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Abstract
It is well known that a group of automorphismsG of an unbordered Klein surface

X of topological genusg � 2 in the orientable case andg � 3 otherwise has at
most 84(g� ") elements, where" D 1 or 2 respectively. In the middle of the fifties,
Oikawa used the cardinalityk of a G-invariant subset to introduce the boundjGj �
12(g � 1)C 6k in the orientable case. Much later, T. Arakawa has generalized this
result, involving s D 2 or 3 such subsets and showing in addition that the bound
for s D 3 is sharp for infinitely many configurations. Here we improvethe bound
of Arakawa fors D 2, showing in particular that the last is never attained. In both
orientable and non-orientable case, we also find bounds for arbitrary s and show their
sharpness for infinitely many topological configurations. Using another well known
theorem of Oikawa and the canonical Riemann double cover, weget similar results
for bordered Klein surfaces.

1. Introduction

Let X be an unbordered Klein surface of topological genusg � 2 or g � 3, ac-
cording to if X is orientable or not. It is well known that a group of automorphismsG
of X has at most 84(g� ") elements [13, 19], where correspondingly" D 1 or 2. Here,
following Singerman [19], a non-orientable unbordered Klein surface will be called a
non-orientable Riemann surface. In [16] Oikawa took into account the cardinalityk
of a G-invariant subset and found a boundjGj � 12(g � 1) C 6k in the orientable
case. Fifty years later, at the beginning of this century, T.Arakawa [2] obtained simi-
lar bounds in the orientable case for cardinalities ofsD 2 andsD 3 G-invariant sub-
sets. Here we improve the bound of Arakawa fors D 2, showing in particular that
the last is never attained. Our bound is particularly usefulin the proofs of some re-
sults concerning the orders of the groups of automorphisms of q-hyperelliptic and cyclic
q-trigonal non-orientable unbordered Klein surfaces. We also find bounds for arbitrarys
for both orientable and non-orientable Riemann surfaces, showing in addition that they
are sharp for infinitely many topological configurations. Using another result from the
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mentioned Oikawa’s paper [16] and the canonical Riemann double cover, we get similar
new results for bordered Klein surfaces. Moreover, we obtainimmediate proofs of the
number of well known results of other authors.

2. Some preliminaries

2.1. Fuchsian and non-euclidean crystallographic groups. We shall use com-
binatorial approach, based on Riemann uniformization theorem, Fuchsian groups and
non-euclidean crystallographic groups (NEC groups in short), which was described ex-
tensively in [1] and [4].

An NEC groupis a discrete and cocompact subgroup of the groupG of isometries
of the hyperbolic planeH, including those which reverse orientation, and if such a
subgroup contains only orientation preserving isometries, then it is called a Fuchsian
group. Macbeath and Wilkie [14, 20] associated to every NEC group 3 a signature,
which determines its algebraic structure. It has the form

(1) (gI �I [m1, : : : , mr ]I {C1, : : : , Ck}).

The numbersmi � 2 are called theproper periods, the bracketsCi D (ni 1, : : : , nisi ) are
the period cycles, the numbersni j � 2 are thelink periodsand g � 0 is said to be the
orbit genusof 3. The orbit spaceH=3 is a surface of topological genusg, having k
boundary components, and it is orientable or not according to the sign beingC or �.

A Fuchsian group can be regarded as an NEC with the signature

(gI CI [m1, : : : , mr ]I {�}),

which shortly will be denoted by (gIm1, : : : , mr ); a Fuchsian group without periods
will be denoted by (gI �) and called aFuchsian surface group; an NEC group which
is not a Fuchsian group will be refered to as aproper NEC group. The group with the
signature (1) has a presentation given by generators:
(a) xi , i D 1, : : : , r , (hyperbolic rotations)
(b) ci j , i D 1, : : : , k; j D 0, : : : , si , (hyperbolic reflections)
(c) ei , i D 1, : : : , k, (connecting generators)
(d) ai , bi , i D 1, : : : , g if the sign isC, (hyperbolic translations),di , i D 1, : : : , g if
the sign is�, (hyperbolic glide reflections)
and relations:
(1) xmi

i D 1, i D 1, : : : , r ,
(2) cisi D e�1

i ci 0ei , i D 1, : : : , k,
(3) c2

i j�1 D c2
i j D (ci j�1ci j )ni j

D 1, i D 1, : : : , k; j D 1, : : : , si ,

(4) x1� � �xr e1� � �eka1b1a�1
1 b�1

1 � � �agbga�1
g b�1

g D1, if the sign isC, x1� � �xr e1� � �ekd2
i � � �d

2
gD

1 if the sign is�.
Any set of generators of an NEC group satisfying the above relations will be called
a canonical set of generatorsand reflectionsci j�1, ci j will be said to beconsecutive.



AUTOMORPHISMS OFKLEIN SURFACES 253

For the convenience, we shall call the productsci j�1ci j the canonical decomposable
elliptic elements of3. Connecting generators are usually hyperbolic translations but if
the orbit genus is zero, the signature has only one proper period and one period cycle,
then they are elliptic i.e. they are hyperbolic rotations.

Every NEC group has a fundamental region associated, whose hyperbolic area�(3),
for an NEC group3 with signature (1), is given by

2�

 

�gC k � 2C
r
X

iD1

�

1�
1

mi

�

C

1

2

k
X

iD1

si
X

iD1

�

1�
1

ni j

�

!

