7 (Cs+ CH)EV[ f] ] Lo (Cs+Ch)ev[f] /]|,
By (ISO), we have
H Vef? - Cs
(C5+CH)5‘/’°[f] Lo Cs-l—CH.
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On the other hand, by inequality (HI), we get

(3.5) /W(q’l((cs+cf:)5wo[f]))dm=/ (cs+cf:)5%[f] dmsCSi—SCH

51!

yielding

. & )
(3.6 H‘I’ ((Cs+ el 1]

Finally, from the definition of the Luxemburg’s norm we aclde

<1
Lw

3.7) 12l Loz am) < 2(Cs + Cr)E™[ ],V e DE™[f]),

and the claim is proved.

Now since¢; is admissible, using another time [2, Theorem 3.4], we dethat
the semigroupS := e ™", t > 0 is ultracontractive and has an absolutely continuous
essentially bounded kernég], furthermore

pe(X, Y)
Yo(X)vo(y)’

By standard way (see [8, p.112]), we conclude that ther€ is O such thatVvt > T,

(3.8) ki(x, y) = a.e.

39) 2e oY) < (Y. ae.

Hence

Gx(Xay)Z/O p[(x,y)dtz/T pe(x, y) dt

(3.10) _—

20

= S0o00va) [ e dt= S vaue). ae.
T

which finishes the proof. O
Through the proof of Proposition 3.1, we have proved thatdperatorH is in

fact intrinsically ultracontractive.
From now on we set, the form defined by

D(&,) = F, E'H[f]=8[f]—[f2du, VfelF.
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Since & is a Dirichlet from, thent, is a semi-Dirichlet form i.e.,
(3.11) vfeD(E,) —|fleDE,) and &[|f]] <&[f]

We will prove in the following lines that the forrﬁ'u is closable.

Let us stress that since the measurds not assumed to be a small perturbation
we can not conclude directly the closability SL by means of the KLMN theorem.
To overcome this difficulty we give first some auxiliary resul

We say that a functiom € Fioc is a supersolution oH — u if

(3.12) E(u, f)— / uf du >0, V0= f e Fige NCe(X).
Lemma 3.1. Let s> 0 g.e. be a positive supersolution of Hu. Then

(3.13) s(x) = Cavo(x) / Yo)sy) du(y). ge.

Proof. Letf e FNC¢(X) be nonnegative. Séi = suppf and letu € 7 be such
thatu = s g.e. onU (suchu exists because € Fiuc). Sincelu| € F and|ul =u=s
g.e. onU (s> 0 g.e.), we may and do suppose thiat 0 g.e. Owing to the definition
of s we derive

(3.14) 0=< &(s, f)—/sf du = E(u, f)—/uf du = E(u, f) = E(KHu, ),

where

(3.15) K*u :=/Gx(-,y)u(y)du(y),

is the potential of the measurge. Thusu— K*u is a potential, obtaining thereby that
u— K*u >0 g.e. Sinceu =s g.e. onU andu is positive g.e., and whence a.e.,

we get with the help of the lower bound for the Green functiortarm of the ground
stateyy (see Proposition 3.1)

(3.16) s(x) = CGWO(X)[%(Y)U(V) du(y), q.e.on U.

Now let (Uy) be a sequence of compact sets exhauskn@nd () C F such that
Ux > 0 g.e. andux = s g.e. onUy for every integerk. SinceUy C U, VI > k, we get

U = U g.e. onUy, VI > k. Furthermoreux 1 s g.e. So that the estimate established
above yields

(3.17) s(x) = Cewo(x)/ Yo(Y)ui(y) du(y), g.e. onUyc VI =k
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Passing to the limit w.r.il yields

(3.18) s(x) = Ca¥o(X) / Yo(y)s(y) du(y), d.e. onUx Vk.

