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Abstract

We determine the group of conformal automorphisms of thedsgll metrics on
n#CP? due to LeBrun forn > 3, and Poon fom = 2. These metrics arise from
an ansatz involving a circle bundle over hyperbolic threaes 74° minus a finite
number of points, called monopole points. We show thatrfer 3, any conformal
automorphism is a lift of an isometry dgf® which preserves the set of monopole
points. Furthermore, we prove that for= 2, such lifts form a subgroup of index 2
in the full automorphism group, which we show to be a semédtiproduct (U(1x
U(1)) x Dg4, where 0Oy is the dihedral group of order 8.
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1. Introduction

In [15] and [16], Yat-Sun Poon found examples of self-duatfoomal classes on
the connected sumE8P2#CP? and 3#CP? using techniques from algebraic geometry.
In [13], Claude LeBrun gave a more explicit construction ofil)dinvariant self-dual
conformal classes on#CP? for any n. Briefly, the idea is to choose distinct points
{P1, ..., pn} in hyperbolic 3-spacé{®, and consider a certain U(1)-bundl — Mo,
where Mo = H3\ {p1,..., pn}. A scalar-flat Kahler metric is written explicitly oXo in
terms of a connection 1-form, and extends to the metric cetignl X of Xp, which
is biholomorphic toC? blown up atn points along a line. This metric conformally
compactifies to give a self-dual conformal class %nr= n#CP2, which we denote by
[gug]- It turns out that any hyperbolic isometry which presertles set of monopole
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points lifts to a conformal automorphism ofi # CP2, [g.g]). The main result of this
paper is that the converse is also true for 3, and whenn = 2, such lifts form a
subgroup of index 2 in the full conformal group.

Theorem 1.1. Let n> 3, and [g.g] be any LeBrun self-dual conformal class on
X = n#CP2. A mapd: X — X is a conformal automorphism if and only if it is the
lift of an isometry of#{3 which preserves the set of monopole points.

For n = 2, there is a conformal involutiom: X — X with the following property.
For any conformal automorphismb: X — X, exactly one of® or ® o A is the lift of
an isometry of#{3 which preserves the set of the two monopole points.

REMARK 1.2. The involutionA arises as follows. Fon = 2, there are exactly
two semi-free conformalSt-actions, which yield a double fibration of an open subset
of X over %3\ {two pointy. The mapA interchanges the fibers of these two fibra-
tions. Moreover, since\ does not commute with either semi-fr&-action, one ob-
tains anS*-family of involutions with the same properties @s by conjugating with
either of the semi-freeSt-actions. These facts will be proved in Section 6. To visu-
alize this map, we recall thafP? # CP? can be viewed as a boundary connect sum
of two Eguchi—Hanson ALE spaces (glued along the boun@#y-s). The involution
A interchanges the Eguchi—Hanson spaces, and has an invRitdn(with fixed point
set anS?). The existence of such an automorphism is not difficult friv@ topological
perspective, but finding one that é®nformalis highly nontrivial.

We will let Aut(g) denote the conformal automorphism group, andpofg)tdenote
the identity component. Theorem 1.1 implies the following.

Theorem 1.3. Let[g.g] be any LeBrun self-dual conformal class #n= n#CP?2
and n> 2. All conformal automorphisms are orientation preserving.
If the monopole points do not lie on any common geogldisen

(1.1) Aut(gie) = U(1)xT, Aute(gs) = U(1),

whereT is a finite subgroup oD(3).
If the monopole points all lie on a common hyperbolic gearjebien

1.2) Auto(gie) = U(1) x U(1).

In this case for n > 3 the full conformal group is

(1.3) Aut(gis) = Auto(dis) X Zo,

unless the points are configured symmetrically about a nindp which case

(1.4) Aut(gLs) = Auto(gs) % (Z2 © Z2).
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In the case n= 2, (1.2) necessarily holdsand the full conformal group is
(1.5) Aut(gis) = Auto(gig) x Da,

where D, is the dihedral group of ordeB.

The symmetry condition in the case of (1.4) is, more pregjsilat there exists
an extra hyperbolic reflection preserving the set of morepaevhich fixes only a mid-
point on the common geodesic. We will give explicit generatior each of the finite
subgroups appearing in the semi-direct products (1.33)};(5ee Theorem 3.11.

We next give a brief outline of the paper. We review the cargion of LeBrun
metrics in Section 2, and we will detail the procedure fotifd hyperbolic isometries
to conformal automorphisms of the LeBrun metrics. In Sec8pwe present an explicit
form of the LeBrun metrics in the toric case when= 2, and discuss the extra involu-
tion. In Subsection 3.2, we give a summary of the results, givel a short discussion
of the fixed point set of involutions and invariant sets, amel action on cohomology.

The remainder of the paper will use twistor methods to prdw there are no
other conformal automorphisms. Section 4 will cover theecabn > 3, while Sec-
tion 5 will cover the case when = 2. The case oh > 3 is relatively easy, since in
this case a (rational) quotient map for t&-action on the twistor space corresponding
to the semi-free U(1)-action is induced bycampletelinear system, which implies that
any automorphism descends to the quotient spacenker?, this is not true, and for
this reason we instead use Poon’s model of the twistor spalcieh is a small reso-
lution of the intersection of two quadrics iBP°, see Section 5. In Subsection 5.1,
we show that the holomorphic automorphisms of the inteiseatf the two quadrics
which commute with the real structure consist of 16 tori. WibSection 5.2, we deter-
mine explicitly which small resolutions actually give theigtor space. Then in Sub-
section 5.3, we show that the conformal automorphism grdupoon’s metric consists
of 8 tori, by explicitly determining which automorphisms ang the 16 tori lift to the
small resolutions obtained in Subsection 5.2. Finally, nterpret these automorphisms
geometrically in Section 6, focusing on the involutidgnwhenn = 2.

We could have alternatively started the paper with the @eston twistor theory—
this completely determines the automorphism group usirg algebraic methods. How-
ever, one would like to understand the automorphisms geaarally, so we begin with
the metric definition. From this perspective, it is easievigualize the automorphisms
for n > 3, as they are lifts of hyperbolic isometries. However, tRistence of the extra
conformal involution forn = 2 is not at all obvious from the metric perspective (in fact
we first discovered it from the twistor viewpoint).

After acceptance of this paper, Fujiki [4] has determineel fhll conformal auto-
morphism group for arbitrary Joyce metrics amt CP? for any n.
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2. Hyperbolic monopole metrics

We briefly recall the construction of LeBrun’s self-dual kypolic monopole met-
rics from [13]. Consider the upper half-space model of higpkc space

(2.1) H:={(X,y,2) eR3 z> 0},

with the hyperbolic metricgys = z72(dx? + dy? + dZ%). Choosen distinct points
PL, ..., Pnin H3 and letP = pyU---U p,. Let I, denote the fundamental so-
lution for the hyperbolic Laplacian based pf with normalizationAT'p, = —276p,,

and letV =1+ ' T,. ThenxdV is a closed 2-form o3\ P, and (¥2r)[*dV]
is an integral class itH2(#3\ P, Z). Let w: Xo — H*\ P be the unique principal
U(1)-bundle determined by the the above integral class. Bgr@-Weil theory, there
is a connection formw € H(Xo, iR) with curvature formi(xdV). LeBrun’'s metric is
defined by

(2.2) os = 22(V - gz — Vo O o).

Note the minus sign appears, since by convention our coiemefdrm is imaginary
valued. We define a larger manifold by attaching pointsp; over eachp;, and by
attaching anR? at z = 0. The spaceX is non-compact, and has the topology of an
ALE space. Adding the point at infinity will result in a compawnanifold X.

REMARK 2.1. Choosing a different connection form will result in tb@me met-
ric, up to diffeomorphism, see the proof of Proposition 2edoky.

We summarize the main properties of,(g.g) in the following proposition.

Proposition 2.2 (LeBrun [13]). The metric gg extends to X as a smooth Riemann-
ian metric. The spacéX, g g) is asymptotically flat Kéhler scalar-flat with a single end
and is biholomorphic t&C? blown up n points on a line. By adding one poithiis metric
conformally compactifies to a self-dual conformal classtendompactificatiofiX, [g.s]),
which is diffeomorphic to # CP?2.