,

where� D 2 if the sign isC and " D 1 otherwise. It is known that an abstract group
with the presentation given by the generators (a)–(d) and the relations (1)–(4) can be
realized as an NEC group with the signature (1) if and only if the above expression is
positive. Finally, if 0 is a subgroup of finite index in an NEC group3 then it is an
NEC group itself and there is a Hurwitz–Riemann formula which says that

[3 W 0] D
�(0)

�(3)
.

2.2. Riemann and Klein surfaces and their group of automorphisms. Now,
by the Riemann uniformization theorem, a compact Riemann surface of genusg � 2
can be represented as the orbit spaceH=0, for some Fuchsian surface group0 with the
signature (gI �). A conformal automorphism or shortly an automorphism of Riemann
surface is an auto-homeomorphism whose local forms are analytic or they composed
with the complex conjugation are analytic. Clearly an automorphism preserve orienta-
tion if and only if no maps of the later type as local forms appear. Furthermore, a
group of conformal automorphismsG of a surface given in such a way, can be repre-
sented as the factor group3=0, where3 is a proper NEC or a Fuchsian group accord-
ing to if G contains orientation reversing automorphisms or not. Now an unbordered
Klein surface is a compact surface, possibly non-orientable, with a dianalytic structure
which, roughly speaking, differs from the classical analytic structure by the fact that
the complex reflectionz!�Nz is allowed for transition maps [1]. Combinatorial study
of groups of automorphisms of unbordered non-orientable Klein surfaces is possible es-
sentially due to the same facts. This time, however, a group0 uniformizing X is an
NEC surface group with the signature (gI �I [�]I {�}) and so, in particular,3 neces-
sarily is a proper NEC group.

Throughout the paper, an automorphism of an a Riemann surface will mean an an
automorphism preserving orientation, unless otherwise stated, Aut�(X) will denote the
group of all, including orientation reversing, automorphisms and Aut(X) its subgroup
of index � 2 containing orientation preserving ones.
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2.3. Some abstract group theory. Finally we will need the following simple
result of abstract group theory, being a kind of mathematical folklore, known as a
Poincare lemma.

Lemma 2.1. Given an abstract group G and a subgroup K of finite index there
exist a subgroup H of K of a finite index which is normal in G.

Proof. Let G=K be the set of left cosets and let S(G=K ) be the group of its
permutations. Then the mapping' W G ! S(G=K ) given by '(g)(x K) D (gx)K is a
homomorphism. Furthermore forg 2 ker', K D '(g)(K ) D gK which means that
g 2 K . So H D ker' is a subgroup we are looking for.

3. Classical Riemann surfaces

Let X be a Riemann surface with a group of automorphismsG. A G-invariant
subsetB of X is said to beirreducible if it has no G-invariant proper subsets. Obvi-
ously, irreducibleG-invariant subset has no more thanjGj elements and those subsets
whose cardinalities are strictly smaller thanjGj, are said to beproper. Clearly, the
mentioned Oikawa and Arakawa bounds are not attained if one of the subsets is not
proper. This is one of the reasons which allow us to restrict ourselves to studying for-
mulae for proper irreducibleG-invariant subsets only. Another such reason is provided
by the lemma below, from which it follows that the whole surface, except a finite num-
ber of points, is covered by the improper irreducibleG-invariant subsets which actually
means that, up to certain extent, the fact that the surface has improperG-invariant sub-
sets actually does not impose restrictions on the order of its group of automorphisms.

3.1. On proper irreducible G-invariant subsets. The next lemma follows from
the basic geometrical properties of the canonical projection X ! X=G, which is rami-
fied covering, but for the sake of convenience, the consistency with algebraic character
of the paper and completeness of our exposition we give an alternative algebraic proof.

Lemma 3.1. Let X D H=0, let G D 1=0 � Aut(X). Then each proper irredu-
cible G-invariant subset of X is equal to{�(Æhi ) j Æ 2 1} and hasjGj=mi elements,
where hi runs over the points fixed by the canonical elliptic generators xi of 1.

Proof. Let � W 1! G and � W H! X be the canonical projections. Then, given
x 2 X and g 2 G,

(2) gx D �(Æh) for g D �(Æ) and x D �(h).

Now let B denote a proper irreducibleG-invariant subset and letx D �(h) 2 B. First
we shall show that�(hi ) 2 B for somei . SinceB is irreducible, it equals the orbitGx
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and since it is proper,x is a fixed point of somegD �(Æ). But then ÆhD h for some
 2 0. Hence Æ is elliptic and therefore is conjugate to a power of some of elliptic
generator, say Æ D Æi x

ki
i Æ

�1
i , and soh D Æi hi . But then�(hi ) D �(Æi )�1x 2 B. Now

assume that�(h j ) 2 B. Then �(h j ) D �(Æ)�(hi ), which gives Æhi D h j . It follows
that x j and ( Æ)xi ( Æ)�1 have common fixed point, which in turn means that they are
conjugate, a contradiction which completes the first part ofthe proof.

For the second part, observe we already know thatB D {�(Æhi ) j Æ 2 1} for some
i . Now �(Æhi ) D �(Æ0hi ) if and only if Æ�1

 Æ

0

D xki
i for some i and  2 0 and so

Æ

�1
Æ

0

2 0hxi i D h0, xi i. HenceB has

[1 W 0hxi i] D
[1 W 0]

[0hxi i W 0]
D

jGj

mi

elements.

