ON KNOTS WITH ICON SURFACES

Mario EUDAVE-MUÑOZ

(Received May 25, 2010, revised July 11, 2011)

Abstract

An ICON surface is an incompressible compact orientable nonseparating surface properly embedded in a knot exterior. We show that for any odd positive number n, there exist plenty of knots whose exteriors E contain an ICON surface F with $|\partial F|=n$. We also show that our examples satisfy the \mathbb{Z}-conjecture, that is, $\pi_{1}(E / F) \cong \mathbb{Z}$.

1. Introduction

A well known conjecture in combinatorial group theory is the so called Kervaire conjecture:

Conjecture 1.1. Let G be a group, $G \neq 1$. Then $\mathbb{Z} * G$ cannot be normally generated by one element.
F. González-Acuña and A. Ramírez proved that Kervaire conjecture is equivalent to what they called the \mathbb{Z}-conjecture [2]:

Conjecture 1.2. If F is a compact orientable nonseparating surface properly embedded in a knot exterior $E(K)$, then $\pi_{1}(E(K) / F) \cong \mathbb{Z}$.

We remark that by a surface we mean a connected 2-manifold.
Following González-Acuña, we define:
DEFINITION 1.3. An ICON surface is an incompressible compact orientable nonseparating surface properly embedded in a knot exterior.

An incompressible Seifert surface for a knot is then an example of an ICON surface, but as pointed out by González-Acuña and Ramírez, it is not clear whether or not there exists ICON surfaces with disconnected boundary. Here we show that there exist plenty of knots with ICON surfaces with disconnected boundary.

Theorem 1.4. Given any odd positive number n, there exist plenty of knots whose exteriors contain an ICON surface F with $|\partial F|=n$.

We make a general construction that produces explicit examples of knots with ICON surfaces. This produces surfaces of genus n having n boundary components, n odd, or more generally, ICON surfaces of genus m having n boundary components, n odd, $n \leq$ m. The main construction is shown in Figs. 1, 2, 3. Basically, the idea is to start with a genus one Seifert surface for the unknot, seen as a disk with two bands. Take 3 copies of the surface and join them by tubes, getting a genus 3 orientable surface with 3 boundary components, which is compressible. Then, cut the bands, link them and make them pass through the tubes and then glue them again, getting a new knot and a nonseparating surface in its exterior. Under some mild conditions the surface will be incompressible. A generalization of the construction produces, for each odd integer n, knots K whose exteriors have $(n+1) / 2$ disjoint ICON surfaces, of genus $n, n-1, n-2, \ldots, n-(n-1) / 2$ and with $n, n-2, n-4, \ldots, 1$ boundary components respectively.

We also make a more particular construction producing knots whose exteriors contain an ICON surface of genus 2 with 3 boundary components, shown in Fig. 8. Here the idea is to start with the unknot K and a disk bounding it. Now take 3 copies of the disk, join them with 4 tubes, getting an orientable genus 2 nonseparating surface S with 3 boundary components. Now find an unknot L in the complement of the surface, so that S is incompressible in the complement of the link $K \cup L$. By doing $1 / n$-Dehn surgery on L, we get a new knot K_{n} and the corresponding surface S_{n} remain incompressible. It is easy to find knots in the complement of S so that S is incompressible in the complement of $K \cup L$; the difficult part is to find one which is trivial.

Finally, we show that all our examples satisfy the \mathbb{Z}-conjecture. We remark that the \mathbb{Z}-conjecture is known to hold for surfaces with 1 or 3 boundary components [2], and that J. Rodríguez-Viorato [4] has recently shown that several infinite families of pretzel knots satisfy it.

2. The construction of ICON surfaces

Let K be the trivial knot, and let F be a disk properly embedded in the exterior of $K, E(K)$, whose boundary is a longitude of $E(K)$. Let $N(F)$ be a regular neighborhood of F in $E(K), N(F) \cong F \times I$. Take 3 parallel copies of F in $N(F)$, say $F_{1}=F \times\{1\}, F_{2}=F \times\{1 / 2\}$ and $F_{3}=F \times\{0\}$. Let x, y be distinct points in the interior of F, and let $t_{1}=x \times[1 / 2,1], t_{2}=y \times[0,1 / 2]$, i.e., t_{1} is a straight arc connecting F_{1} and F_{2}, and t_{2} is a straight arc connecting F_{2} and F_{3}.

Connect F_{1}, F_{2} and F_{3} with tubes following the arcs t_{1} and t_{2}. That is, consider disjoint regular neighborhoods $N\left(t_{1}\right), N\left(t_{2}\right)$ of t_{1} and t_{2}, in $F \times[1 / 2,1]$ and $F \times[0,1 / 2]$, respectively, and let $G=\left(F_{1} \cup \partial N\left(t_{1}\right) \cup F_{2} \cup \partial N\left(t_{2}\right) \cup F_{3}\right)-\operatorname{int}\left(\left(F_{1} \cup F_{2} \cup F_{3}\right) \cap\left(N\left(t_{1}\right) \cup\right.\right.$ $\left.N\left(t_{2}\right)\right)$). Note that G is a compact orientable nonseparating surface with 3 boundary

Fig. 1.
components in $E(K)$, but of course it is compressible. Such a surface G is shown in Fig. 1.