We next review some facts from bundle theory, which will thee applied to
LeBrun’s metrics.

2.1. Bundle methods. In this section U(1)}> Xq Z M will be a principal U(1)-
bundle over a connected oriented base manifdid The group U(1) acts ofXy from
the right, we will denote this action bR, for g € U(1). Recall that a connection
w € AY(Xp;iR) is a 1-form onXg with values in the Lie algebra of U(1). The con-
nection satisfies
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() w restricted to the fiberr—(2) is i - d9, the Maurer—Cartan form on U(1), and
(i) Rjw = w. Since the group is abelian, teurvature 2-form of the connection is
given by Q,, = dw € H?(Xo, iR), and this forms descends td.

DEFINITION 2.3. The connection® and «’ are said to begauge equivalentf
there exists a functiorf : M — R such thatw = o’ +1 - df.

REMARK 2.4. If Q, = Q, thend(w—«’) = 0. If HY(M;R) =0, thenw -’ =
i -df, sow and«’ are gauge equivalent.

DEFINITION 2.5. The connections® and «’ are said to bebundle equivalentf
there exists a fiber-preserving m@a Xo — Xg covering the identity map oM, that
is m o B = 7, and which commutes with the right action of U(1), satisfyiB*«»’ = w.

Proposition 2.6. If the connections» and «’ are gauge equivalent then they are
bundle equivalent. The converse holds it(M, R) = 0.

Proof. If the connections are gauge equivalent, thes o’ +i - df. Define a
bundle mapB: X, — Xo by Bv = v - €f (right action). Lettingw; denote a local
connection form on the base, we have

(2.3) B*o = B* (0| +i-df) = o, +iB*d0 = o} +i(d0 + df) = +i -df = w.

Conversely, ifB*w' = o, thenQ, = dw = dB*w’ = B*Q,. These are forms on the
base, andB covers the identity map, s, = ., which implies thatw and o’ are
gauge equivalent by Remark 2.4. []

Since Xg is a U(1)-bundle, it has a first Chern clasgXg) € H?(M; Z). From
the exponential sheaf sequendgl(M, £*) = H2(M; Z), so Xq is determined up to
smooth bundle equivalence ty(Xo). By Chern—Weil theory, the image @f(Xo) in
H?(M:iR) is cohomologous t®2,, for any connection» on Xo.

Proposition 2.7. Assume that H{M;Z) = 0, and that H(M; Z) has no tor-
sion. Letw be a connection on g and ¢: M — M an orientation preserving diffeo-
morphism satisfying*Q2,, = 2,. Then there exists an equivariant lift ¢fto ®: X; —

Xo satisfying®*w = w. If ¢: M — M is an orientation reversing diffeomorphism sat-
isfying ¢* 2, = —2,,, then there exists such a lift satisfyinr*w = —w. These lifts
are unique up to right action by a constant W(1). In both cases® is orienta-
tion preserving.

Proof. First assume that is orientation preserving. Consider the pull-back bun-
dle ¢* Xo. By naturality,

(2.4) C(¢” Xo) = ¢*C1(Xo) = ¢*[Q] = [Qu] = C2(X0).
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Consequently, there exists a bundle equivaleAce™ Xy, — Xp, which is an equivariant
map covering the identity map ol. Denote byr, the natural mapry: ¢* Xo — Xo.
This is summarized in the following diagram.

2

Xo - »* Xo Xo
(2.5) l l l,,
M—94 s mM—" M.

The pull-backe’ = (A™Y)*7jw is a connection oXo. Sincerr, o A~ coversg, we have
(2.6) Q, =dw = d((m2 0 A ) w) = (120 A)*Q, = ¢*Q = Q..

From Remark 2.4, it follows thab’ and w are gauge equivalent. By Proposition 2.6,
o' and w are bundle equivalent, so there exists a bundle BaX, — Xo satisfying
B*w' = w. The desired map is givem, o A~ o B. In the construction of the map

in the proof of Proposition 2.6 above, there is a freedom fdaee the functionf by

f 4 ¢ for any constant, and the uniqueness statement follows.

If ¢ is orientation reversing, then the pull-back bungieXq will satisfy c1(¢* Xo) =
—C1(Xp). In this case we need to add an additional map identifyirgkihndle with its
conjugate bundle using complex conjugation, which cowadp geometrically to mak-
ing a reflection in each fiber (such a choice is not canoni€Barly, this makes the lift
orientation preserving. ]

REMARK 2.8. These lifts can be computed explicitly once the tramsifunc-
tions of the bundle are known (with respect to some open fovkssume that the
bundle is trivialized over a simply connected open Getand thatU is a ¢-invariant
set. Tracing through the above proof, to find the lift, we mfidt find a function
f: U — R such that

(2.7) ' —w=i-df
and the lift is then right multiplication bg'f in each fiber (if¢ is orientation-reversing,
then we add a reflection in each fiber). The action in otherdinate systems is then

found using the transition functions.

Proposition 2.9. Let p be a fixed point op. If ¢ is orientation reversingthen
any lift ® of ¢ fixes exactly2 points over p.

Proof. From the above proof, any lift is a reflection in the ffibeger a fixed point.
A reflection always has exactly 2 fixed points. ]
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2.2. Lifts of hyperbolic isometries. We begin with a brief summary of the group
of hyperbolic isometries. This is the group of time-orighteorentz transformations
SO, (3, 1), which is clear from the hyperboloid model of hypeibapace. The iden-
tity component is isomorphic to PSL(Z,); an isomorphism can be seen explicitly as
follows. Using the quaternions, write hyperbolic upperfisgace as

(2.8) HP={x+yi+2zj|(XV 2)eR® z>0}.

Any orientation preserving hyperbolic isometpy H® — H* may be written as a quater-
nionic Mobius transformation

(2.9) P(w) = (aw + b)(cw + d) 1,

with (a, b, c,d) € C*, andad—bc = 1. For the non-identity component, any orientation
reversing hyperbolic isometrg: H® — H2 may be written

(2.10) ¢(w) = (a(~) + b)(c(~w) + d) %,

with (a, b, c,d) e C*, andad—bc = 1. For more details on this isomorphism, see [19,
Chapter 4].

Proposition 2.10. Let {py, ..., pn} C X3, and n> 2. Let G denote the group
of all hyperbolic isometries preserving this set of pointé.all points lie on a sin-
gle hyperbolic geodesig, then G= O(2) acting as rotations and reflections about
unless the points are configured symmetrically about a midpan which case G=
0(2)x0(2) = U(1)x(Z, d Z,) (more preciselythis symmetry condition is that there is
another reflection preserving the set of pojrasd G is generated b@(2) and this re-
flection). Finally, if the points do not lie on any common geodetiien G is conjugate
to finite subgroup ofO(3).

Proof. This can be proved by a direct computation using tlesetations (2.9)
and (2.10). The proof is finished by noting thany finite subgroup of SQ(3, 1) is
conjugate to a subgroup of O(3), see [19, Theorem 5.5.2]. []

The following proposition shows the lifts obtained in Prejtion 2.7 yield con-
formal automorphisms of LeBrun’s metrics.