3.2. On Oikawa and Arakawa results. As we mentioned in the introduction,
Oikawa [16] and Arakawa [2] found the bounds for the order of agroup G of auto-
morphisms of a compact Riemann surfaceX, taking into account the genusg � 2 and
the ordersk, l ,m of s� 3, G-invariant subsets. It is easy to see that the Oikawa bound
12(g� 1)C 6k is attained, for a Riemann surfaceX admitting aG-invariant subset of
cardinality k, if and only if the group of automorphisms ofX is generated by two
elements of order 2 and 3. The Arakawa bound 2(g � 1)C kC l Cm is attained just
for the Riemann surfacesX for which the canonical projectionX ! X=G is ramified
over exactly three points. Here we show that the Arakawa bound 8(g � 1)C k C 4l
is never attained and we shall find more precise bound, which is attained for infinitely
many genera.

Theorem 3.2. Let X be a Riemann surface of genus g� 2 with two proper irre-
ducible G-invariant subsets of cardinalities k and l. Then either jGj � 2(g�1)C kC l
or G has order precisely

(3)
m

m� 1
(2(g� 1)C kC l )

for some m� 2. Furthermore, given m� 2 there are infinitely many values of g for
which there exist Riemann surfaces of genus g, admitting two proper irreducible in-
variant subsets of cardinalities k and l, and the group g of automorphisms of order
(3) and in such case necessarily the orbit space X=G is the sphere with exactly three
cone points of ordersjGj=k, jGj=l and m.

Proof. Let X D H=0 and let G D 1=0. Observe that by Lemma 3.1,1 has at
least two periodsm1, m2 and we havek D jGj=m1 and l D jGj=m2. If the orbit genus
of 1 is nonzero, then�(1) � 2�(2� 1=m1 � 1=m2). Thus, by the Hurwitz–Riemann
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formula 2(g�1)=jGj � 2�1=m1�1=m2 and in turnjGj � g�1C k=2C l=2, which is
strictly smaller than 2(g�1)C kC l . Therefore we may assume that the orbit genus of
1 equals 0. But now, if its signature has more than four periods, then�(1) � 2�(1�
1=m1 � 1=m2) for some m1, m2. Hence again from the Hurwitz–Riemann formula,
2(g � 1)=jGj � 1� 1=m1 � 1=m2, which in turn givesjGj � 2(g � 1)C k C l . Thus
we can assume that1 has at exactly three periodsm1, m2, m3 D m. But then,�(1) D
2�(1� 1=m1� 1=m2� 1=m3) and so by the Hurwitz–Riemann formula 2(g� 1)=jGj D
((m� 1)=m) � 1=m1 � 1=m2, which in turn implies thatG has the order (3).

Now, given m1, m2 and m3 D m � 2 such that 1=m1 C 1=m2 C 1=m3 < 1, (0I
m1, m2, m3) is a signature of a Fuchsian group1. Then the Fenchel “conjecture”
[6, 11] guarantees that there exists a Fuchsian surface subgroup 0 of 1 of finite in-
dex and the Poincare lemma allows us to assume that0 is normal in1 which means
that the group,G D 1=0 is generated by two elementsa and b of orders m1 and
m2, whose product has orderm3. In this way we obtain a Riemann surfaceX D H=0

of some genusg, admitting two proper irreducibleG-invariant subsets of cardinalities
kD jGj=m1 and l D jGj=m2, and a group of automorphisms of order (3). Finally, given
a prime p let, in the above construction,0p be a p-Frattini subgroup of0, i.e. the
subgroup generated by all commutators and allp-powers. Then0p is a characteristic
subgroup of0 and hence is normal in1 and j0j=0p is elementary abelian group of
order p2g and henceH=0p has genus (g�1)p2g

C1. So taking0p for all primes p or
iterating this construction for givenp by taking an infinite series of descending sub-
groups00 D 0, 0n D (0n�1)p we obtain surfaces and subsets in question for infinitely
many genera.

Corollary 3.3. Let X be a Riemann surface of genus g� 2 with two proper ir-
reducible G-invariant subsets of cardinalities k and l. Then jGj � 4(g � 1)C 2kC 2l
and this bound is attained for infinitely many values of g.

Corollary 3.4. The bound of Arakawa8(g�1)CkC4l for the order of the group
of automorphisms of a Riemann surface of genus g� 2 having two invariant subsets
of cardinalities k and l is never attained.

Proof. Indeed, by Theorem 3.2,jGj � 2(g� 1)C kC l < 8(g� 1)C kC 4l since
8(g� 1)C kC 4l is not of the form (3).

For an automorphism of a Riemann surface having 2 fixed pointswe have the
following result of Szemberg [17].

Corollary 3.5. The order of an automorphism' of a compact Riemann surface
X of genus g� 2, having two fixed points, is at most4g.
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3.3. The bound for s � 4 and its attainment. As we mentioned in the intro-
duction, Oikawa and Arakawa have found the bounds for the order of a groupG of
automorphisms of a compact Riemann surfaceX involving the genus and the cardinal-
ities of s� 3 G-invariant subsets. Here we shall find such bounds for arbitrary s.

Theorem 3.6. Let X be a Riemann surface of genus g� 2 with a group of auto-
morphisms G and with G-invariant irreducible subsets B1, : : : , Bn of cardinalities q1 �
� � � � qn, and assume that s� 4 of them are proper. Then each qi divides jGj and

jGj �
2

s� 2
(g� 1)C

q1 C � � � C qs

s� 2
.

Conversely, for each s these bounds are attained for infinitely many values of g.