Regarding Uy) exhaustsX, the lemma is proved. O
Let s> 0 g.e. be a supersolution &f —u (such ans exists by assumption (SUP)).
As a second step toward proving the closability of the fcff;;nwe will prove that the

s-transform of,, is in fact a pre-Dirichlet form.
We designate by’ (the s-transform of&,) the form defined by

(319) D(&):=F°={f:sfeF}cL¥sPdm), &[f]=E,[sfl, VieF

The following result was mentioned in [10] with a probahitisproof. For the conve-
nience of the reader we will give an alternative analyticabro

Lemma 3.2. The formé"li is a pre-Dirichlet form in 12(s>dm). It follows in par-
ticular that €, is closable and its closure is a semi-Dirichlet form.

Proof. Following Fitzsimmons [11], we set
(3.20) CS:={f: f € Fp, f € L??dm), f e LA(T[s]), se LAT[f])} c L%(s?>dm)
and Q the form defined by
(3.21) D(Q)=C®% Q[f] =/szd1’[f], vV f e D(Q).
We claim first, that for everyf € CS, sf € F (so thatf € F7°) and
(3.22) &Ll = Q[f]+2/sf dr(s, f)+/ deF[s]—/ f2s?du.

Indeed, letf € C3. Thensf € F,. and by the chain rule we get for every open
bounded subsdll C X,

(3.23) /U drsf] :/Uszdl“[f]—i—Z/Usde(s, f)+/u f2dI[s].

Owing to the properties of , and exhaustingK by open subsets, we get by Schwarz’s
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inequality together with monotone convergence theorem

Elsf] :/ dr[sf] = Q[f]—|—2/sf dr(s, f)+/ f2dr[s]

< Q[f] +2(/ deF[s])l/z(/ SZdF[f])l/2+/ f2dI[s] < oo,

yielding thatsf € F and the corresponding formula fﬁ'lf;[f].
As a second step we define another form, which we denotg, las follows

(3.24)

(3.25) D(q) =%, q[f] =2/sfdr‘(s, f)+/ fzdl"[s]—/ f2s?du, Vf e D(q).

Thengq is well defined. Since for every e CS also f2 € CS, we get by the preceding
step thatsf? € F. Thus, owing to the fact that is a supersolution we obtain

(3.26) q[f] = &(s, sf?) — / s(sf?)du >0, VfecCs.

We shall prove that there is a positive measyiecharging no set having zero
capacity such that

q[f]:/fzdﬂ, vfecs.

Let f € CS, having compact support anfl> 0 a.e. Set

(3.27) L(f):= E(S,sf)—/s(sf) du=/ dF(s,sf)—/s(sf) du.

Sinces is a supersolution we conclude tHatf) >0, V f € C® having compact support.
On the other hand observing that the mbp~> dI'(s,sf) is a Radon measure charging
no set having zero capacity, we derive tHatis actually a positive Radon measure
charging no set having zero capacity: There is a positiveoRadeasurer, charging
no set having zero capacity such that

(3.28) L(f) =/ f dji.

Noting thatL(f2) = q[f] we getq[f] = [ f2dj, for every f € CS having compact
support and whence for every € C5.
Now set

(3.29) S:=Q+aq.
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Then S coincides With(‘f,ﬁ restricted toCs.

On one hand according to [11, Theorem 3.10], the f@nis closable and its clos-
ure Q is a Dirichlet form having the strong local property. On ththes hand since the
measureq is positive and absolutely continuous w.r.t. the capadlign according to
[16], the form S is closable, yielding the closability ctfj and whence oE'M. The fact

that the closure of , is a semi-Dirichlet form is derived from the fact th&t is itself
a semi-Dirichlet form.

Let us denote byS, respectivelyQ the closure ofS, respectively ofQ and byLs,
respectivelyL o the selfadjoint operator associated wih respectivelyQ. Then since
S> Q > 0 we derive that

(3.30) O<etls<ette vt>o0.

Owing to the fact thaQ is a Dirichlet form we get that the operatert-< is Markov-
ian for everyt > 0, and whence="''s, t > 0 is Markovian as well or equivalentl$
is a Dirichlet form. ClearlyS is local and the proof is finished. []

We quote that the improved Sobolev—Orlicz inequality (IS@p no relevance for
the closability of the formé,,.
From now on we denote by3, respectivelyé,, the closure ofé’i, respectively of

SM. Actually, we deduce from the last proof that sin€eis a common core for both
Sand¢&s, thenS=£5.