Proposition 2.11. If ¢: H® — H* is a hyperbolic isometry preserving the set
of monopole pointsthen there exists a unique(1)-family of lifts ® as in Propos-
ition 2.7 which are orientation preserving conformal automorphisofigXo, 9.g). Fur-
thermore any such lift extends to a conformal automorphism of the emtification
(n#CP?, [gie]).
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Proof. If ¢ is a hyperbolic isometry, then

n
(2.11) Vod =1+ Toup).
j=1

Since ¢ fixes the set of monopole points, we hay&v = V. We chose the connec-
tion above so thaf2, = i(xdV). This implies thatp* 2, = @, if ¢ is orientation pre-
serving, andp*Q, = —Q,, if ¢ is orientation reversing. In either case, we may apply
Proposition 2.7 to find a lift ofp satisfying®*w = +w. By assumptiong*gys = gys,

so we have

@ gip = (z0 @)*((V 0 @) D gra — (V 0 @)1 0" (0 © w))
(2.12) o ®)\?
=(Zo D)XV gz —VIwoOw) = (%) OiB-

For the last statement, th®'-action of fiber rotation onX, clearly extends smoothly
to the compactification, sincX is obtained fromX, by adding fixed points over the
monopole points, and also adding the entire boundary{fwhich is also fixed by the
St-action. The argument in [13] for extending the metric confally to X generalizes

to show that® yields asmoothconformal diffeomorphism oX, we omit the details.
O

We emphasize that Proposition 2.7 only provides a lift of mgl& isometry. The
lifting of a group of isometries is more subtle. We define A(ps, ..., py) to
be the group of isometries @3 which preserve the set of monopole points, and let
Aut(gig; p1, - - -, Pn) denote the subgroup of conformal automorphisms which iftee |
of elements in Aut{>; py, ..., pn). Clearly, we have an exact sequence

(2.13) 1— U(1) — AUt(Qig; P, - - . » Pn) = AUt(H3; i, ..., pn) — 1,

where p is the obvious projection. A natural question is whethes théquencesplits
that is, does there exist a homomorphism

(2.14) w: Aut(H3; pa, ..., pn) = AUt(gig: P1, - - -, Pn)

such thatp o u = 1d?

In general, this sequence does not split (the automorphisupgwill in general be
a semi-direct product with U(1), not a direct product, seedrem 3.11 below). How-
ever, we next give a condition for the sequence to split whestricted to a subgroup
of G C Aut(H3; py, ..., pn).
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Proposition 2.12. Let the subgroup G consist of orientation preserving elémen
If the subgroup G has a fixed pointg3\{pi,...,pn}, then there is a splitting homo-
morphism

(2.15) w: G — Aut(dig; P1,---» Pn), popu =ldg.
Furthermore
(2.16) U(1)x G C Aut(gis; P1, - - -» Pn)-

Proof. Sincep is not one of the monopole points, then any elemenGofias a
unique lift which fixes the fiber ovep. This defines the splitting map. To see thau
is a homomorphism: give; € G and g, € G, we comparew(g:092) With w(91)1(92).
The former is, by definition, the lift of;0, in the unique lift which fixes the fiber
over p. The latter is also a lift ofg;g,, and fixes the fiber ovep, since bothu(g:)
and u(gp) fix this fiber. By uniqueness, they are the same.

Next, U(1) is the identity component, which is normal. Weirlahat ..(G) is also
normal. To see this, lek(g) € «(G), and ® € Aut(gig: p1, - - ., Pn). Then du(g)d—
fixes {p1, ..., pn} and fixes the fiber ovep, therefore must be of the form(h) for
some elemenh € G.

Finally, since both subgroups are normal, by an elementsgrem in group the-
ory, we have a direct product. []

REMARK 2.13. Consider the case when the points are not contained coma
mon geodesic. Then, as mentioned above in Proposition 2aG#3; py, ..., pn) IS
conjugate to a finite subgroup of O(3). Let us assume for saitplthat the symmetry
group G is conjugate to a subgroup of SO(3). The gro@peither fixes a geodesic,
or has a single fixed point. In the former case, there must benamonopole fixed
point, and Proposition 2.12 can be applied. In the lattee cédsthe fixed point is not
a monopole point, then again Proposition 2.12 can be appBed if the fixed point is
a monopole point, then the entire group might not lift. Instiease, it is possible that
the groupG appearing in (1.1) is a strictly smaller subgroup of A&( p1, ..., pn)
and which might not necessarily lift to a normal subgroupwieeer, we do not know
of any such example for which this happens.

Proposition 2.14. If all of the monopole points lie on a common geodesien
(2.17) U(1)x SO(2)= U(1) x U(1) < Aut(g.g)-

Proof. The subgroup SO(2) of rotations around a geodesihéxehtire geodesic.
Let p be any non-monopole point on the geodesic, and apply Priopos.12. []

In the next section we present a direct method of finding siitsh Via an explicit
connection form.
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3. An explicit global connection

We will call a conformal clasgoric if the automorphism group contains U(%)
U(2). In this section we give an explicit connection for theBrun ansatz in the toric
case. Here we consider the case of 2 monopole points. Let tr®pole points lie
on the z-axis, p1 = (0, 0,¢;), and p, = (0, 0,¢p), with ¢; < ¢c,. Choose cylindri-
cal coordinates

(3.1) H® ={(X, Y, 2) = (r cosbs, I sinbs, z), z> 0}.

Theorem 3.1. Let U = #3\ {z-axig, and write

(3:2) H2\ {1, P2} = U1 U U, U Us,
where

(3.3) U =UU{0,0,2, z< ¢} =U Uy,
(3.4) U,=UU{(0,0,2, ct <z<c}=UUly
(3.5) Us=UU{(0,0,2), z>¢c} =UUls.

Let f.: #2\ {pw, p2} — R denote the function

r24+z22—c2 1
(3.6) fo(r, 2) = tz _
2\/(c2+r124 222 —4c2z2 2

Then f= f, + f¢, satisfies
(3.7) d(fdédz) = xdV,

in U. That is the form if s is a local connection form in U. Define

(38) a)]_(X) = |(f + 2) dfs, x € Uy,
(39) a)z(X) = |(f + 1) dos, x € Uy,
(310) wg(X) =if df;, xe€Us.

Thesel-forms define a global connectidwith values inu(1) = iR) on the total space
Xo — M. That is there is a global connectiom on X,, such that over |, w has the
form w; +1i - df1, where6, is an angular coordinate on the fiber.

Proof. Recall we want the connection to have curvature féxyn= xdV, where
V =14Ty, +I'p,. The Green's function is given by
1 1 4c272 iz
3.11 r X,y,2)=—=+-|1———"— ,
( ) (0,0,C)( y ) 2 2|: (r2+22+C2)2]
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wherer? = x? + y?, see [12, Section 2]. An important point is thAtonly depends
uponz andr. A computation shows that in cylindrical coordinates

(3.12) xdV = (rE(—Vr dz+ Vzdr)) A dOs3,
sinced x dV = 0, this implies that
(3.13) ol(%(—vr dz+V, dr)) —0.

The first quadrant; = {(r,2), r > 0, z > 0} is contractible, so there exists a function
f = f(r, 2 such that

r
(3.14) df = - (-V dz-+ V).
We let
(3.15) . rEVZdr—rEVrdz=;c1dr +iodz

An explicit potential f satisfyingdf = « is

1 1
(3.16) f = (/ ra(tr, tz)dt)r + (/ Ko(tr, t2) dt)z+ const.
0 0

A computation, which we omit, shows that
(3.17) f=f, + fe,
is a solution wheref. is given by

r2+2z2—-¢? 1
2J/(@+r2y 22 —ac22 2

(3.18) fo(r, 2) =

and any other solution differs from this by a constant, sibicés connected. An im-
portant remark is that

(3.19) € +r?+ 72)? - 4c?Z% > 0,

and if (€% + r? 4+ z%)? — 4¢?z> = 0, then g—c)?> +r2 =0, so f. is well-defined on all
of #3\ {(0, 0,c)}. We then have otJ,

(3.20) d(fd6s) = df A dos = +dV.
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Along the z-axis, we have the following

-2 z<q(,
(3.21) f(0,2)=:{-1 cp<z<cy,
0 z>c.

Furthermore, {/dr) f(0,z) = 0. Consequentlyw; = (f + 2)d03 is a smooth 1-form in
Ui, wp = (f + 1)d6s is a smooth 1-form irJ,, andws = f df3 is a smooth 1-form
in Us. O

REMARK 3.2. Forn > 2, simply takef = f¢, +---+ fc,, andU; to be the union
of U with the corresponding interval on theaxis, with the connection form in each
chart adding the appropriate constant multipleds§. This explicit connection form
can be used to exhibit a direct proof that toric LeBrun metdee Joyce metrics, for
this we refer the reader to [7]. We remark that an expliciteptiil in the case = 2
was written down in [5] in pseudospherical coordinates, dnly in a single chart; our
method above yields global connection form.

We can use the above to write down explicit transition fuortdi for the bundle
XO — M.