Proof. Let X D H=0, G D 1=0 and let� W X ! X=G be the canonical projec-
tion. By Lemma 3.1,1 has signature ( Im1, : : : , mr ), whereqi D jGj=mi for i � s
and so, in particular,r � s. Thus

2(g� 1)

jGj
� s� 2�

�

1

m1
C � � � C

1

ms

�

,

by the Hurwitz–Riemann formula, which in turn gives our bound.
Now, given s � 4 andq1, : : : , qs being divisors ofjGj, where someqi is strictly

smaller thanjGj=2 if sD 4, let mi D jGj=qi for i D 1,: : : ,s. Consider a Fuchsian group
1 with signature (0Im1, : : : , ms). Then, as before, the Fenchel “conjecture” guarantees
that there exists a Fuchsian surface subgroup0 of 1 of finite index and the Poincare
lemma allows us to assume that0 is normal in1. Therefore this configuration pro-
vides a Riemann surfaceH=0 of some genusg, havings proper irreducibleG-invariant
subsets of cardinalities, say,q1,:::,qs and a groupGD1=0 of automorphisms of order

2

s� 2
(g� 1)C

q1 C � � � C qs

s� 2
.

Clearly our surface has alson � s improper G-invariant subsets. Finally, the Frattini
construction for primesp allows us to produce surfaces and subsets as above for in-
finitely many genera.

As an immediate Corollary we have the following bound of Farkas and Kra [9].

Corollary 3.7. A single automorphism of a compact Riemann surface of genus
g � 2, having q� 3 fixed points, has order not exceeding(2=(q � 2))gC 1.
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3.4. Automorphisms of bordered orientable Klein surfaces. There is another
important result in the mentioned already paper of Oikawa [16]. Namely, a bordered
orientable Klein surfaceX with a group of automorphismsG and k boundary com-
ponents, can be embedded in an unbordered Riemann surfaceX0 so that X0

n X is
composed ofk disjoint open discs and the action ofG can be extended toX0. Further-
more, G preserves the centers of the discs attached inX0. Later on, it was remarked
by Greenleaf and May [10], that the same holds true for non-orientable Riemann sur-
faces. On the other hand, there is another tool which allows to relate bordered and
unbordered Klein surfaces—the Riemann double cover. Thesetwo tools will allow us
to derive immediately some known results on the groups of automorphism of bordered
Klein surfaces and to prove some new results.

We start with the following famous bound for bordered orientable Klein surfaces
of topological genusg � 2, introduced by May in [15].

Corollary 3.8. Let X be a bordered orientable Klein surface of topological genus
g � 2 and having k boundary components. ThenAut�(X) � 12(p�1), where p stands
for the algebraic genus of X.

Proof. Here p D 2g C k � 1 and, on the other hand,G can be considered as
a group of automorphisms of a compact Riemann surface of the genusg with an in-
variant subset of cardinalityk. From the Oikawa result, we know that the group of
orientation preserving automorphisms has at most 12(g � 1) C 6k elements. So for
the groupG of all automorphisms, including the orientation reversingones, we have
jGj � 2(12(g� 1)C 6k) D 12(p� 1).

Next we obtain results of Pozo from [18]

Corollary 3.9. Let G be a group of automorphisms of an orientable bordered
Klein surface X of topological genus g� 2, including orienation reversing ones, and
having 2 or 3 invariant subsets of the set of boundary components. Then, respectively,
jGj � 4(p� 1) or jGj � 2(p� 1), where p stands for the algebraic genus of X.

Proof. Let X0 be a Riemann surface obtainned by mentioned theorem of Oikawa
and let Letk1,: : : ,ks, wheresD 2 or sD 3, be the cardinalities ofs invariant subsets in
question. Then for their sumk, p � 2gCk�1. So by our Corollary 3.3 forsD 2 and
by the bound of Arakawa fors D 3 mentioned at the begining of Subsection 3.2 the
group of orientation preserving automorphisms ofX0 has no more than 4(g � 1)C 2k
and 2(g� 1)C k respectively elements. So,jGj � 8(g� 1)C 4k � 4(p� 1) for sD 2
and jGj � 4(g� 1)C 2k � 2(p� 1) for sD 3, which completes the proof.

Similarly, for more than three invariant subsets of the set of boundary components
we obtain at once the following new generalization of Corollary 3.9.
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Corollary 3.10. Let G be a group of automorphisms, including the orientation
reversing ones, of an orientable bordered Klein surface X of topological genus g� 2
and algebraic genus p, having s� 4 invariant subsets of the set of boundary compo-
nents. ThenjGj � 2(p� 1)=(s� 2).

Proof. The groupG can be considered as a group of automorphisms of a com-
pact Riemann surfaceX0 of genusg having s invariant subsets, say of cardinalities
k1, : : : , ks and letk D k1 C � � � C ks. Then on the one hand, for the subgroupGC of
G consisting of orientation preserving automorphisms ofX0, jGC

j � 2(g�1)=(s�2)C
k=(s�2), by Theorem 3.6, while on the other hand for the algebraic genus p of X we
have p � 2gC k � 1 and hence the result.

We again back to results of Pozo from [18].

Corollary 3.11. Let G be a group of automorphisms, including the orientation
reversing ones, of a bordered orientable Klein surface X of algebraic genus p� 2
having an invariant subset of interior points of cardinality q. ThenjGj � 4(p�1)C4q.