The form &, is a densely defined nonnegative form, and is even a sencHeti
form. Let H, be the self-adjoint operator associated wiif Then H, is positivity
preserving and by inequality (ISO) is invertible with boeddinverse, which we denote
by Hljl. Henceforth we denote byi? the operator related to the fori@; and by
et t > 0, respectivelyTs := e tHi t > 0 the semigroup of operators related Hg,
respectivelyH;.

Theorem 3.2. Let s be a function satisfying assumpti®UP. Then for every
t > 0, the operator P is a Hilbert-Schmidt operator. It followsn particular that
etHi, t > 0 is a Hilbert-Schmidt operator as well and the operatoy, Has com-
pact resolvent.

Let us emphasize that the latter theorem is the only placeevve used the sup-
plementary assumptios e L.

Proof of Theorem 3.2. By similar arguments to those used énpitoof of Prop-
osition 3.1, we derive that there is a finite const@nt- 0 such that

(3.31) | 2]l eve2 amy < CELFL, YV ecC®.
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Having in mind thatC® is a core forf7, the latter inequality extends to every element
from the spacer®. Since¢; is admissible,E; is a Dirichlet form (by Lemma 3.2)
ands € L2, we get according to [2, Theorem 3.4] th§f is a Hilbert—Schmidt op-
erator for everyt > 0. Now the rest of the proof follows directly by realizing tha
e th =sTss 1. O

From now on we denote byg‘) the smallest eigenvalue of the operatdy. We

proceed to prove tha?tg‘) is nondegenerate, i.e. its eigenspace has dimension one and
may be generated by a nonnegative eigenfunction. To thatwendhall approximate
the operatorH,, in the norm resolvent sense, by a sequence of operatoraghéive
mentioned property.

Since u charges no set having zero capacity, by [12, Lemma 2.2.38]mfd the
remark after the proof on p.79, there is a sequengg 6f finite positive measures

charging no set having zero capacity such that

(3.32) it and Kﬂk1:=[ex(-,y)duk(y)eL°°, vk

Multiplying ux by 1—1/k, if necessary, we shall and do assume that there are canstant
0 < kx < 1 such that for everk € N we have

(3.33) / f2dux <k &[f], VfeF
By the assumption & «x < 1, we conclude that the following forms
DEu)=F, Eulf]l=¢EIf] —/ f2dux, VfelF,
Q

are closed inL2. For every integek, we shall designate by the self-adjoint operator
related to&,,, .

According to general results about convergence of seqseotenonotone quad-
ratic forms (see [13]), one can realize thdt — H,, in the strong resolvent sense as
k — oo. We shall improve this observation in the following way:

Lemma 3.3. The operators K have compact resolvents and

(3.34) lim||H *—H, | = 0.
k—00

Proof. Observe that & H,' < H, . Now the first statement follows from the
fact thatH ! is compact and the second one follows from the known fact Hjat is
compact together with the norm resolvent convergence [b&ofiem 3.5, p.453]. [
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The latter lemma will have a great influence on the strategy we shall follow.
This is illustrated through the following:

Corollary 3.1. i) Let Agk), respectivelykg‘) be the smallest eigenvalue of the
operator H, respectively H. Thenlimy ., [»% — 14| = 0.
i) Let P®), respectively ) be the eigenprojection of the eigenvalt, respective-
ly of the eigenvalue\g‘). Then

(3.35) Jim| Pk _ pW = 0.

It follows, in particular, that if Af)k) is nondegenerate for large, khen so isk(()“) and
conversely.

Proof. i): Follows from the inequality1/»% — 1287 < ||H * — H 'l and
Lemma 3.3.

ii): Follows from Lemma 3.3 and the fact that P and Q are two orthogonal
projections such thatP — Q|| < 1, then their respective ranges have the same dimen-
sion [13, Theorem 6.32, p. 56]. L]

Lemma 3.4. Letv be a positive Radon measure on Borel subset of X such that
there is a constan® < C, < 1 with

(3.36) /fzdeC,,g[f], VfelF.
Let &£, be the form defined by
D(&) = F, Ev[f]zg[f]—/ f2dv, VfelF,

and AE)”) be the smallest eigenvalue &f.
i) Lety >0 g.e. be an eigenfunction associated wif. Then

(3.37) p(x) = (CGAB”) / 1/fo()/)<P()/)Olm()’))lﬂo(x), q.e.