Proposition 3.3. With respect to the coveringU,, _Uz, Ui}, the transition func-
tions of the bundle are given byg= 7%, and g3 = €%.

Proof. From above
(3.22) wy—wy =i(f +21)doz—i(f +2)do; = —i - dbs.
The formula for the change of connection is given by
(3.23) wp — w1 = Gyf dgp1,
which implies thatgy; = e7'%. Also,
(3.24) wp— w3 =1(f +1)dhs—if dbg =i -db3 = gpg A3,
which implies thatgys = €%. O
For the transition functions in the case> 2, we refer the reader to [7].
We name two points on the @undary%ﬁ: a1 = (0,0,0), andg, = (0,0,00). We
denote the union of the fibers over by £; (1 < < 3), which is a 2-sphere. We also

let X, denote the 2-sphere corresponding to the boundary of hgferfpace. Using
the above, we next show that tig-action on#2 given by rotation around the-axis
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has infinitely many lifts to conforma$t-actions on X, [g.s]). We recall that asemi-
free action is a non-trivial action of a grou@ on a connected spadd such that for
every x € M, the corresponding isotropy subgroup is either allGfr is trivial.

Proposition 3.4. Consider the Saction on#2 by oriented rotations around the
z-axis. Then for any integer, khere exists a lift to a conformallSaction on()A(, [os])
such that & lifts with following property the lifted action rotates the fibers oves by
e*? it rotates the fibers overilby é&+1¥ and rotates the fibers over by é®-1)¥,

Consequentlyfor k = 0, the lift fixes onlyX, U{q;,qp}, and this action is the only
only lift to a semi-free Baction. For k= 1, the fixed points areZ; U {p,, gz}, and
for k = —1, the lift fixes only=3 U {p;, q1}. For any other k the fixed set consists of

four points {py, p2, a1, Gz}.

Proof. Let¢ denote an oriented rotation about thexis, determined bg®%. As
in the above section, we know a lift @f, call it ®, exists, and is unique up to a right
multiplication by a constant. If we choose the li#t so that® fixes fiber over a point
on |,, then @ fixes all fibers over,. This follows because the connection form On
chosen in Theorem 3.1 is invariant under rotations arouedztaixis, see Remark 2.8.
From the transition functions given in Proposition 3@,rotates the fibers ovel;, by
€%, and the fibers ovels are rotated bye='%. Finally, it is clear that we can lift to an
St-action by specifying the action on the fibers over there is a lift for any integer
k so that the fibers of, are rotated bye*’. The semi-free claim is obvious, since for
k = 0, the lift only makes a single rotation on; and X3, while for k # 0, I; and
I3 are rotated multiple times. Again, the argument in [13] eateto show all of the
above actions yield smooth actions on the compactificakome omit the details. [J

We denote the lifted action fdt = 0 by K3. Since theKs-action clearly commutes
with the K;-action, this then gives an identification of the identitymgmnent of the
automorphism group withK; x K3, whereK; is the group of rotations in the fiber. It
will be shown below in Lemma 6.1, that for= 2, K; and K3 are the only semi-free
St-actions. We will also see in Section 6 that tkg-action yields another fibration of
an open subset oK over 42\ {two pointg.

While for simplicity of presentation we restricted the abaliscussion to the case
of 2 monopole points, it is clear that for the casenomonopole points all lying on a
common geodesic, the SO(2)-action of rotationsHA around the geodesic will have
a lift to an St-action for any integek. Since these actions commute with the fiber
rotation, there is a torus action as identity component. &l@m in contrast ton = 2,
for n > 3, none of these liftes'-actions are semi-free, see Lemma 6.1.

3.1. Extra involution for n = 2. Recall we have the boundary sphexg fixed
by Ki, and the spher&,, fixed by K3. We next find a conformal transformation which
interchanges these spheres, and also has the propertyithaaps toqg; = (0, 0, 0),



210 N. HONDA AND J. VIACLOVSKY

and p, maps tog, = (0, 0,00). This map will interchange the orbits of th¢; and
K3 actions.
Let r, z and ¢y, ¢, have the same meaning as in the beginning of Section 3. We
first define an automorphism: Q; — Q1, whereQy = {(r,2) | r > 0, z > 0} is the
first quadrant.

DEFINITION 3.5. Letw =r +iz, and define

) w2 + ¢? .
3.25 =iCy, | ——2 = (1, 2) + i, 2).
(3.25) p(w) 2\ 72 s oa(r, 2) + g2, 2)

We recall that the intervals;, j =1, 2, 3, were defined above as subsets of the
hyperbolic upper half-spacg/

(3.26) I, ={(0,0,2),z<c},
(3.27) I, ={(0,0,2),c < z< Cy},
(3.28) I3 =1{(0,0,2), z> c,}.

We also define

(3.29) l4={(r, 0,0),r > 0}.

In the following, we will view Q1 C H2 by settingfz = 0, that is
(3.30) Q1 ={(,0,2,r >0, z> 0},

and viewl; C 0Q for j =1, 2,3, 4. The map extends to the closure dp;, with
the following properties:

Proposition 3.6. The mapg interchanges 4 and 4, interchanges pand g =
(0,0,0),and interchanges pand ¢ = (0,0,00). Under the identification of Qwith up-
per half 2-space under the complex square— w?, the map is a hyperbolic isometry.

Proof. We identifyQ; with 72 using the complex square,
(3.31) {=x14ixo = (r +iz)? = s(w).

Under this map, the monopole poings map to (-c?, 0). Consider the Mébius trans-
formation defined by

éf + (c1)?

. 2
(3.32) L6) =~
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which is an orientation-reversing hyperbolic isometry?¢f. It has the property that
(3.33) L((—c2, 0)) = (0, 0), L(0, 0)= (—c?,0), and L(—c3, 0)) = (oo, 0).
Clearly, p(w) = s~ o L o s(w), which is (3.25). The first statement follows easily.]

REMARK 3.7. The mapL is the unique orientation-reversing hyperbolic involu-
tion satisfying (3.33).

The original coordinates ol x S are orderedr( 63, z, 61), but in the following
we will rearrange coordinates so that this domairQisx St x St.

DEFINITION 3.8. For any angle?, define the mapA(9): X — X by
(3.34) AW): ((r, 2), 63, 61) — (@(r, 2), 1 — O, O3 + ).

On first observation, it might appear that the mags) is not well-defined at
points on thez-axis corresponding the the intervals and |3, where the coordinate
03 is not defined. However, the map is in fact well-defined evégne:

Proposition 3.9. For any angle®?, the mapA(9) extends to a diffeomorphic in-
volution of X = 2#CP2. The extension interchange® and X4, and interchanges the
points p and g for j =1,2

Proof. We need only consider the case that 0, sinceA(?) = (e”,€”)-A(0)
(viewing this as theK; x Ksz-action). We note that initially\ (0) is defined with respect
to a trivialization of the bundle on the open dd4. To confirm that it well-defined
everywhere, we must use the transition functions from Fsitjpm 3.3. For example, in
Uy, the angles change bys(61) — (01,03). Taking into account the transition function
g21 = €%, in Uy the action is s, 61) — (1 — 63, 61). In the U; chart, the mapA (0)
therefore takes the form

(335) (,' Z, 93! 91) = (901(", Z), ‘Pz(r, Z)l 91 - 93; 91)
Rewriting the map in the coordinates, (y, z, 6,),
(336) (X! Y, Z, 91) g (‘Pl(ra Z) Sin(91 - 93)1 Qﬂl(ra Z) 003(91 - 03)1 §02(r1 Z)! 01)

For points withr = 0, the mapy is given by

2 _ 52
ci—z

(3.37) <p(o,z)=(o,c2 3 2),
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which is well-defined onl,. Therefore, for X, y) = (0, 0), (3.36) becomes
(3.38) (0,04, 61) = (0, 0,9(0, 2), 61),

which is indeed well-defined. A similar argument confirmsttig0) is well-defined
(and smooth) everywhere on 2&P2.

It is easy to see thak(0) interchange<, and X4, and interchanges the poings
andq; for j = 1, 2. Finally, it is clear that\(¢) is an involution. O

Theorem 3.10. For any angley, the mapA(9) is a conformal involution ofg.g].