Proof. The canonical Riemann double coverQX is a Riemann surface of genusp
having the two subsets of cardinalitiesq. Let QG be the group of automorphisms ofQX.
Then, for the subgroupQGC of orientation preserving automorphisms ofQX, these two
subsets are invariant. So, by Corollary 3.3,j QGC

j � 4(p� 1)C 4q and, asj QGj D 2jGj,
the result follows.

The next result is new and in particular it strengthens the result of Pozo forsD 2

Corollary 3.12. Let G be a group of automorphisms, including the orientation
reversing ones, of a bordered orientable Klein surface X of algebraic genus p� 2
having s invariant subsets of interior points of cardinalities q1, : : : , qs. Then

jGj �
1

s� 1
(p� 1)C

1

s� 1
(q1 C � � � C qs).

Corollary 3.13. Let G be a group of automorphisms, including orientation re-
versing ones, of an orientable bordered orientable Klein surface X of topological genus
g � 2 having s invariant subsets of the set of boundary componentsof cardinalities
p1, : : : , ps and t invariant subsets of interior points of cardinalitiesq1, : : : , qt , where
t C s � 4. Then

jGj �
4

sC t � 2
(g� 1)C

2

sC t � 2
(p1 C � � � C ps C q1 C � � � C qt ).
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Proof. By Oikawa theorem, the subgroupGC of G acts as a group of auto-
morphisms of a closed Riemann surface of genusg with sC t invariant subsets of
cardinalities p1, : : : , ps, q1, : : : , qs and hence the result follows by Theorem 3.6.

4. Non-orientable Riemann surfaces

Each classical Riemann surface can be viewed as an orientable unbordered Klein
surface and, following Singerman [19], we shall refer to a non-orientable unbordered
Klein surface as to anon-orientable Riemann surface. It is well known [19], that a
non-orientable Riemann surface of topological genusg � 3 (which is the number of
cross caps attached to the sphere), has at most 84(g � 2) elements and this bound is
both attained and not attained for infinitely many values ofg. The groups for which it
is attained, are known in the literature asH -groups.

4.1. On proper irreducible G-invariant subsets. Let X D H=0 be a non-
orientable Riemann surface, letG D 3=0 be its group of automorphisms and let
� W H ! X and � W 3 ! G be the canonical projections. Given a canonical system
of generators for3, let h1, : : : , ht be the set of fixed points of all canonical elliptic
generators and canonical decomposable elliptic elementsx1, : : : , xt and let l1, : : : , lm
be the axes of canonical reflectionsc1, : : : , cm of 3. With these notations we have
the following

Lemma 4.1. Each proper irreducible G-invariant subset of X equals either
{�(�hi ) j � 2 3}, and hasjGj=2mi or jGj=mi elements depending on if xi is decom-
posable or not, or {�(�ki ) j � 2 3} for some ki 2 l i n {h1, : : : , hr } and has jGj=2
elements.

Proof. The proof is similar to that of Lemma 3.1. Also here, given x 2 X and
g 2 G

gx D �(�h) if g D �(�) and x D �(h).

Now let B be a proper irreducibleG-invariant subset and letx D �(h) 2 B. Since
B is irreducible, it equals the orbitGx and since it is proper,x is a fixed point for
some g D �(�). But then  �h D h for some  2 0. So  � is either elliptic or a
reflection and therefore is conjugate to a power of some canonical elliptic generator
or canonical decomposable elliptic element, say � D �i x

ni
i �

�1
i , or to someci , say

 � D �i ci�
�1
i . Henceh D �i hi or h D �i ki for someki 2 l i n {h1, : : : , ht }. In the first

case,�(hi ) D �(�i )�1x 2 B and in the second one�(ki ) D �(�i )�1x 2 B.
Finally, as before,�(�hi ) D �(�0hi ) if and only if ��1

 �

0

D x�i
i for some integer

�i and  2 0 and so��1
�

0 belongs to0hxi i if xi is not a product of two reflections
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or to 0hc, c0i if xi D cc0 and henceB has respectively

[3 W 0hxi i] D
[3 W 0]

[0hxi i W 0]
D

jGj

mi

or

[3 W 0hc, c0i] D
[3 W 0]

[0hc, c0i W 0]
D

jGj

2mi

elements.
Similarly, �(�ki ) D �(�0ki ) if and only if ��1

 �

0

D ci for some 2 0 and so if
and only if ��1

�

0 belongs to0hci i. HenceB has

[3 W 0hci i] D
[3 W 0]

[0hci i W 0]
D

jGj

2

elements.

DEFINITION 4.2. The two types ofG-invariant subsets from Lemma 4.1, corres-
ponding respectively to canonical elliptic generators andcanonical decomposable elliptic
elements or canonical reflections, are called respectivelyof the first or thesecond type.

4.2. The bounds and their attainments. Observe that if a surface has aG-
invariant subset of the second type, then it has infinitely many such subsets. So, first
we shall see that these play rather limited role in our studies.

Corollary 4.3. Let G be a group of automorphisms of a non-orientable Riemann
surface X of topological genus g� 3 not having invariant subsets of the first type.
Then jGj � g� 2.

Proof. If G D 3=0, then3 has no elliptic elements. Thus�(3) is a multiplicity
of 2� and thereforejGj � g� 2.

In the remainder of the subsection we shall deal with actionsallowing invariant sub-
sets of the first type. We start with the following theorem concerning one invariant subset.

Theorem 4.4. Let X be a non-orientable Riemann surface of topological genus
g � 3 with a group of automorphisms G and let B be a G-invariant irreducible subset
of the first type of cardinality k. ThenjGj � 12(g� 2C k) and this bound is attained
for infinitely many g.