Let D_{1} and D_{2} be disjoint disks properly embedded in $E(K)-\operatorname{int} N(F)$, such that ∂D_{1} (resp. ∂D_{2}) consists of one arc in F_{1}, one arc in F_{3}, and two arcs in $\partial N(K)$, so ∂D_{1} (resp. ∂D_{2}) bounds a disk $E_{1}\left(\right.$ resp. $\left.E_{2}\right)$ in $\partial(E(K)-\operatorname{int} N(F))$, which we assume to be disjoint from the points x and y. We assume also that the disks E_{1} and E_{2} are disjoint, i.e., D_{1} and D_{2} are not nested. Let B_{1} (resp. B_{2}) be the 3 -ball bounded by D_{1} and E_{1} (resp. D_{2} and E_{2}) contained in $E(K)-\operatorname{int} N(F)$.

Let α_{1} and α_{2} be two disjoint arcs properly embedded in $E(K)$, which are disjoint from G. Assume that $\alpha_{i} \cap B_{1}$ consists of one arc, having one endpoint in $\partial N(K)$ and one endpoint in D_{1}, and that $\alpha_{i} \cap B_{2}$ consists of one arc, having one endpoint in $\partial N(K)$ and one endpoint in D_{2}, for $i=1,2$. The intersections of the arcs α_{1} and α_{2} with B_{1} (reps. B_{2}) determine a 2-tangle in B_{1} (resp. B_{2}), with ∂D_{1} (resp. ∂D_{2}) as a meridian; assume that this is not a rational tangle of the form $R(1 / n)$, i.e., there is no a disk D embedded in B_{1} (resp. B_{2}), with interior disjoint from the arcs of the tangle, so that ∂D consists of the union of one arc in $\partial N(K)$, one arc in D_{1} (resp. D_{2}), and the pair of arcs of the tangle. Assume that the part of α_{1} outside $B_{1} \cup B_{2}$ is an arc that starts at ∂B_{1}, passes through $N\left(t_{1}\right)$, wraps around $N\left(t_{2}\right)$, i.e. it has winding number $\neq 0$ in the solid torus $F \times[0,1 / 2]-N\left(t_{2}\right)$, then passes again through $N\left(t_{1}\right)$ and finishes at ∂B_{2}, as in Fig. 2. Assume also that the part of α_{2} outside $B_{1} \cup B_{2}$ is an arc that starts at ${ }_{\partial} B_{2}$, passes through $N\left(t_{2}\right)$, wraps around $N\left(t_{1}\right)$, passes again through $N\left(t_{2}\right)$ and finishes at ∂B_{1}, as in Fig. 2. More precisely, assume that $\alpha_{1} \cap N\left(t_{1}\right)$ consists of two straight arcs in $N\left(t_{1}\right)$, that is, arcs which are fibers in the product structure of $N\left(t_{1}\right)$, and that the knot k, obtained from the arc of α_{1} contained in $F \times[0,1 / 2]$, after joining its endpoint with an arc lying in $N\left(t_{1}\right) \cap F_{2}$, has winding number $\neq 0$ in the solid torus $F \times[0,1 / 2]-N\left(t_{2}\right)$. Similarly for the arc α_{2}. Outside the region $N(F) \cup B_{1} \cup B_{2}$, there are no restrictions for the arcs α_{1} and α_{2}.

Fig. 2.
We can think of α_{1} and α_{2} as arcs with endpoints in K; assume then that the endpoints of α_{1} and α_{2} on K alternate. Following α_{1} and α_{2} we can add two bands to K. That is, consider embeddings $b_{1}: I \times I \rightarrow S^{3}$, so that $b_{1}(I \times I) \cap K=b_{1}(\{0\} \times I) \cup$ $b_{1}(\{1\} \times I)$, and that $b_{1}(I \times\{1 / 2\})=\alpha_{1}$, and $b_{2}: I \times I \rightarrow S^{3}$, so that $b_{2}(I \times I) \cap$ $K=b_{2}(\{0\} \times I) \cup b_{2}(\{1\} \times I)$, and that $b_{2}(I \times\{1 / 2\})=\alpha_{2}$. Of course, assume that the two embeddings are disjoint. By twisting the bands, we see that there are many possible bands given by α_{1} and α_{2}; take any two of them, just assume that the disk F, though as a disk with boundary K, union the bands b_{1} and b_{2} is an orientable (singular) surface. As the endpoints of α_{1} and α_{2} alternate, this surface has to be a once punctured torus (with ribbon singularities), and then its boundary is a new knot K_{1}. Namely, K_{1} is the knot $K_{1}=\left(K-\left(b_{1}(\{0\} \times I) \cup b_{1}(\{1\} \times I) \cup b_{2}(\{0\} \times I) \cup\right.\right.$ $\left.\left.b_{2}(\{1\} \times I)\right)\right) \cup b_{1}(I \times\{0\}) \cup b_{1}(I \times\{1\}) \cup b_{2}(I \times\{0\}) \cup b_{2}(I \times\{1\})$.