Proof. It would be a formidable calculation to show diredthat this map is in-
deed conformal. In this paper, for space considerationstheesfore prefer to argue
indirectly using twistor theory, see Theorem 6.13 below. O

3.2. Summary. In this section, we summarize what we have obtained so far,
and we also make some remarks about the fixed point sets afugalifts.

Theorem 3.11. Consider(n#CP?, [g.g]) and n> 2. If the monopole points do
not lie on any common geodediso that n> 3), then

(3.39) U@)x T € Aut(gs),

whereT is a finite subgroup of(3).
Next assume that the monopole points all lie on a common geodésit Autg
denote the identity component Afit(g g). Then we have

(3.40) U(1)x U(1) = Auto(gLs)-

Let g3 be any reflection about a hemisphere on which all the monopoiets be-
long. Then there exists a lifb; of ¢3 which is also an involution. LeZ, = {Id, ®3}
denote the subgroup generated #y. Then the semi-direct product

(3.41) (U(1)x U(1)) x Z2 < Aut(dLs)-

In the case there is an additional reflection symmaefsy(which is always the case
for n = 2), consider also the compositiapy = ¢, o ¢3. Then in addition to &3, there
exist lifts ®; of ¢;, for j = 1,2 such that{ld, ®;, &, ®3} is a subgroup ofut which
is isomorphic toZ, & Z,, and

(3.42) (U(L)x U(L)) % (Z5 @ Z5) € Aut(gis)-
For n = 2 consider also the extra involutioA (0). Then

{Id, @1, Dz, @3, A(0), A(0)P1, A(0)D2, A(0)Ps}
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is a subgroup ofAut isomorphic toD,, the dihedral group with8 elementsand

(3.43) (U(1) x U(1)) % D4 S Aut(gye).

Proof. The inclusion (3.39) was discussed above in RemakR. 2The equality
(3.40) follows from Proposition 2.14, and the fact that tldentity component is a
manifold, and cannot be strictly greater than dimension #his case [17].

For (3.41), we letds be any lifting of ¢ from Proposition 2.11. Note thab? is
orientation preserving and covers the identity magSt Therefore, by the uniqueness
in Proposition 2.11, we must have thég = R(g) is right multiplication byg € U(1).
To find an involution, we then definé; to be &; o R(\/F). This is an involution
since any lift is equivariant. Thereforgd, @3} is indeed a subgroup of Auyg) iso-
morphic toZ,. Since the identity component is necessarily nhormal, tleeigigenerated
by the identity component and thig,-subgroup is a semi-direct product.

For (3.42), we letd3 be as in the previous paragraph. Next, the mpap= ¢, o
¢3 is an orientation preserving hyperbolic isometry which dix@ geodesic. Thus we
may apply Proposition 2.14, and lét; = u(¢1). Since¢; is an involution, from the
definition of u, it follows that ®, is also an involution. Then wdefine®, = ®; o ®3,
which is necessarily a lift of,. Clearly, {Id, ®1, ®,, &3} is a subgroup isomorphic to
Z, ® Z,, and for the same reason as in the previous paragraph, teeaged subgroup
is the semi-direct product.

Finally, the inclusion (3.43) will be proved in Section 6.esBroposition 6.9. []

REMARK 3.12. The finite subgroups of O(3) are given by the cyclic,edial,
tetrahedral, octahedral, and icosahedral groups. For gear® monopole points could
be arranged in a planar triangle, 4 points in a tetrahedrafigaration, 8 points in a
cubic configuration, etc. For a complete description of ¢hgsoups, see [19, Chap-
ter 7]. We do not go into further detail here since we are prilmaoncerned with the
toric case in this paper.

It is the purpose of Sections 4 and 5 below to show that theusmmhs (3.41)—
(3.43) are in fact equalities. We end this section with a sH@cussion on fixed point
sets of involutions, and the action on cohomology.

Theorem 3.13. For (n#CP?,[g.s]) and n> 2, assume that the monopole points
all lie on a common geodesic. 3 is a reflection about a hemisphere containing all
the monopole pointghen the lift®; of ¢3 given inTheorem 3.11has fixed point locus
Y3 = n #RP2, which is contained in an invariant #RP3. Furthermore &3 induces
minus the identity map on cohomology.

In the case there is an additional reflection symmetsy(which is always the case
for n = 2), consider also the compositiopy = ¢, o ¢3. Let T} denote the fixed locus
of ®;, where ®; are the lifts of¢; given inTheorem 3.11For n even YT, and Y, are
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both two-dimensional sphereand Y;N Y, = S'. For n odd Y1 = $? and Y, = RP?,
with Y1 N Y, = St. The mapsp; and ¢, induce the following map on cohomology

(3.44) ki, ko, - . ., kn) > (Kn, Knea, - - -, K1),

with respect to an orthonormal basis of?f#CP?;Z). Further for n even ®,, leaves
invariant an $. For n odd @, leaves invariant arRP3.

For n = 2, the fixed point set of the extra involutiak(0) is an £, which is con-
tained in an invariantRP3. Alsq A(0) induces the following map on cohomology

(3.45) ki, ko) = (=K, ki),

with respect to an orthonormal basis of2[ #CP?; Z).

Proof. We let¢s be a reflection in a hemisphere containing the monopole oint
Since ¢3 is orientation reversing, by Proposition 2.9, the Iz will fix exactly 2
points in each fiber over this hemisphere. 8 denote the fixed locus. Topologic-
ally, T3 is a double covering of a 2-disc branched over the boundagfecand over
n points. We compute

(3.46) x(T3) = 2x(D*) — x(SH—n=2-n.

It turns out thatY'; is non-orientable, so by the surface classificatife, = n#RP? (to
see non-orientability, we note that odd dimensions is cé#aze the Euler characteristic
is odd, and the even-dimensional case be viewed as a limithisg of the next higher
odd dimension). The invariant set is a circle bundle oves themisphere, branched
over n points and the boundary circle, sonsg#RPS.

When the points are in symmetric configuration, we ¢gtdenote the extra sym-
metry of inversion in a hemisphere. iif is even, there is no monopole point on this
hemisphere. Since, is orientation reversing, Proposition 2.9 implies that thed
point set of the lift®, is a double cover oD? branched only over the boundary cir-
cle, soT, = S. The invariant set is a circle bundle over the disc branchest the
boundary, so is a$®. Next, definep; = ¢0¢s. The fixed point set op, is a geodesic
y. From the proof of Theorem 3.11, our choice of the liftidg fixes a fiber over a
point of y, thus fixes every fiber over. Therefore, Y, is a circle bundle ovey, com-
pleted by adding two points on the boundary7f, so Y1 = S?. The intersection of
T: and Y, gives 2 points in each fiber over. Adding the 2 boundary points gives
that T1NYo = St

If nis odd, then there is a monopole point on this hemisphere mHPoopos-
ition 2.9, the fixed point set of the lift, is a double cover oD? branched over the
boundary circle, and a single point. We have

(3.47) x(Y2) = 2x(D?) — x(SH-1=1,
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which implies thatY, is RP2. The invariant set is a circle bundle ov&?® branched
over the boundary circle, and a single point, thus iSRE?.

As in the even case, defing = ¢, o ¢3. Again, the fixed point set of; is a
geodesicy. Therefore, T is contained in the restriction of the bundle to this geadlesi
(including the 2 boundary points of the geodesic). Sinceethis a single monopole
point on this geodesic, the restriction of the bundle is togically the wedgeS? v S°.
From the proof of Theorem 3.11, the lift; was chosen to fix a fiber over some point
on this geodesic. Since the fixed point set must be a smooim@ndional manifold,
Y1 must be one of thes&?-s, depending upon the particular choice of the &ift. The
intersection ofY; and Y, then is 2 points in each fiber over one half pf together
with the monopole point and a single boundary point, whicplies thatY;NY, = S'.