It follows thate > 0 g.e.
i) The eigenvaluaf)”) is nondegenerate and has a positive normalized ground state
which we shall denote by]”.

Proof. i): Lety >0 g.e. be any eigenfunction associated vwﬁﬂ Set

(3.38) K¢ = /Gx(-,y)w(y)dv, Ko = /Gx(-,y)w(y)dm, u=9-K’9-1yKeg.
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Owing to the fact that lies in F and hence lies in.?(v), we obtain that the measure
@v has finite energy integral with respect to the Dirichlet fofmi.e.,

(3.39) /| foldv <a(E[fDY?, VI e FNCy(X),
and thereforeK'p € F. Thusu € F and satisfies the identity

£, 6) = £(p, g) - / o dv— 1) [ og dm
(3.40)

=5u(<p,g)—kf)”)/(pg dm=0, VgeF.

Since& is positive definite we conclude that= 0 a.e. (and hence g.e.), which yields

0 =Ko+ 30Ke = 20Kg =3 [ Gx(-,y)oty) dmiy)
(3.41)
> (cexg“’ / %(y)go(y)dm(y))wo, ge.

where the latter inequality is obtained from Propositioh. 3.

ii): Let ¢ be an eigenfunction associated WDt[;“). Sinceé&, is a semi-Dirichlet
form, then|p| € F and minimizes the ratio

&lf]
{f f2dm

o f e]-'\{O}}.

Thus |¢| is an eigenfunction associated wm@”) as well and by assertion (iJp| >
0 qg.e.

Sety := |¢p| — ¢. Then{ satisfiesH, = 1’%. Now, eithery = 0 a.e. which
would imply thaty = |¢| a.e. org is a non-negative eigenfunction associated with
Af)”). In the latter case we derive from assertion (i) tigat- O g.e. or equivalently
lo| > ¢ q.e. We have thereby proved that every eigenfunction amxanbhvithkg”) has
a constant sign, from which (ii) follows. ]

On the light of Corollary 3.1 together with Lemma 3.4, we dode thatkg“) is
nondegenerate as well and we can get even more:

Lemma 3.5. Let goék) be the normalized a.e. positive eigenfunction associatdd w
2. Then there is a subsequengg, ) such that

. (ki)
lim [lgg” — %]z = 0,
j—o00

wheregoé“) is the normalized a.e. positive eigenfunction associatil mf)“).
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Proof. Since the sequence(() )) is bounded inL?, there is a subsequence, which
we still denote by ¢%), andh € L2 such thatp® — h, weakly in L2 Let P be the
eigenprojection associated witt§”. Since P is a rank one operator, we gétp{) —
Phin L2 Thus

(3.42) Py = ¢80 = (Pc— P + Py — Ph,

and |Ph|.. = 1.

On the other hand we may and shall suppose Biat> 0 a.e. (by mean of a sub-
sequence if necessary). Now Settip&‘) := Ph, and recalling that RaR = ker(H, —
Ag‘)) (by the fact that dim RaR = 1) we get thatpg‘) is an eigenfunction corresponding

to Ag‘*) and <pé") > 0 a.e. Finally Corollary 3.1 together with the lower bound @ék)
given by inequality Lemma 3.4, lead to

(3.49) A= (Cert? [ woel ) amn)vo. e,
yielding ¢%) > 0 a.e., which completes the proof. O

At the end of this section we resume our strategy. Define

(3.44) 0= HM, £Wi=HML

Theorem 3.3. Let oI, £, 309 o0 £0) be as above. Assume that for every
k € N there is a constan® < I'y < oo such thatlimy_.., I'x =T € (0, o0) and

(3.45) I te® < o <1e®, ae vk large
ThenT 260 < o) < TeW), ace,

Proof. By the norm resolvent convergence l¢f towardsH, (Lemma 3.3), we
obtain§® = H 11 — H; 1 = £® in L%Q) and we can assume that lim, §® =
£W) a.e. Now the result follows from the assumptions of the tieotogether with
Lemma 3.5. O

Our main task in the next section is to establish estimat5§3.