Now, in the exterior of K_{1}, consider the union of the surface G appropriately pasted with 3 copies of each of the bands b_{1} and b_{2}, as in Fig. 3, and denote this surface by S. Then S is a compact connected orientable nonseparating surface properly embedded in $E\left(K_{1}\right)$, with $|\partial S|=3$, and we show next that S is incompressible, that is, S is an ICON surface with 3 boundary components. Also note that $\operatorname{genus}(S)=3$. In Fig. 4 we show an example of such a knot K_{1} without the surface S.

Theorem 2.1. Let K_{1} and S be as above. Then S is incompressible.
Proof. Let D_{1}, D_{2} be the disks defined above, and let D_{3}, D_{4} be defined as $D_{3}=$ $N\left(t_{1}\right) \cap F_{1}$ and $D_{4}=N\left(t_{2}\right) \cap F_{3}$. In $E\left(K_{1}\right)-\operatorname{int} N(S)$ the disk D_{1} gives rise to a twice punctured disk plus four disks, as shown in Fig. 5; similarly for D_{2}. The disk D_{3} also

Fig. 3.

Fig. 4.

Fig. 5.
give rise to a twice punctured disk plus four disks, as shown in Fig. 5; similarly for D_{4}. In this figure we have indicated with signs " + , -" the side of the surface S in which a neighborhood of the boundaries of the punctured disks lie, assuming that the side of F_{1} pointing out of $N(F)$ is the " + " side. Note that the disks D_{1}, D_{2}, D_{3}, D_{4} cut off the " + " side of the surface S into two annuli, a once punctured annulus and several disks. The "-" side of the surface S is cut off by the disks D_{i} 's in a similar manner.

Suppose that S is compressible, and let E be a compression disk. Consider the intersections between E and the collection of disks D_{i} 's, which consist of simple closed curves and arcs. Let γ be an innermost simple closed curve of intersection in E, which bounds a disk E^{\prime}. The curve γ is contained in one of the disks D_{i}; suppose first that it lies in D_{1} or D_{2}, say in D_{1}. Let D^{\prime} be the disk bounded by γ in D_{1}. If the disk D^{\prime} is not disjoint from K_{1}, then it must contain one point of intersection between D_{1} and one of the $\operatorname{arcs} \alpha_{1}$ or α_{2}, but then the sphere $E^{\prime} \cup D^{\prime}$ would intersect the simple closed curve formed by α_{1} or α_{2} plus one arc of K in one point, which is not possible. Suppose now that γ is contained in D_{3} or D_{4}, say in D_{3}. Again, let D^{\prime} be the disk bounded by γ in D_{3}. If the disk D^{\prime} is not disjoint from K_{1}, then it must contain one or two points of intersection between D_{3} and the arc α_{1}. If it contains just one point, then the sphere $E^{\prime} \cup D^{\prime}$ would intersect the simple closed curve formed by α_{1} plus one arc of K in one point, which is not possible. Suppose then that D^{\prime} contains two points of intersection with α_{1}. If the disk E^{\prime} is contained in $E\left(K_{1}\right)-N(F)$, then the arc α_{1} could not join
$N(K)$ and D^{\prime}, so E^{\prime} must be contained in $N\left(t_{1}\right) \cup\left(F \times[0,1 / 2]-N\left(t_{2}\right)\right)$. But then the winding number of α_{1} in $F \times[0,1 / 2]-N\left(t_{2}\right)$ would be 0 , which is a contradiction. Then in both cases the disk D^{\prime} has interior disjoint from K_{1} and from the surface. So by doing an isotopy of the disk E, the curve γ of intersection can be removed.

So assume that the intersection between E and the disks D_{i} 's consists of arcs. A neighborhood of the boundary of E lies on a side of S, so assume that it lies in the "+" side of S. The proof in the other case is similar. Let γ be an outermost arc of intersection in E, which cuts off a disk $E^{\prime \prime}$ from E, where $\partial E^{\prime \prime}=\gamma \cup \beta$, with β being an arc in S, and the interior of $E^{\prime \prime}$ is disjoint from the disks D_{i} 's. If the arc γ is trivial in the corresponding disk D_{i}, i.e., there is a disk $D^{\prime} \subset D_{i}$, so that $\partial D^{\prime}=\gamma \cup \delta$, where $\delta \subset S$, and the interior of D^{\prime} is disjoint from K_{1} and the surface S, then by cutting E with an outermost such disk contained in D^{\prime}, we would get another compression disk E with fewer intersections with the D_{i} 's. So suppose that the arc γ is non-trivial in the corresponding disk D_{i}.