In the casen = 2, recall the hyperbolic isometrly defined in (3.32). It is easy to
verify that the fixed point set of is given by

(3.48) b + €9 + %5 = c5(c5 — ),

and is therefore a semicircle centered-atj,0) of radiusc;/c3 — ¢2. Sincez z° is

a conformal transformation, the fixed point setgis a semi-circle centered on tle
axis at (0cp), intersecting the positive-axis at two points, one of them on the interval
l;, and the other oriz. The fixed point set ofég, 61) — (01, 03) is obviously points of
the form @3,63). Thus the fixed point set ok (0) is a circle bundle over the semicircle
branched over the two endpoints, therefore isSn The invariant set consists of all
the torus fibers over the semicircle, which is easily seenegcabRP? (it is the St
bundle restricted to a sphere containing both monopoletg)oin

These involutions can be visualized as follows. In the aase2, it is well-known
that CP2 # CP? can also be viewed as a boundary connect sum of 2 Eguchi—Hanso
ALE space (glued along the boundaRjP>-s). The involutiond; reverses the two fac-
tors of the usual connect sum, and has an invar@n(it flips =; and 3), while the
involution A(0) interchanges the Eguchi—Hanson spaces, and has amimvaP® (it
flips £, and £4). For n even, then involutiond; reflects the connect sum through
the central neck of the connect sum, and has an invag&nfor n odd, then involu-
tion @, reflects the connect sum through a cen@@®? summand, and has an invariant
RP3. The action on cohomology follows easily from these desicns. []

REMARK 3.14. In the case of a single monopole point, the LeBrun comdib
class compactifies to the conformal class of the FubiniaBimeétric on CP2, which
is Einstein. By Obata’s theorem, any conformal automorphis an isometry, thus the
conformal automorphism group for= 1 is SU(3). Forn = 0, the LeBrun conformal
class compactifies to the conformal class of the round metri&*, thus the conformal
group is SQ(5, 1), the time-oriented Lorentz transformations. Fop 1, there are
no orientation reversing diffeomorphisms, this followsrfr the Hirzebruch signature
theorem since the signature is non-zero. Howe@rdoes admit orientation-reversing
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diffeomorphisms, which is reflected in the fact that §6, 1) has 2 components.

4. LeBrun’s twistor spaces

Let Aut(H3; py,..., pn) be the group of isometries ¢¢> which preserve the set of
monopole pointspy, ..., pn. In this section, we prove Theorem 1.1 in the case 3
by showing the following.

Proposition 4.1. Let [g.g] be a LeBrun self-dual conformal class on#rCP?
with monopole points ..., p, € H3. Suppose & 3. Then there is a homomorphism

(4.1) p: Aut(gig) — Aut(H3; p1, ..., pn)

such thatp(®) = ¢, where @ is any lift of ¢ obtained inProposition 2.11

Together with Proposition 2.11, Proposition 4.1 means thate exists an exact
sequence

(4.2) 1— U(1) — Aut(gis) = Aut(43; pu, . . ., pn) — 1.

Namely, forn > 3, the full conformal automorphism group gfg on n# CP? is an
extension of the group of hyperbolic isometries presentimg set of monopole points,
by U(1) (which comes from the bundle construction).

REMARK 4.2. In the previous sections, we used the upper half spackenud
hyperbolic space. However, in this and the following sewid<® will no longer refer
to any specific model of hyperbolic 3-space.

In the following we prove Proposition 4.1 by using twistorasps; for background
on twistor theory, see [1], [2]. LeZ be the twistor space ofg{g] in Proposition 4.1,
and Aut@Z) the group of holomorphic transformations af By the twistor correspond-
ence, there is a canonical injective homomorphism

(see, for example, [18, Proposition 2.1]). Using this, wgared Aut@.g) as a subgroup
of Aut(Z). Let F be the canonical square root efK; (the anticanonical line bundle).
Then the action of Autf g) on Z naturally lifts to the line bundld-. Hence we obtain
a homomorphism

(4.4) Aut@.g) — GL(H(Z, F)).

In general, this map will not be injective.
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4.1. Proof of Proposition 4.1. For this, we first recall the following result on
the structure of LeBrun twistor spaces.

Proposition 4.3. If n > 3, dimH%Z, F) = 4 holds. Furtherif ¥: Z — CP?
denotes the rational map induced by the linear systém we have the following.
() The base locus dfF | consists of two smooth rational curves &nd C, which are
mapped to the boundary sphedé{®> C n#CP? by the twistor fibration Z— n#CP?2.
(i) The image¥(Z) is a non-singular quadratic surfac€P?! x CP:.
(iiiy If Z/ — Z denotes the blow-up of Z at;@ C;, the composition Z— Z —
CP! x CP! is holomorphic. Furthgrthe discriminant locus consists of n smooth ra-
tional curves(Cy,...,Cn of bidegree(1,1), which canonically correspond to the monopole

points a, ..., Pn.
Proof. We first take any smooth memb®e |F| and consider an exact sequence
(4.5) 0—- 0z > F— Kgl -0

and useH(0Oz) = 0 to conclude that dinf(F) = 1 + dim H(Kg?!) and B$F| =
Bs|Kg!|. SinceS is obtained fromCP* x CP* by blowing-up n points lying on a
curve of bidegree (1,0) and alsopoints lying on another curve of the same bidegree,
we readily obtain dimH?(Kg!) = 3. We also obtain that BKg'| is exactly the strict
transform of the last two curves, for which we wria andC,. (Note that to conclude
these, we have used the assumptior 3.) As C* acts onS fixing any points on
C, U C; and the twistor fibrationz — n # CP? is U(1)-equivariant, the image of;
under the twistor fibration must be the unique 2-sphere fixgdhe U(1)-action on
n#CP2. Thus we obtain (i). For (i), there are two distinguishechgits of degree-
one divisors, which form a conjugate pair. These two perggiserate a 3-dimensional
system in|F|. As dimF| = 3, this meangF| is in fact generated by the two pencils.
This implies thatw(Z) is a smooth quadric. For the first part of (iii), it suffices to
notice that the union of the base locus of the above 2 pergilsidgree-one divisors)
are exactlyC, U C,, and they are eliminated after blowing-@ U C1. See [13, §7],
[16, 83] and [10, 83] for details. []

REMARK 4.4. The proposition is true for arbitrarm > 0 if we consider
HO(Z, F)U® (the subspace consisting of all U(1)-invariant sectionsygad ofH%(Z, F),
where U(1) is the subgroup of fiber rotations of AmH) coming from the bundle

construction.

Lemma 4.5. LetWw: Z — CP? and(y,...,Cn be as inProposition 4.3 Then the
following are all degree-one divisors on: Z
(i) the inverse images of curves @P! x CP' whose bidegree arél, 0) or (0, 1),
(i) the inverse image¥~(C;), 1<j <n.
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Proof. If D is a degree-one divisor, theD+D € |F| holds by a Chern-class con-
sideration (see [16]). Hence, since the rational rdajs associated toF|, any degree-
one divisor is an irreducible component of a reducible divisf the form w—1(H),
where H is a hyperplane irCP3. If the divisor wW—1(H) is reducible, then one of the
following must clearly hold:H N (CP* x CPY) is reducible, orH N (CP! x CPY) is
irreducible butw~1(H) is reducible. The former and latter correspond to the cé$es
and (ii) in the lemma respectively. ]

Lemma 4.6. Suppose r» 3. Then we have the following.
() Any ® € Aut(g.g) leaves the boundary sphefg{® (regarded as a subset of #
CP?) invariant.
(i) Any @ € Aut(g.g) leaves the set of isolated fixed points invariant.

Proof. As before, we regar@® as an automorphism oZ. For (i), by Propos-
ition 4.3 (i) it suffices to show{®(C,), ®(C1)} = {Cy, C1}. But sinceC, U C, are
the base locus of the systefR| as in Proposition 4.3 (i), this is automatic. For (ii),
let Ly, ..., L, be the twistor lines over the isolated fixed points of the kHdfion.
Then we havel'(L;) = C; and ¥~%(Cj) = Dj + D;, whereD; and D; are degree one
divisors intersecting transversally alorig ([16, Proposition 3.6], [13, §7]). Further,
we have

(4.6) {®(Dj), ®(Dj)|1<j<n}={D;,Dj|1<]j<n}

since theC;-s are discriminant curves of the morphisi — CP?! x CP? by Propos-
ition 4.3. Since® commutes with the real structure, this means gL ;) | 1 < j <
n} ={L; |1=<j < n}, which implies (ii) of the lemma. [l

REMARK 4.7. The lemma says that if > 3, any ® € Aut(g.g) preserves the
open subseXy (on which U(1) acts freely). Obviously this does not holdnif= 0
or 1. Namely, the general automorphism of the standard esetn S* or CP? does
not preserve the boundary sphet®®. We will show in the next subsection that the
lemma also fails to hold when = 2.