4. Estimating the ground state

Towards proving the estimates of the ground states for thproapmating forms
we shall need some inequalities which we shall state andepemd which have an
independent interest.
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In this section we fix:
i) A positive measure satisfying assumptions of Lemma 3.4 and such that

4.1) K'1:= / Gx(-,y)du(y) € L™,

i) Two real-valued, measurable a.e. positive and esdgnbaunded functions/ and
F on X such that eitheV # 0 or F # 0.

Let w € F. We say thatw is a solution of the equation

4.2) How=Vw+ F,

if

(4.3) E(w, f)=/ wadm+/ fFdm, VfeF.

Let w > 0 g.e. be a solution (if any) of the equatidhw = Vw + F. Define Q"
the form:

(4.4) D(Q")={f:wfeF}, Q'[f]=E"[f] —/ f2w?V dm Vf e D(QY).
Then by the same arguments used in the proof of Lemma 3.2, digcdeghatQ"” is a

Dirichlet form on L?(w? dm) having the local property. Moreover sinee € L?, then
the vector space

(4.5) CV = {f: feFp, we L2MI[f])},

is a core forQv.
We claim that

(4.6) Q¥[f] :/wz drf] +/ f2Fwdm, VfecCv.
Indeed, from the product formula for the energy measure, arével
4.7) Q[ f] :/der[f]_/ fzwzdv—/ f2w2v dm—l—/dl"(w,wfz), Viec”.

Using the fact thatw is a solution of equation (4.1), we get for evefye C”, wf? ¢
C" and

(4.8) €U(w,wf2):/Vf2w2dm+[wazdm:[dr(w,wfz)—/ f2w?dv,
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and substituting in Eq. (4.7) we get the claim.

We also note that the operatan—'(H, — V)w is the self-adjoint operator in
L?(w? dm) associated with the Dirichlet fornQ>.

Henceforth, we define

2

(4.9) C' =g ( / Yo(Y)w(y)V(y) dm + / Yo () dm)_ |
and
(4.10) C := max(CxC’, CyC'Aq).

Theorem 4.1. Let V,F be as in the beginning of this section. Lete 7, w >0
g.e. be a solution of the equation

(4.11) Hw = Vuw + F,

Set
A:=(C + 2C¢)(1 + 2Cs||1]| ).

Then
0S0) | 2iaeeom = A(QUIM1+ [ ViZuZdm). Vi< DY),

The proof of Theorem 4.1 relies upon auxiliary results whiga shall state in
three lemmata.

Lemma 4.1. Letw be as inTheorem 4.1 Then the following inequality holds true

412 w> CGI/fo( [ vV am [ v)Fe) dm) ge.
Proof. As in the proof of Lemma 3.4 we show thatsatisfies
w—K'w=KVw+ KF.

Whence, with the help of the lower estimate Proposition & the Green function
Gx we achieve,

w>KVw + KF > Cewo/ wo(y)v(y)w(y)dm+Cewof Yo(Y)F(y)dm g.e. [
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Lemma 4.2. Let w be as inTheorem 4.1 Then
(4.13) /f2dm§C/w2dF[f]+C/w2f2dm, VfecC.

Proof. At this stage we use Hardy’s inequality (HI), whiclates that there is a
constantCy > 0 depending only orX such that

2
(4.14) / L dm=cy [ dru, vuer.
vo
Let f € C¥. Takingu = fyq in inequality (4.14) yields
2 f2yé
/f dmzf 72 dmeH/dF[fwo]

0

(4.15) =CH/w§dF[f] +2CH/1p0f dr (o, f)+CH/ f2dI[o]
= Cu [ wBarifl+Cu [ drtve, vof?).

Thanks to the fact that/g is an eigenfunction associated witly, we achieve

(4.16) fdr(wo, Vo f?) =Aof f2y2dm.