It is not difficult to check that the arc γ must be as one of the types of arcs shown in Fig. 5, numbered 1 to 9. Suppose we have Case 1. In this case the arc γ cuts off a disk $D^{\prime \prime}$ from D_{1} or D_{2}, whose interior intersects $N\left(K_{1}\right)$ in two disks and S in three arcs, and such that $\partial D^{\prime \prime}=\gamma \cup \delta$, where δ is an arc in the " + " side of S. The curve $\beta \cup \delta$ lies in the " + " side of S and after possibly isotoping it, we can assume it bounds a disk C contained in the disk F_{1}. Let $C^{\prime}=E^{\prime \prime} \cup D^{\prime \prime} \cup C$; this is a sphere which intersects $\alpha_{1} \cup \alpha_{2}$ in 1 or 3 points, depending if the disk C contains or not the disk D_{3}. In any case we can find a simple closed curve which intersects the sphere C^{\prime} is one point, which is not possible.

Suppose we have Case 2 or 3 . Note that in those cases the disk $E^{\prime \prime}$ must be contained inside the 3-ball B_{1} or B_{2}. In Case 2 the arc β consists of an arc on the disk F_{1} and then an arc along one of the bands. In Case 3, the arc β consists of an arc on one of the bands, then an arc on F_{1} and then another arc on the other band. In both cases it would follow that the tangle inside B_{1} or B_{2} is of the form $R(1 / n)$, which is not possible by hypothesis.

Suppose we have Case 4 . In this case the disk $E^{\prime \prime}$ must be contained in B_{1} or B_{2}. The arc γ determines a disk $D^{\prime \prime}$ in D_{1} or D_{2}, which intersects both arcs α_{1} and α_{2}. The arc β consists of an arc on one of the bands, then an arc on F_{1} and then another arc on the same band. This configuration is not possible, for it implies that the arc α_{1} or α_{2} intersects $E^{\prime \prime}$.

Suppose we have Case 5. There are two cases, depending of the position of the disk $E^{\prime \prime}$. The first case is that $E^{\prime \prime}$ lies in the exterior of $N(F)$, and then the arc β lies in F_{1}. Then necessarily one of the arcs α_{1} or α_{2} would intersect the disk $E^{\prime \prime}$, which is not possible. The other possibility is that $E^{\prime \prime}$ lies in $N\left(t_{1}\right) \cup\left(F \times[0,1 / 2]-N\left(t_{2}\right)\right)$. Note that the region of $S-E$ in which β lies is a once punctured annulus, and β has its endpoints in the same component of the boundary of this region. This would imply that the arc α_{1} would intersect $E^{\prime \prime}$.

Fig. 6.
Suppose we have Case 6 , and assume that γ lies in D_{3}. In this case the disk $E^{\prime \prime}$ must be contained in $N\left(t_{1}\right) \cup\left(F \times[0,1 / 2]-N\left(t_{2}\right)\right)$, for otherwise it would intersect D_{1} and D_{2}. Note that the part of the arc α_{1} contained in $N\left(t_{1}\right) \cup\left(F \times[0,1 / 2]-N\left(t_{2}\right)\right)$ can be made to coincide with the arc β, and then can be pulled out of $N(F \times[0,1 / 2]-$ $\left.N\left(t_{2}\right)\right)$, by using $E^{\prime \prime}$. So this implies that the winding number of α_{1} in $F \times[0,1 / 2]-$ $N\left(t_{2}\right)$ is 0 , which is a contradiction.

Suppose we have Case 7. In this case the arc γ must be contained in D_{1} or D_{2}, for if it is contained in D_{3}, then the disk $E^{\prime \prime}$ would also intersect D_{1} or D_{2} an then it would not be outermost. The only possibility is that the disk $E^{\prime \prime}$ is contained in a region consisting of the product of one of the bands union $F \times[0,1 / 2]-N\left(t_{2}\right)$, and then the arc β goes once through $\partial N\left(t_{2}\right)$. But this implies again that the arc α_{1} has winding number 0 in $F \times[0,1 / 2]-N\left(t_{2}\right)$.

Finally note that cases 8 and 9 are not possible simply because there cannot be an arc β with the given endpoints, and with interior disjoint from D_{1}, D_{2} and D_{3}.

The only possibility left is that the disk E is disjoint from the disks D_{i} 's. As we say before, the " + " side and the "-" side of S are cut off by the disks D_{i} 's into annuli, once punctured annuli and disks. Now, it is not difficult to see that there are no compression disks for these subsurfaces. So the surface S must be incompressible.