By Proposition 4.3, whem > 3 we obtain a homomorphism
4.7 Aut(@ g) — Aut(CP! x CPY).

Further, by LeBrun’s construction [13], the image quadtie® x CP? can be regarded
as a quotient space of the twistor space b¢aaction, where the last action is the
complexification of the semi-free U(1)-action ah More intrinsically, CP* x CP*! can
be interpreted as the minitwistor space (in the sense ofhhiitf6]) of the hyperbolic
spaceH®. This in particular means tha{® can be canonically identified with the space
of minitwistor lines inCP! x CP. Such lines are explicitly given as real irreducible
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curves of bidegree (1, 1) which are disjoint frol@K* x CP')? (the real locus on
CP! x CPY). Furthermore, as a consequence of

(4.8) w(cPtxcP) = | J Ly,
XeIH3

where L, denotes the twistor line over a poirte n#CP?, there is a natural identifi-
cation CP*! x CPY)” ~ 3H3. By Lemma 4.6, we have(3#3) = dH3 (on n#CP?).
From this it follows that the automorphism @P! x CP! coming from any® e
Aut(gig) (via (4.7)) maps real (1, 1)-curves disjoint fro@¥* x CPY)° to real (1, 1)-
curves disjoint from CP! x CP)’. Hence it maps minitwistor lines to minitwistor
lines. This way, we obtain a homomorphism

(4.9) p: Aut(gig) — Aut(H3).

Moreover, since the action of Aujg) on CP! x CP? preserve<, ..., C, (as they
are discriminant curves), the image of (4.9) is contained\im(#3; py, ..., pn).

To finish the proof of Proposition 4.1, it remains to show tifatb € Aut(g.g)
is one of the lifts (obtained in Proposition 2.11) of somes Aut(H3; ps, ..., Pn),
then p(®) = ¢ holds. Take any poinp € H3\ {p1, ..., pn}, and putq = ¢(p). Let
p € Xo be any point belonging to the fiber overand letd = ®(P). Let Ly and Lg
be the twistor lines ovep and{, respectively. Lettingb also denote the induced auto-
morphism onCP* x CP?, we have®(¥ (L)) = ¥(L4) by construction. By the result
of Jones—Tod [9] on the relation between Penrose corregpaoed(between self-dual
4-manifolds and 3-dimensional twistor spaces) and Hitatonrespondence (between
Einstein-Weyl 3-manifolds and minitwistor spaces), thénisoon %2 which corres-
pond to the minitwistor linesl(L 5) and W(L4) are exactlyp andq respectively. This
implies (o(®))(p) = g, as required. This completes the proof of Proposition 4.1.

5. Poon’s projective model

In this section, we determine the group of all conformal istnes of Poon’s met-
rics on 2 #CP2. Although Poon’s metrics can be constructed by LeBrun’senplic
ansatz, it turns out that, in contrast to the case 3, not all conformal isometries
come from isometries of3. More precisely, we show that such lifts form a subgroup
of index 2 in the full conformal isometry group.

5.1. Automorphism group of Poon’s projective models. In order to analyze
the automorphism group in the case of @®?, instead of LeBrun’s projective model,
it is more convenient to use Poon’s projective model of thesttw spaces (these are
of course equivalent, see [13, Section 7]). In this subsecive investigate the holo-
morphic automorphism group of the projective models. Weirbegth recalling the
following result due to Poon [15].
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Proposition 5.1 ([15]). Let g be a self-dual metric o8#CP? of positive scalar
curvature and Z the twistor space of g. Then
(i) the linear systen|F| is base point free5-dimensionagl and its associated mor-
phismw: Z — CP® is bimeromorphic to its image.
(i) The imageZ := W(Z) is an intersection of the two hyperquadrics GP°> de-
fined by
(5.1)

3
Qo = {wow1 + Zg + Z% 4+ waws =0}, Qo = {Zwowl + )»Zg + EZ% + wawg = 0}

where (wo, w1, Z2, Z3, wa, ws) iS @ homogeneous coordinate @P° and A is a real
number satisfyind/2 < 1 < 2.
(iii) The singular locus of consists of4 points

P :=(1,0,0,0,0,0), P;:=(0,1,0,0,0,0),

(5.2) _
P;:=(0,0,0,0,1,0), P;:=(0,0,0,0,0,1),

and all these are ordinary nodes.
(iv) The morphism¥: Z — Z is a small resolution of thesé nodes.
(v) The real structure orCP® induced by that on Z is given by

(5.3) (wo, w1, 22, Z3, wa, ws) = (W1, Wo, 2, —Z3, —Ws, —Wa).

The identity component of the conformal transformationugrof Poon’s conformal
class is U(1x U(1). Correspondingly, the identity component of holonfaecptransform-
ation group of Poon'’s twistor space@" x C*. In the above coordinates, this action is
explicitly given by

(54) (wO! wi, 221 231 W4y, w5) = (SU)O, S_lwl: 221 231 tU)4, t_le)y (Sa t) S C* X C*y

which preserves the quadri€®,, and Qg. The map (5.4) commutes with the real struc-
ture (5.3) if and only if|s| = |t| = 1.

In the following we putK = U(1) x U(1), andG = C* x C* for simplicity. The
K-action on 2 #CP? has exactly 4 fixed points. Correspondingly, there are 1Gur
invariant twistor lines inZ.

DEFINITION 5.2. Define the two real numbess:= /4 — 21 and g := +/21 — 2.

We remark that since /2 < A < 2, we have the inequalities @ « < 8. These
numbers will play an important role in the following.

Lemma 5.3. (i) Any ® € Aut(g) leaves the set of four K-fixed poinfsn 2 #
CP?) invariant.
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(i) The image undew of the twistor lines over thesé points are conics whose equa-
tions are respectively given by

(5.5) {azy —iz3 = wy = ws = wowy + (24 — 3)2% = 0},
(5.6) {azy +iz23 = ws = ws = wow1 + (21 — 3)2% = 0},
(5.7) Bz —iz3 = wo = w1 = (3— 21)Z5 + waws = 0},
(5.8) {BZo +iz3 = wo = w1 = (3— 21)Z5 + waws = 0.

Proof. For (i), consider the two linear projectiorfs: CP° — CP? (j = 1, 3)
defined by

(59) fl(wo, Wi, 22, Z3, Wy, w5) = (Zz, Z3, Wy, w5),

(5.10) fa(wo, w1, 22, Z3, w4, ws) = (wo, w1, 22, Z3).
By an elementary computation, we have
(5.11)  f1(2) = {«?2 + 22 + 2waws = 0}, f3(Z) = {2wow + B%Z3 + Z3 = 0}.

Intrinsically, the compositionf; o ¥: Z — CP® is the meromorphic map associated
to the linear system corresponding to the subspd€ez, F)®i, whereG; and G; are
C*-subgroups ofG defined by

(5.12) G; = {diagl, s, 1,1, 1, 1)e PGL(6,C) | s € C*}
and
(5.13) Gz = {diag(1, 1, 1, 1f, t™Y) € PGL(6,C) | t € C*}.