Combining (4.16) with (4.15) we obtain

(4.17) / f2dm§CH/wozdF[f]JrCHAo/wozfzdm, vfec”.

Having the lower bound fow given by Lemma 4.1 in hand, we establish

(4.18) / fzdm§CHC’/w2dF[f]+CHC’A0/w2f2dm, vfec”. O

Lemma 4.3. Letw be as inTheorem 4.1 Set

CuC F2,  CuCa
(4.19) A1=1+HT, A=) ZIIOo+ H2 o

C’ being the constant appearingemma 4.2 Then

(4.20) QU[f] < A1/w2dr‘[f] +A2/w2f2dm, Viecy.
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Proof. We have already established that
(4.21) QY[ f] =/w2dr[f] +/ f2Fwdm, VfecC”.
Making use of Holder's and Young's inequality together witleguality (4.13) we obtain
1/2 1/2
QU[f] < / w? dr[ ] + (/ fzdm) (/ f2|:2w2dm)
< A1/ w? dI[ f] +A2/ f2w?dm, VfecC?,
which finishes the proof. []
Proof of Theorem 4.1. We observe first that
(4.22) QY[ f] + / Vitw2dm= g¥[f] := & [wf], Vfec”.
So that due to the faaf” is a core for the formQY it suffices to prove inequality
(ISO1) oncC™.

For f € C¥, setAa := AEY[f]. By Holder's inequality for Orlicz norms, we get
for every f € C”,

f2 w?f? f2
2 - — -1f °
qu&l(/\)dm / . W (k)dm
=] J(2)
A

A

<2

L® LY

By (ISO), we have

w?f?
0z -

2
< -C&Y[f] =1
Lo A
On the other hand we have, according to Lemma 4.2
2 2
/\P(\Ifl(f—)) dm= / f—dm
A A
C
< I(/ w? dIr(f, f)dm+/w2f2dm).

Applying another time Hdlder’s inequality we get

(4.24)

(4.25) /(fw)zdmi 1L lI(fw)llee = CslLle€FL, VEec.
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Recalling thate”[f] > [ w?dT[f], we achieve

f2 C

(4.26) / o dm < x(1+ 2Cs||1|Lw)Ey[fl <=1, VIec.
Thus

f2
()],

)\. Lup
and whence

f2

(4.28) / w2¢>1(7) dm<1, Vfec,
and the theorem is proved, according to the definition of thécOnorm. ]

For everyt > 0 we designate byl;” the semigroup associated with the for@t’
in the spacelL?(w?dm). We are yet ready to prove the ultracontractivity Bf.

To that end we collect some preparing notations. We recalletkpression of the
constantA

(4.29) A= (C + 2C5)(1 + 2Cs||1]| v).

Let A be the function defined by

1
(4.30) A(S) i= ————, Vs>0,
sp1(1/9)
and y be the solution of the equation
4.31 8A 0
. t =
(431 | =@

We finally denote by
4
(4.32) B(t) := y—

Theorem 4.2. Let V,F andw be as inTheorem 4.1 Then T” is ultracontractive
for every t> 0 and

t
(4.33) T 12w dimy, L < ,B(E)e”\"wt, vVt > 0.
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Proof. From Theorem 4.1, we derive
(4.34) 20 Lor oz amy < A(Q"’[f] + ”V”oo/ fzwzdm), v e D(Q").

Sinceg, is admissible, we get according to [2], that the semigrdipis ultracontractive
for everyt > 0 and

t
(4.35) IT w2 am e < Bl = )elVI=t, vt > 0. O
t (@, ), 2

We shall apply Theorem 4.1, to the special cages 0, F = 1 which corresponds
tow = &0,

Theorem 4.3. Let v be as in the beginning of this section. Then the following
pointwise upper bound fo:p(()”) holds true

£\ oo
(4.36) o) < (ﬂ(é)e“é))||g<“>||ng<V>, ae. Vt>0.