To get knots with an ICON surface having n boundary components, n odd, proceed in a similar manner. Take the trivial knot K and a disk F in its exterior as before. Take now n copies of F, denoted by $F_{1}, \ldots F_{n}$. Connect the disks with $n-1$ tubes $T_{1} \cdots T_{n-1}$, so that the tube T_{i} connects the disks F_{i} and F_{i+1}. We get a surface G. Consider now two arcs in $E(K)$ disjoint from G, such that in $E(K)-\operatorname{int} N(G)$ the arcs behave exactly as before, and so that α_{1} passes through the odd numbered tubes and wrap around the even numbered tubes, and α_{2} passes through the even numbered tubes and wraps around the odd numbered tubes, as shown schematically in Fig. 6 for the case $n=5$. Suppose that the winding number of these arcs in the corresponding solid tori is $\neq 0$. More precisely, let N_{i} be the solid torus determined by the region between the disks F_{i} and F_{i+1} when we remove a solid tube given by T_{i}. The arc
α_{1} intersects the solid torus N_{i}, i odd, in one or two arcs. Join the endpoints of α_{1} lying in F_{i} with an arc lying in the intersection between the disk F_{i} and the solid tube T_{i-1}, and if $i+1 \leq n-2$, join the endpoints of α_{1} lying in F_{i+1}, with an arc lying in the intersection between the disk F_{i+1} and the solid tube T_{i+1}. By doing this we get a knot k_{i}; now assume that the winding number of k_{i} in N_{i} is $\neq 0$. Do a similar assumption for the arc α_{2}. Take now bands following the arcs α_{1} and α_{2} to get a knot K_{1}. By taking the union of the surface G and n copies of each of the bands we get an ICON surface S for K_{1} with n boundary components. Note that $\operatorname{genus}(S)=n$. The proof that S is incompressible is just the same as the proof of Theorem 2.1.

For the following construction assume further that the winding number of the arcs α_{1} and α_{2} in the solid tori N_{i} formed in $N(F)$ is $\neq 0, \pm 1$. Let s_{i} be the i-th component of ∂S, that is, the component coming from ∂F_{i}. Note that if each s_{i} has the orientation induced by that of S, then s_{i} and s_{i+1} are oppositely oriented, for $i=1, \ldots, n-1$. Let A_{i} be the annulus in $\partial N\left(K_{1}\right)$ cobounded by s_{i} and s_{i+1} whose interior is disjoint from ∂S, for $i=1, \ldots, n-1$. Let S_{i}^{\prime} be the surface obtained by taking the union $S \cup A_{i}$, and then pushing its interior into the interior of $E\left(K_{1}\right)$. Note that S_{i}^{\prime} is an orientable surface of genus $n+1$ and has $n-2$ boundary components. The surface S_{i}^{\prime} is compressible, to see this just note that two tubes were formed in a neighborhood of the bands. By compressing these tubes, i.e., by compressing S_{i}^{\prime} twice, we get a surface S_{i} of genus $n-1$ and with $n-2$ boundary components. Equivalently, S_{i} is obtained by joining the disks F_{i} and F_{i+1} with an annulus before the bands are attached, and then only $n-2$ copies of the bands are attached to G. Note also that S and S_{i} can be made disjoint. Starting with S_{1} and then repeating the operation with the annulus A_{3}, and then with A_{5}, etc., we get a collection of ICON surfaces as stated in the next theorem.

Theorem 2.2. Given any odd integer n, there are knots K whose exteriors contain $(n+1) / 2$ disjoint ICON surfaces, of genus $n, n-1, n-2, \ldots, n-(n-1) / 2$ and with $n, n-2, n-4, \ldots, 1$ boundary components respectively.

Proof. The knots K_{1} just constructed satisfy the required properties. Note that there is a twice punctured torus T embedded in the exterior of K_{1}, so that one boundary component of T lies in $\partial E\left(K_{1}\right)$ and is parallel to s_{1}, and the other boundary component lies in S_{1}, it is just a core of the annulus A_{1}. In fact, T is the union of an annulus cobounded by a core of the annulus A_{1} and a curve on $\partial N(K)$, with a copy of each of the bands. To see that the surface S_{1} is incompressible do an innermost disk-outermost arc argument as in Theorem 2.1, but also using the torus T. We have assumed that the winding number of the arcs α_{1}, α_{2} in the solid tori N_{i} is $\neq 0, \pm 1$, just to avoid outermost arcs of intersection in a compression disk which are of Type 5 as in Fig. 5. Those arcs can be ruled out when proving that the surface S is incompressible, but cannot be ruled out when proving the incompressibility of S_{1}. The remaining surfaces are shown to be incompressible by a similar argument.

Fig. 7.
By complicating the construction, it is not difficult to construct examples of ICON surfaces of genus $q n$ and n boundary components, q being any positive integer. To do that, just start with a knot K having an incompressible Seifert surface H of genus $q-1$, and use this surface instead of the disk F, i.e., take n copies of H, join them by $n-1$ tubes and then add two bands to the surface which go through the tubes.

Another way of complicating the construction is to start as before with n copies of a disk F, but now join the disks with many tubes, say consider a collection of arcs between the disks F_{i} and F_{i+1}, possibly knotted and tangled, and then add bands which go through the tubes and regions between the disks in a complicated manner. This will give ICON surfaces of genus m with n boundary components, where $m \geq n$.

In all the surfaces just constructed, if $s_{1}, s_{2}, \ldots, s_{n}$ denote the boundary components of an ICON surface, then s_{i} and s_{i+1} are oppositely oriented, for all $i=1, \ldots, n-1$. This is just a consequence of the construction. It is possible to construct examples where this does not happen, for example in Fig. 7 such a surface is shown schematically; the surface is formed by 5 disks and 4 tubes arranged appropriately, and then to ensure incompressibility we have to add two bands which go through each of the tubes and regions.