Proof. Let X D H=0 and letG D 3=0 be a group of automorphisms ofX. No-
tice that since3 is a proper NEC group, either its orbit genus is non zero and the sign
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is � or it has a period cycle. The setB in question comes from a proper periodm or
a link periodn of 3, i.e. jBj D jGj=m or jBj D jGj=2n

In the first case, if there exists another proper periodm0, then�(3)� 2�(1�1=m�
1=m0) � 2�(1=2� 1=m) and sojGj � 2(g� 2C k) by the Hurwitz–Riemann formula.
Now if there is a period cycle with a link periodn, then�(3) � 2�(1=4�1=m) which
by the Hurwitz–Riemann formula givesjGj � 4(g� 2C k). Finally, if m is the unique
proper period and there are no link periods, then�(3) � 2�(1 � 1=m), which gives
jGj � g� 2C k.

In the second case, if there are at least two proper periods, then�(3) � 2�(1=2�
1=2n) and sojGj � 2(g� 2C k). So assume that3 has just one proper periodm. If
m � 3, then�(3) � 2�(1=6� 1=2n) and sojGj � 6(g� 2C k). If mD 2 then either
there is another link period and�(3) � 2�(1=4�1=2n), which givesjGj � 4(g�2Ck)
or the orbit genus is nonzero, or else there is another periodcycle. But in the last two
cases�(3) � 2�(1� 1=2n) and sojGj � g � 2C k. Therefore we may assume that
there are no proper periods in3. If the orbit genus is nonzero or there are two period
cycles, then�(3) � 2�(1=2� 1=2n) and sojGj � 2(g� 2C k). Thus we can assume
that3 has signature (0ICI [�]I{(n, n2, : : : , ns)}). If s� 4, then�(3) � 2�(1=4�1=2n)
and sojGj � 4(g� 2C k). So assume thatsD 3. Then�(3) � 2�(1=12� 1=2n) and
thereforejGj � 12(g� 2C k).

Observe that forn � 7, �(3) D 2�(1=12� 1=2n) if and only if 3 has signature
(0I CI [�]I {(2, 3, n)}). Now it is known [19] that forn D 7 (for n > 7 it seems to
be a folklore), there are normal subgroups0 of 3 with signatures (gI �I [�]I {�}) for
infinitely many values ofg and so the bound 12(g � 2C k) is attained for infinitely
many configurations.

REMARK 4.5. Observe that the bound 12(g� 2C k) for the order of a group of
automorphisms of a non-orientable Riemann surface of genusg is attained for an NEC
group3 with signature (0I CI [�]I {(2, 3,n)}). Therefore necessarily3 has reflections
and so the corresponding surfaces have infinitely many irreducible G-invariant subsets
of the second type.

Theorem 4.6. Let X be a non-orientable Riemann surface of topological genus
g � 3 and let B1 and B2 be proper, G-invariant, irreducible subsets of the first type
of cardinalities k and l. ThenjGj � 4(g � 2C k C l ) and this bound is attained for
infinitely many genera.

Proof. Let X D H=0 be a non-orientable Riemann surface with a group of auto-
morphismsG D 3=0. Three cases are possible
(i) jB1j D jGj=m1, jB2j D jGj=m2 for some proper periodsm1, m2 of 3,
(ii) jB1j D jGj=2n1, jB2j D jGj=2n2 for some link periodsn1, n2 of 3,
(iii) jB1j D jGj=m, jB2j D jGj=2n for some proper periodm and a link periodn of 3,
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In the case (i),�(3) � 2�(1 � 1=m1 � 1=m2) and so by the Hurwitz–Riemann
formula, jGj � g� 2C kC l .

Now consider the case (ii). Here either3 has nonzero orbit genus or a proper
period, or two period cycles, or else it has a signature (0I CI [�]I {(n1, n2, : : : , ns)}). In
the first case,�(3) � 2�(1� 1=2ni � 1=2n2), which givesjGj � g� 2C kC l . In the
second case,�(3) � 2�(1=2�1=2n1�1=2n2), which by the Hurwitz–Riemann formula
gives jGj � 2(g� 2C kC l ). In the third case,�(3) � 2�(1� 1=2n1 � 1=2n2) which
by the Hurwitz–Riemann formula gives againjGj � g � 2C k C l . So let3 have a
signature (0I CI [�]I {(n1, n2, : : : , ns)}). If s� 4 then�(3) � 2�(1=2� 1=2n1� 1=2n2),
which by the Hurwitz–Riemann formula givesjGj � 2(g� 2C kC l ). So assume that
sD 3. Then�(3) � 2�(1=4� 1=2n1 � 1=2n2), which givesjGj � 4(g� 2C kC l ).

Finally in the case (iii),�(3) � 2�(1=2� 1=m� 1=2n), which givesjGj � 2(g�
2C kC l ).

To prove that the bound 4(g�2C k) is attained for infinitely manyg, let G be an
arbitrary H -group, say of orderN. Then the corresponding surface has twoG-invariant
subsets of cardinalitiesk D N=6 and l D N=14. Now sinceN D 84(g � 2) we have
g D N=84C 2 and therefore 4(g� 2C kC l ) D N, which completes the proof.

REMARK 4.7. Observe that the bound 4(g� 2C kC l ) for the order of a group
of automorphisms of a non-orientable Riemann surface of genus g having two invariant
subsets of points of the first type, is attained forH -groups and so for an NEC group
3 with signature (0I CI [�]I {(2, 3, 7)}). Hence3 has reflections and again the corres-
ponding surfaces have infinitely manyG-invariant subsets of the second type.