Proof. Applying Theorem 4.2 to the cas% =0, F = 1, so that we may and do
choosew = £, yields that the semi-grou is ultracontractive ang{’/£® is an
eigenfunction forT¢" associated with the eigenvales’, vt > 0. Thus

o 0 W) )

o) < %I TE [l Loy dmy L= Ao
(4.37) %0 LY(E®)2 dm)

t v t v
< ﬁ(é)emg) [ #s0 dm= ﬁ(z)e”g’us(“’na. vi>0,
and
t v

(4.38) o) < g<v>ﬁ(§)eﬂé)||g<”>||Lz, ae. Vt>o0,
which was to be proved. O

While for the upper pointwise estimate we exploited the idéantrinsic ultra-
contractivity, for the reversed estimate we shall howereake use of Moser’s iteration
technique as utilized in [9]. To that end and being inspirgdD@vila—Dupaigne [9],
we shall further assume that the functign satisfies the following growth condition:
there ise > 0, and a finite constard > 0 such that

(4.39) #1(t) > at*c, vi>o0.
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Regarding the equivalence between the norms of the Orliazesi® and L? "% we
may and shall assume that= 1.
Before stating the result we need a short preparation. Wetdedny

(4.40) I, :=(F,&) = L?(v), fr~1f, K':=1,1% and K:=H™

We recall [1] thatC, = ||K"]|.
An elementary computation yields that

@41 (LKL L f e [ e T dy
(4.42) KYf:L%(v) > L%(v), K'f :/Gx(-,y)f(y)dv, Ve L2(v).
Furthermore according to [5, formula (24)]
(4.43) H' =K+ (IL,K)* (1= K"K,
Lemma 4.4. The functions™ belongs to L.

Proof. Formula (4.43) learns thgt) = K1+ (I,K)*(1— K")71I,K1. Let f €
L> c L2 SinceK is a Dirichlet operator, therK f € L™ N F, and is quasicontin-
uous. HenceKf < | f||L=||[K1|.~ g.e. Using the smoothness of we getKf <
| fllL=l|K1||L~v a.e., yielding thatl, K mapsL> into L>(v).

On the other side formulae (4.41) and (4.42) indicate ti&tmaps continuosly
L>°(v) into itself and (,K)* mapsL>(v) into L*°. Indeed, arguing as in the beginning
of the proof and having assumption (4.1) orin hands, we derive

K Flley < 1 Flleee) K L, 10K Fllise < [ flle 1K LfLx, ¥ eL>(v),
yielding that&™ e L*°, O]

Theorem 4.4. For every t> 0, the following estimate holds true

(4.44) £0) < (AC+ 1)C, 1) +1)¢Y, ace,
where
(4.45) Clv, t) 1= 5(%)&8’), vt > 0.

Proof. Consider the ratio

g(v)

oY)

(4.46) o
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By [4, Lemma 2.2, Lemma 2.1], the functioryﬁé”) lies in the spaceFp|oc. Thus
according to Lemma 4.4p € Fp10c. Now using the chain rule together with the equa-

tions satisfied by the ground stagd’ and the functiors™, we find, for everyf € Fio
having compact support,

/ ()2 dr(f, )
=/d1“(<ﬂé”)f, S‘”))—/ f dr(<p(g“),g<v))_/5<v)dr(¢év>, f)
(4.47) =/ f(pé”)dm+/(p(()V)f5(v) dv—/dl’(w(()”), f£®)
- [ a1 - s sisoams [ e

=/¢g”>f dm—Ag”/<p(()”)f§(”)dm.

Let U be a compact subset &f. Testing the latter equation with = 1y 27, j > 1,
(f € Fpoc by Lemma 4.4), we deduce

(4.48) [U (@2 dr(p? =, p) = /U P2l = 2§eMel)y dm,

which yields, due to the positivity of both functiors” and £(*)
2]
j

1 _ . )

— [ @rarip = [ o i) - 3e) dm

(4.49) N "

5/ ,ozj_lgoév)dm.
]

According to Theorem 4.3, we obtain
(4.50) [ @7 ario < cw.vj [ @) dm
u u

Using Holder inequality and Lemma 4.2 (withh = Ag”), F=0w= <pé”) and f =
1y ph), it follows from (4.50) that

/ (@2drip!]
U

1/2 1/2
(4.51) <C(,1)] ( f (@§")?2p? dm) ( / P2 dm)
U

172
<cvct,0i( [ @ am) ([ @Rarto+ [ @) am)
U U U

1/2
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By Young's inequality, we obtain