As we said before, given positive integers n and m, with n odd and $n \leq m$, there is a knot whose exterior contains an ICON surface of genus m with n boundary components. On the other hand, it is no clear whether there exists or not knots with ICON surfaces of genus m with n boundary components, but where $m<n$.

Now we construct a genus 2 ICON surface with 3 boundary components. Let K be the trivial knot, and let F be a disk properly embedded in the exterior of $K, E(K)$, whose boundary is a longitude of $E(K)$. Let $N(F)$ be a regular neighborhood of F in $E(K), N(F) \cong F \times I$. Take 3 parallel copies of F in $N(F)$, say $F_{1}=F \times\{1\}$, $F_{2}=F \times\{1 / 2\}$ and $F_{3}=F \times\{0\}$. Take 4 disjoint tubes T_{1}, T_{2}, T_{3} and T_{4}, so that T_{1} and T_{2} join F_{1} with F_{2}, and T_{3} and T_{4} join F_{2} with F_{3}, exactly as shown in Fig. 8, getting a surface G. Now take a knot L in the complement of G, just as shown in Fig. 8. Note that L is the trivial knot.

Fig. 8.
Lemma 2.3. The surface G is incompressible in the exterior of $K \cup L$.
Proof. Let D_{i} be a disk that compress the tube T_{i} in S^{3}, so that L intersects D_{i} in one point, for $i=1,2,3,4$. Suppose that E is a compression disk for G disjoint from L. The intersection between E and the disks D_{i} consist of a collection of simple closed curves and arcs. Simple closed curves are removed as usual. Intersection arcs can also be removed, for these are trivial in the punctured disks D_{i}. So, if G is compressible, there must be a compression disk disjoint from the disks D_{i}. It is easy to see that such a disk cannot be outside $N(F)$, so it has to be, say, in the region between F_{1} and F_{2}. So, ∂E lies in the surface Σ obtained from F_{1} and F_{2} after adding the tubes T_{1} and T_{2}, which is a twice punctured torus intersecting the knot L in two points. Cap off the boundary components of Σ with two disks embedded in S^{3}, lying in the outside of $N(F)$, getting a torus Σ^{\prime}. Let τ be an arc contained in $N(F) \cap \partial N(K)$ connecting the two attached disks. Note that Σ^{\prime} is knotted as a trefoil knot, and that the disk E lies in the side of Σ^{\prime} not bounding a solid torus. So ∂E must in fact bound a disk E^{\prime} contained in Σ^{\prime}. One possibility is that E^{\prime} contains the two points of intersection of L with Σ, and $E \cup E^{\prime}$ cobound a 3-ball containing the arc of L lying between F_{1} and F_{2}. Note that such an arc is an unknotting tunnel for the trefoil knot, so it cannot lie inside a 3-ball. The other possibility is that E^{\prime} contains the two points of intersection of the arc τ with Σ^{\prime}; but this is not possible for the arc τ is also an unknotting tunnel for the trefoil knot. Then the disk E must be parallel to a disk in G, and so it is not a compression disk. A similar argument shows that there is no compression disk in the region between F_{2} and F_{3}.

Theorem 2.4. Let K_{n} be the knot obtained after performing $1 / n$-Dehn surgery on $L, n \neq 0$, and let G_{n} be the surface properly embbeded in $E\left(K_{n}\right)$ obtained from G after the surgery. Then G_{n} is an ICON surface in $E\left(K_{n}\right)$, of genus 2 and having 3 boundary components

Proof. The proof is essentially the same as that of Theorem 4 of [3]. Let D_{i} be a disk that compress the tube T_{i}, so that L intersects D_{i} in one point, for $i=1,2,3,4$, and let $A_{i}=D_{i}-\operatorname{int} N(L)$. Suppose that E is a compression disk for G_{n} after performing $1 / n$-Dehn surgery on L. Assume that the core of the Dehn surgery torus intersects E transversely, and let $P=E-\operatorname{int} N(L)$; this is a planar surface having one boundary component in G_{n}, which we call the outer boundary component, and, say, p boundary components in $\partial N(L)$, called the inner boundary components, each of slope $1 / n$ in $\partial N(L)$. Look at the intersection between P and the annuli A_{i} 's. If there is a simple closed curve of intersection which is trivial in some A_{i}, or there is a trivial arc of intersection in some A_{i}, then the intersection between P and the A_{i} 's is not minimal, or the intersection between E and the core of the surgered torus is not minimal. So assume that the intersection between P and the A_{i} 's consist of spanning arcs in the annuli A_{i} 's. Look now at the intersection pattern in P. It must consist of arcs, all going from the inner boundary components to the outer boundary. Note that each inner boundary component of P intersects each A_{i} in n points, so it intersects the collection of the A_{i} 's in $4 n$ points. So there are $4 n$ arcs of intersection incident to each inner boundary component, which connect this boundary component to the outer boundary component of P. The arcs incident to an inner boundary component divide E into $4 n$ regions, which may contain some other inner boundary components of P. By taking one outermost of such regions, taken over all regions determined by the intersections arcs between P and the D_{i} 's, we see that there must be a disk $Q \subset P$, so that $\partial Q=\delta_{1} \cup \delta_{2} \cup \delta_{3} \cup \delta_{4}$, where δ_{1} is in one of the inner boundary components of P, δ_{2} is in the intersection between P and A_{i}, for some i, δ_{3} is in the outer boundary component of P, and δ_{4} is in the intersection between P and $A_{i \pm 1}$. It is not difficult to see that such a disk cannot exist. So, G_{n} is incompressible.