Theorem 4.8. Let X be a non-orientable Riemann surface of topological genus
g � 3 with a group of automorphisms G and with G-invariant irreducible subsets
B1, : : : , Bn of cardinalities q1 � � � � � qn and assume that B1, : : : , Bs, where s� 3,
are of the first type. Then

jGj �
2

s� 2
(g� 2C q1 C � � � C qs)

and this bound is attained for infinitely many g.

Proof. Let, as always,X D H=0 and G D 3=0. Let B1, : : : , Bt come from the
proper periodsm1, : : : , mt and let BtC1, : : : , Bs come from the link periodsn1, : : : , ns�t .
Then jBi j D jGj=mi for i D 1, : : : , t jBi j D jGj=2ni�t for i D t C 1, : : : s and so

�(3) � 2�

 

�1C t �
t
X

iD1

1

mi
C

s� t

2
�

s�t
X

iD1

1

2ni

!

� 2�

 

s� 2

2
�

t
X

iD1

1

mi
�

s�t
X

iD1

1

2ni

!

,
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which by the Hurwitz–Riemann formula gives

jGj �
2

s� 2
(g� 2C q1 C � � � C qs).

Now we shall show that these bounds are attained for infinitely many g and all s� 3.

For s � 5, let G D Z2�
s�1
� � � �Z2 D ha1, : : : , as�1i, let 3 be an NEC group with

signature (0I CI [�]I {(2, s
: : : , 2)}) and let� W 3! G be an epimorphism defined by

�(ci ) D

8

<

:

aiC1 for i D 0, : : : , s� 2,
a1a2 for i D s� 1,
a1 for i D s.

Now, neither a canonical reflection nor a canonical ellipticelement belongs to0 D

ker� . So 0 is torsion free. But since orientation reversingc0c1cs�1 isometry belongs
to 0, the last has signature (gI �I [�]I {�}), where by the Hurwitz–Riemann formula
g D 2s�3(s� 4)C 2 and soX D H=0 is a non-orientable Riemann surface of genusg
having the group of automorphismsG andG-invariant subsetsB1,:::,Bs of cardinalities
q1, : : : , qs, for which

jGj D
2

s� 2
(g� 2C q1 C � � � C qs).

Finally, given an odd primep, let for the above0, 0p be its p-Frattini subgroup
i.e. the subgroup generated by all commutators and allp-powers. Now0p is a char-
acteristic subgroup of0 and hence is normal in3, which produces surfacesXp and
subsets as above for infinitely many generagp D pg�1(2s�3(s� 4)C 2).

The casesD 4 must be treated separately. LetG D Z2 � D3 D hx j x2
i � ha, b j

a2, b2, (ab)3
i, let 3 be an NEC group with signature (0I �I [�]I {(2, 2, 2, 3)}) and let

� W 3! G be an epimorphism which maps consecutive canonical reflections intoa, x,
xb, b, a. Then, as fors> 4, we argue that0 D ker� has signature (gI�I [�]I{�}) and
so we obtain a non-orientable Riemann surface for which the above bound is attained.
Next, using the above Frattini arguments, we produce such surfaces and subsets for
infinitely many generag.

Finally for s D 3, the bound 2(g � 2C k C l C m) for the order of a group of
automorphisms of a non-orientable Riemann surface of genusg having three invariant
subsets of points of cardinalitiesk, l and m, is attained, for example, for surfaces with
H -groupsG of automorphisms.

REMARK 4.9. Observe that the formulae from the above theorem does not in-
volve explicitly the cardinality of theG-invariant subsets of the second type ifs ¤ t .
However this can be done writing the bound from our theorem as

jGj �
2

s� 2
(g� 2C q1 C � � � C qs)C 0 � (qsC1 C � � � C qt ).
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and obtaining in this way a function properly involving allqi .

The following Corollary generalizes the principal result from [7], where it was
proved for bordered non-orientable Klein surfaces, and theresult from [3], where the
bound was found forq D 1, 2.

Corollary 4.10. Let ' be an automorphism of a non-orientable Riemann surface
of topological genus g� 3 having q� 3 fixed points. Then

j'j �

2

q � 2
(gC q � 2).

5. Bordered non-orientable Klein surfaces

Now we shall derive some results concerning automorphisms of bordered non-
orientable Klein surfaces with fixed points. Here, as in subsection 3.4, we shall use
two tools: an analogue of Oikawa theorem mentioned by Greenleaf and May in [10]
for non-orientable bordered Klein surfaces, and the canonical Riemann double cover
described in [1]. The symbolp will stand for the algebraic genus of a non-orientable
bordered Klein surface.

Corollary 5.1. Let G be a group of automorphisms of a bordered non-orientable
Klein surface of topological genus g� 3 having k boundary components. ThenjGj �
12(p� 1).

Proof. G can be considered as a group of automorphisms of a non-orientable
Riemann surface having invariant subset of cardinalityk. But then, by Theorem 4.4,
jGj � 12(g� 2C k) D 12(p� 1).

The next two corollaries can be obtained using, for borderednon-orientable Klein
surfaceX, the canonical double coverQX as in Section 3.4

Corollary 5.2. Let G be a group of automorphisms of a bordered, non-orientable
Klein surface X of algebraic genus p� 2 having an invariant subset of points of car-
dinality q. ThenjGj � 4(p� 1)C 4q.