/ @7 drip'] < SCC 02 + 1) / ({20 dm
u 2 U

(4.52)
10, |
+§/U(<P<() y? drie’],
so that
@59 [@rarie] =ccw it + D [ @Fed dm
v U

By (4.6), withV = AE,”), F=0,w= (p(()”) and f = 1yp/, we get from (1ISO1)
(@59 107 ey am = A( [@szarion ) [ (¢gv>)2dm),
which yields

12007 | os g2 amy = ACC*(v, 1)j2 + 1+ 28) f (@8)2p% dm
(4.55) v

< (ACC(y, 1) + 1)(C(v, 1) + 1)j? / (¢§")%0? dm.
u

Having the growth property (4.39) for the functign in hands, we achieve
) 1/(1+¢) )
(4.56) ( | Py dm) = (ACCW)+ DCWD+ D)2 [ p(ef)2dm
U U
We iterate (4.56). Defingx = 2(1+ ¢)* for k=0, 1,... and
) 1/ jk
(4.57) 6 = ([ ka(<pg“>)2dm) and M(v,t):= (ACC(v, 1) + 1)(C(v, t) + 1).
U

Then (4.56) can be written as
(4.58) O, 1 < (M, t)(L + ))2+ gy
k+1 k

Using this recursively yields

1/2
(4.59) eY < M@, )oY = M(v,t)(/ ((pg”)zdm) <M, 1),
U

for all k =0, 1,.... Since the right-hand-side of the latter inequality is ipeledent
from U, we deduce

(4.60) lim ®F = supp < M(v, t),
k—00 X



POINTWISE ESTIMATES FOR GROUND STATES 791
and this shows that
(4.61) £0) < M(v, )gd?, vt >0,
which was to be proved. []

Theorem 4.5. Let 1 be a positive Radon measure on Borel subsets of X charg-
ing no set having zero capacity. Then under assumpt{&uP), (ISO), (HI) and the
growth condition(4.39), the following sharp estimate for the ground sta;lg‘) holds

true, a.e.
acin (L) + 1) (in p(L)et 4 1)) ew
t>0 2 t>0 2
. t ()
< g < g ({QB,B(E)G% )||§(”)||L2-

Proof. Letuk 1 n (as specified in Section 2). By Theorem 4.3 it holds

t
(4.62) ¥ <eWp (E)dék’t||sgk)||Lz, Vvt > 0.

Now the right-hand-side inequality follows directly by tieg k — oo and using
Lemma 3.3 together with Corollary 3.1.

The reversed inequality is obtained in the same manner mguBheorem 4.4 and
Corollary 3.1. []

Let us recall that according to Theorem 32" is a Hilbert—Schmidt operator
for everyt > 0. Thuse '« has amxm absolutely continuous kernel. For evdry 0,
we designate byp{* the heat kernel og~tH:.

By standard way, we deduce that the operaigr has a Green’s kernel which we
denote byGY. We can rephrase Theorem 4.5 in term of the Green's kernel.

Corollary 4.1. We have

(4.69 A~ [ .y ae.

REMARK 4.1. a) We immediately derive from the latter corollary thifathe
Green's functionsGx and G§ are comparable then the ground statestbfand H,
are comparable as well.

b) If u is such that there i€* € (0, 1) with

/ f2du < CHE[f], VfeF,
X
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then by (2.16) (changing. by (1/C*)u), (SUP) is satisfied. Furthermore sinfeand
&, are equivalent, inequality (ISO) can be changed by the we&dolev—Orlicz
inequality

| £2|Lo < CsE[f], f e F.

In this situation the compactness lillfl;1 can be obtained directly from formula (4.43).

We also derive by standard way the following large time adytigs for the
heat kernel.

Corollary 4.2. There is T> 0 such that for every t T,

! !
4.64)  pl(xy) ~ el x)pdy) ~ e tEW(x)EM(y), mxm  ae.

It follows, in particular that

P! Pt (X, y)
(4.65) —1g” = lim Tn (m)
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