Question 2.5. Is there a knot K having an ICON surface of genus 1 with more than one boundary component? Is there a lower bound for the genus of an ICON surface having n boundary components?

If a knot K has an ICON surface of genus n, then by a result of Gabai [1], genus $(K) \leq n$. In particular, for the knots constructed in Theorem 2.1, and their generalization to n boundary components, it is not difficult to see that each of these knots bounds a genus $(n+1) / 2$ Seifert surface, as expressed in Theorem 2.2. Also, note that the knots K_{n} of Theorem 2.4 are genus one knots; to see that take a copy of the disk F_{1} and add one tube following one arc of the knot L.

3. The surfaces satisfy the \mathbb{Z}-conjecture

Here we show that the surfaces constructed in the previous section satisfy the \mathbb{Z}-conjecture. The proof follows the same ideas as in [4], consisting in pushing an arc contained in $\partial N(K)$ with endpoints in ∂S into the surface S.

Fig. 9.

Theorem 3.1. Let K and S be any of the knots and ICON surfaces constructed in Theorems 2.1, 2.2, 2.4. Then S satisfy the \mathbb{Z}-conjecture.

Proof. Suppose we have a knot K and an ICON surface S as constructed in Theorems 2.1 and 2.2. Let $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$ be the boundary components of S. It follows from the construction of the surfaces that γ_{i} and γ_{i+1} are oppositely oriented, for $i=$ $1,2, \ldots, n-1$, and that γ_{1} and γ_{n} have the same orientation. Let A_{i} be the annulus in $\partial N(K)$ lying between γ_{i} and $\gamma_{i+1}, i=1,2, \ldots, n-1, n, \bmod n$; let a_{i} be a spanning arc of $A_{i}, i=1,2, \ldots, n$, oriented from γ_{i} to γ_{i+1}. Let $\left[a_{i}\right]$ be the class of a_{i} in $\pi_{1}(E(K) / S)$. Note that in the simplest construction, that of Figs. 3, 6, there is a disk D embedded in the region between the disks F_{1} and F_{2}, such that $\partial D=a_{1} \cup \beta$, where β is an arc on S, and int D intersects $N(K)$ in two meridian disks and S in n arcs joining these meridian disks, as shown in the left side of Fig. 9. Note the the points of intersection of K with int D are oppositely oriented. The arc a_{1} can be homotoped, keeping its endpoints fixed, to an arc of the form $\eta_{1} \cdot a_{n}^{-1} \cdot \eta_{1}^{\prime} \cdot a_{n} \cdot \eta_{1}^{\prime \prime} \cdot \eta_{1}^{-1} \cdot \beta$, where η_{1} is an arc in D that goes from one endpoint of a_{1} to an endpoint of a_{n}, and $\eta_{1}^{\prime}, \eta_{1}^{\prime \prime}$ are the arcs of intersection between D and S that have endpoints in γ_{n}. From this follows that in $\pi_{1}(E(K) / S),\left[a_{1}\right]=\left[\eta_{1}\right]\left[a_{n}\right]^{-1}\left[\eta_{1}^{\prime}\right]\left[a_{n}\right]\left[\eta_{1}^{\prime \prime}\right]\left[\eta_{1}\right]^{-1}[\beta]$, so $\left[a_{1}\right]=\left[\eta_{1}\right]\left[a_{n}\right]^{-1}\left[a_{n}\right]\left[\eta_{1}\right]^{-1}$, for $\left[\eta_{1}^{\prime}\right],\left[\eta_{1}^{\prime \prime}\right]$ and $[\beta]$ are trivial in $\pi_{1}(E(K) / S)$. This implies that $\left[a_{1}\right]=1$.