Proof. The canonical Riemann double coverQX of X has genusp and let QG be
the lifting of G. Then QGC has two invariant subsets of points onQX of cardinalitiesq
and sojGj D j

QGC

j � 4(p� 1)C 4q, by Corollary 3.3.

Corollary 5.3. Let G be a group of automorphisms of a bordered, non-orientable
orientable Klein surface X of algebraic genus p� 2, having s� 2 invariant subsets
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of interior points of cardinalities q1, : : : , qs. Then

jGj �
1

s� 1
(p� 1)C

1

s� 1
(q1 C � � � C qs).

Proof. Let QX be the canonical Riemann double cover and letQG be the lifting of
G. Then QGC has 2s invariant subsets of points onQX of cardinalitiesq1, q1, : : : , qs, qs

and so

j

QGC

j �

2

2s� 2
(p� 1)C

2

2s� 2
(q1 C � � � C qs)

by Theorem 3.6. Hence the result sincejGj D j

QGC

j.

Similarly, using Oikawa theorem and Theorem 4.8, we obtain

Corollary 5.4. Let G be a group of a bordered, non-orientable Klein surface X
of topological genus g� 3 having s invariant subsets of the set of boundary compo-
nents of cardinalities p1,: : : , ps and t invariant subsets of interior points of cardinalities
q1, : : : , qt , where tC s � 3. Then

jGj �
2

sC t � 2
(g� 2)C

2

sC t � 2
(p1 C � � � C ps C q1 C � � � qt ).

Using our results one can also obtain, at once, the bounds forthe group of auto-
morphisms ofq-hyperelliptic and cyclicq-trigonal bordered Klein surfaces of genus
large enough which were found in [18] by Pérez del Pozo. We finish the paper by
considering similar problem for non-orientable unbordered Klein surfaces.

Recall that a Klein surfaceX which admit an automorphism' of order p so that
the orbit spaceX=h'i has algebraic genusq is said to be a (p, q)-gonal Klein sur-
face and for p D 2 and p D 3 we obtain the concepts ofq-hyperellipticity andq-
trigonality respectively.

Theorem 5.5. Let X be a non-orientable q-hyperelliptic(q � 2) Riemann surface
of algebraic genus p> qC 1 and let ' be the q-hyperelliptic involution. Then

jAut(X)j �

�

8(p� q) if X=' has nonempty boundary,
24(p� q) otherwise.

Proof. Let X D H=0, Aut(X) D 3=0 and h'i D 0

0

=0 for some NEC groups
0, 00, 3. By [5], 00 has signature

(hI �I [2, pC1�2q
: : : , 2]I {(�), qC1��h

: : : , (�)}),
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for someh in range 0� h � q=2 or 1� h � q respectively, where� D 2 or 1 if the
sign isC or �, or elseh D qC 1 for � D 1 and p odd.

Now Y D X=' D H=00 is a Klein surface of algebraic genusq, orientable or not
according to the sign of00, having pC 1� 2q distinguished interior points. But since
p > q C 1, 00 is unique, by [9], and so in particular this set of interior points is in-
variant under the action of3=00.

Now if Y has nonempty boundary, then using Corollaries 3.11 or 5.2 weobtain
jAut(Y)j � 4(p � q) in the orientable and non-orientable cases. ThereforejAut(X)j D
2jAut(Y)j � 8(p� q).

If Y is unbordered then, by Oikawa theorem in the orientable case(observe that here
we allow also antianalytic automorphisms) and by Theorem 4.4 in the nonorientable one,
jAut(Y)j � 12(p� q) and sojAut(X)j D 2jAut(Y)j � 24(p� q).

In a similar way, using characterization of cyclicq-trigonality from [8], we
can prove

Theorem 5.6. Let X be a non-orientable cyclic q-trigonal Riemann surfaceof
algebraic genus p� q C 1, where q� 2, and let ' be automorphism of cyclic q-
trigonality. Then

jAut(X)j �

�

6(p� q) if X=' has nonempty boundary,
18(p� q) otherwise.

Proof. Let, as before,X D H=0, G D 3=0 and h'i D 0

0

=0 for some NEC
groups0, 00, 3. By [8], 00 has signature

(hI �I [3, (pC2�3q)=2
: : : , 3]I {(�), qC1��h

: : : , (�)}),

where� D 2 or 1 according to if the sign isC or �, h is an integer in range 0� h �
(qC1)=� and X=' is unbordered only for�D 1 andhD qC1. Now Y D X=' DH=00

is a Klein surface of algebraic genusq having (p C 2 � 3q)=2 distinguished interior
points. But, sincep � q C 1, 00 is unique, by [9] and so in particular this set is
invariant under the action of3=00.

If Y has nonempty boundary then, using Corollaries 3.11 or 5.2, we obtain
jAut�(Y)j � 2(p� q) in the orientable and non-orientable case respectively and there-
fore jAut�(X)j D 3jAut�(Y)j � 6(p � q), while if Y is unbordered, then it is a non-
orientable Riemann surface of topological genusq C 1. So jAut(Y)j � 6(p � q), by
Theorem 4.4 and thereforejAut�(X)j D 3jAut(Y)j � 18(p� q).

ACKNOWLEDGEMENTS. The authors are very grateful to an anonymous referee
for pointing out some gaps in the submitted version, for his or her accurate and valuable
comments, suggestions and in particular for remarking thatour construction of infinitely
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many normal subgroup in a given Fuchsian group through the use of Poincare lemma
and Fenchel “conjecture” can be recognized as a corollary ofthe Selberg lemma.
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