In a more general case, where there are many tubes which may be knotted and entangled with the bands, by sliding a parallel copy of the arc a_{1} along S and then along one of the tubes that connect F_{1} and F_{2}, we see that there is a collection of disks $D_{1}, D_{2}, \ldots, D_{r}$, embedded in the region between F_{1} and F_{2} so that $\partial D_{1}=$ $a_{1} \cup \beta_{1} \cup \delta_{1} \cup \beta_{1}^{\prime}$, where β_{1} and β_{1}^{\prime} lie in S and δ_{1} is disjoint from S and $N(K)$, $\partial D_{2}=\delta_{1} \cup \beta_{2} \cup \delta_{2} \cup \beta_{2}^{\prime}$, where β_{2} and β_{2}^{\prime} lie in S and δ_{2} is disjoint from S and $N(K)$, $\partial D_{i}=\delta_{i-1} \cup \beta_{i} \cup \delta_{i} \cup \beta_{i}^{\prime}$, where β_{i} lies in S and δ_{i} is disjoint from S and $N(K)$, until $\partial D_{r}=\delta_{r-1} \cup \beta_{r}$, where β_{r} lies in S. Also, the interior of each D_{i} intersects $N(K)$ in pairs of meridian disks oppositely oriented, and intersects S in collection of arcs joining those pairs of disks and possibly in simple closed curves. Then by homotoping a_{1}, we have that in $\pi_{1}(E(K) / S),\left[a_{1}\right]=\left[\eta_{1}\right]\left[a_{n}\right]^{-1}\left[a_{n}\right]\left[\eta_{1}\right]^{-1}\left[\eta_{2}\right]\left[a_{n}\right]^{-1}\left[a_{n}\right]\left[\eta_{2}\right]^{-1} \cdots$ $\left[\eta_{k}\right]\left[a_{n}\right]^{-1}\left[a_{n}\right]\left[\eta_{k}\right]^{-1}\left[\epsilon_{1}\right]\left[c_{1}\right]\left[\epsilon_{1}\right]^{-1} \cdots\left[\epsilon_{t}\right]\left[c_{t}\right]\left[\epsilon_{t}\right]^{-1}\left[\beta_{1}\right]\left[\delta_{1}\right]\left[\beta_{1}^{\prime}\right]$, where the η_{i} 's are arcs in
D joining one endpoint of a_{1} with one of the endpoints of a_{n}, the c_{i} 's are simple closed curves lying in $D \cap S$, and the ϵ_{i} 's are arcs in D joining one endpoint of a_{1} with the c_{i} 's. See Fig. 9. From this follows that $\left[a_{1}\right]=\left[\delta_{1}\right]$ in $\pi_{1}(E(K) / S)$. Similarly, $\left[\delta_{1}\right]=\left[\delta_{2}\right]=\cdots\left[\delta_{r-1}\right]=\left[\beta_{r}\right]=1$, so $\left[a_{1}\right]=1$ in $\pi_{1}(E(K) / S)$.

Let S_{1} be the surface obtained by taking $S \cup A_{1}$ and then pushing it into the interior $E(K)$. As in the proof of Theorem 14 of [2], the fact that $\left[a_{1}\right]=1$ in $\pi_{1}(E(K) / S)$ implies that $\pi_{1}(E(K) / S)=\pi_{1}\left(E(K) / S_{1}\right)$. Repeating the argument but now with the arc a_{3}, if follows that $\pi_{1}\left(E(K) / S_{1}\right)=\pi_{1}\left(E(K) / S_{1,3}\right)$, where $S_{1,3}$ is the surface obtained from S_{1} by attaching the annulus A_{3} and pushing it into the interior of $E(K)$. So by induction, after attaching the odd numbered annuli A_{i}, we get that $\pi_{1}(E(K) / S)=$ $\pi_{1}\left(E(K) / S_{1,3, \ldots, n-2}\right)$, where $S_{1,3, \ldots, n-2}$ is a Seifert surface for K. Now, it follows from Proposition 11 of [2] that $\pi_{1}(E(K) / S)=\pi_{1}\left(E(K) / S_{1,3, \ldots, n-1}\right) \cong \mathbb{Z}$.

For the knots and surfaces constructed in Theorem 2.4, a similar argument show that the surfaces satisfy the \mathbb{Z}-conjecture.

In this proof we use the fact that consecutive curves of ∂S are oppositely oriented, but as mentioned after the proof of Theorem 2.2, this is not always the case. In explicit cases, as this shown in Fig. 7, the same argument shows that the surface constructed satisfies the \mathbb{Z} conjecture, but it is not clear that the same proof works for all the possible examples.

Acknowledgment. I am grateful to F. González-Acuña, J. Rodríguez-Viorato and E. Ramírez-Losada for stimulating conversations. This research was partially supported by PAPIIT-UNAM grant IN102808.

References

[1] D. Gabai: Foliations and the topology of 3-manifolds, III, J. Differential Geom. 26 (1987), 479-536.
[2] F. González-Acuña and A. Ramírez: A knot-theoretic equivalent of the Kervaire conjecture, J. Knot Theory Ramifications 15 (2006), 471-478.
[3] W. Menasco: Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984), 37-44.
[4] J. Rodríguez-Viorato: in preparation.

Instituto de Matematicas
Universidad Nacional Autónoma de México
Circuito Exterior
Ciudad Universitaria 04510 México DF
Mexico
and
CIMAT
Callejón Jalisco s/n
Col. Valenciana 36240
Guanajuato, Gto.
Mexico
e-mail: mario@matem.unam.mx