Sinceap # 0 by Poon’s constraint (2) < A < 2, (5.11) means that the imagéds(Z)
and f3(Z) are non-singular quadrics. Hence both are isomorphic toodust CP* x
CP!. (Both of these two rational maps frod to CP! x CP! exactly correspond to
the mapW¥: Z — CP! x CP? for LeBrun twistor spaces considered above fior 3).
Then by taking the pull-back of pencils oBiP* x CP! of bidegree (1, 0) and (0, 1),
we obtain 2 pencils orZ for each ofj = 1 and j = 3. Hence we obtain 4 pencils
on Z in total. Since ; o ¥)*O(1) ~ F and hyperplane sections of the quadrics are
bidegree (1, 1), members of the 4 pencils are degree ones #iecintersection number
of the divisor with twistor lines is one. On the other hand, [, Lemma 1.9], for
2 #CP? there are at most 4 degree one line bundlesZowhich have a non-trivial
section. Further, since did| < 1 for any degree 1 divisoD on any twistor space
on n#CP? by [16, Lemma 1.10 (2)], these 4 pencils have mutually differChern
classes. This implies that there are no pencils of degreeotimer than the above 4
ones. Obviously, thé-action preserves each of these pencils. Furthermore nitbea
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readily seen by (5.4), (5.9), (5.10), and (5.11) t@atcts non-trivially on the parameter
space CPY) of the pencils. Hence each pencil has precisely Gwnvariant members,
so that we have eighB-invariant degree one divisors in total. By (5.3), it is cl¢hat
the two G-invariant divisors in the same pencil form a conjugate.p& we may write
{Dj, Dj | 1 < j <4} for the set ofG-invariant degree one divisors.

We next compute the defining equations of the images of thedigigors in CP°
(under ¥) in the following way. First, by using (5.11), we can obtaiquations of
the four G-invariant curves of bidegrees (1, 0) or (0, 1). (For ins&anone of them
is given byaz, —izz3 = ws = 0.) Next, substituting the equations into (any one of)
(5.1), we obtain the equations of the imageeD;) and \D(Dj). (For the above curve,
the equations becomez, —izz = ws = wowy + (21 — 3)z§ = 0.) The last equations
imply that ®(D;) is a quadratic cone i€P* and that its vertex is exactly one of the
four singular points ofZ = W(Z). (For the above casP; is contained as the vertex.)
Recall thatw is the morphism which contracts the four rational curveg] #rat the
images of the curves are exactly the singular point¥ ofOn the other hand, by ([16,
Lemma 1.9]), any degree-one divisor is non-singular. Tieeeethe morphism®; —
¥(Dj) and Dj — ¥(D;) factor through the minimal resolution of the quadratic €an
Then again by ([16, Lemma 1.10]R; and Dj are obtained front, = P(O & O(2))
(the minimal resolution of the cone) by blowing-up one point

In a similar fashion, we can compute the defining equations¥¢D) for a
non-G-invariant degree-one divisdD. (For instance, one of them is given by

(5.14)  wg—c(azz —iz3) = azy + 123 + 2Cws = 2wowy + (2A — 2)z5 + 25 = 0,

wherec € C*.) From these (and also by the constraiff2 3 A < 2), we obtain that
w(D) is biholomorphic to a non-singular quadric @P3; namely CP* x CP!. Then
again by [16, Lemmas 1.9 and 1.10] we obtain that the diviSors obtained from
CP* x CP! by blowing-up one point. Since the one point blow-up %f and that of
CP*x CP* cannot be biholomorphic, we conclude that Benvariant divisorsDj, D
and non&-invariant divisorsD cannot be biholomorphic.

For a given® e Aut(g), if we use the same letter to denote the induced auto-
morphism ofZ, ® clearly preserves the set of 4 pencils (as @y Aut(Z) preserves
the degree of divisors). Further, by the above distinctibicamplex structure between
G-invariant and norG-invariant members, the set @-invariant members (which are
explicitly given by {D;, Dj | 1 < | <4}) are preserved undeb. As @ preserves the
real structure, this means thdt preserves the s€tD; N Dj | 1< ] <4}. Since these
are exactly the set oB-invariant twistor lines, this implies the claim (i) of therhma.

For (i) we notice that eactd; + D; is contracted to a reducible curve of bidegree
(1, 1) under precisely one of the two rational mafags ¥ and f3 o W. Therefore each
twistor line L; = D; N Dj is mapped to a real-fixed point on (one of) the image
quadrics. On the quadri€,(Z) ~ CP*xCP?, there are exactly two re&-fixed points,
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and they are explicitly given by
{azp —iz3=ws = ws =0}, and {azy+iz3 = ws = ws = 0}.
Similarly, on the quadricf;(Z), real G-fixed points are explicitly given by
{Bzo—izz=wog=w; =0}, and {Bz +izz3 = wg= wy = 0}.

Computing the inverse images of these 4 points unfieand f; (hamely substitut-
ing these into the equations (5.1)), we obtain the desiredht@mns for the images of
G-invariant twistor lines. O

The homomorphism (4.4) and the coordinatesy, (w1, 2o, Z3, w4, ws) give a
homomorphism

(5.15) Aut(g) — GL(6, C).

We shall obtain the image of (5.15) explicitly. Take ady < Aut(g) and letU e
GL(6,C) be its image. Then as in the caserof 3, U preserves the varieti. Hence

U preserves the singular sg;, P, Py, Ps}. Taking the real structure into account, the
following two possibilities can occur:

() {U(P), U(Py)} = (Py, P} and {U(Ps), U(Ps)} = {Ps, Ps),

(1) {U(Py), U(P1)} = {Ps, Ps} and {U(Ps), U(P3)} = {Py, P1}.

For case (l), using the fact that commutes with the real structure (5.3), it is easy to
deduce that) is of the form

A Ap O
(5.16) O A, O |,
O A Ass

where App, Az; and Ag; are 2x 2 matrices with defy, # 0 and

a o0 0 a b 0 0 b
®.17 A”_(o a) (a o)’ A33_(o 6) or (5 o)'
wherea, b € C*. Similarly, for case (Il),U is of the form
O A A
(5.18) O Ap O |,
Az; Az O

where Apz, Az, and Agp are 2x 2 matrices with def\y, # 0 and

(5.19) Als=(g1 _Oa) or (_Oa g)' A31=(g —OB) o (—05 g)
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wherea, b € C*.
Using Lemma 5.3, we can deduce another restriction for the & matrix U
as follows.

Lemma 5.4. (i) In the presentation$5.16) and (5.18), A;» = Az, = O holds.
(i) If U belongs to the casé), the matrix A, must be of the form

10 1 0 .
(5.20) Agg—C(o 1) or C(O _1), ceR™.

(i) If U belongs to the casél), we have

(5.21) A22=c(023 é‘) or 0(023 _01) ceiR".

Proof. First, we note that by Lemma 5.8, has to leave the set of 4 conics
(5.5)—(5.8) invariant. In the case (I), namely {i) (P), U(P1)} = {Pi, P1}, the set
of the two conics{(5.5), (5.6} must be preserved undel, since (5.5) and (5.6) con-
tain P, and P;, and (5.7) and (5.8) do not. Similarly, the 5¢6.7), (5.8} must also
be preserved unddy.

A generic point on the conics (5.5) and (5.6) is of the formy,(wq, 1, Fiw, 0, 0).
Since

wo
w *
A1 Ap O 11 1
(5.22) O A, O = A22( : ) ,
Fia Fia
O Ap A
0 A 1
0 32 Fia

and these points still belong to (5.5) or (5.6), we obtain

o )-~(2)-(2)

Sinceax = v/4— 2 # 0, we obtainAs, = 0. Similarly, considering the analogous re-
quirement for (5.7) and (5.8), we obtaiy, = 0.

Thus we have obtained the claim (i) for the case (l). For theeddl), namely if
{U(PL), U(P,)} = {Ps, P3}, the sets of the two conicg5.5), (5.6) and {(5.7), (5.8)
must be interchanged undér. From this we can again dedud®, = A3, = O by
similar computations. Hence we obtain (i).
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Next we show (ii). Suppose&) belongs to the case (I). Then since the right hand
side of (5.22) belongs to the conics (5.5) or (5.6), as paim<L P! we have either

(5.23) AZZ( .i) - (—ila) and AZZ( S ) B (.i)

or

s w(2)=(2) ma( 1) (1)

according to whethelJ interchanges (5.5) and (5.6) or not. Similarly, by using the
computations to deducé;, = 0, either

(5.25) %4é)=(jﬁ)am M{_&):(&)

or

am w(3)(3) = () ()

according to whethelJ interchanges (5.7) and (5.8) or not. We note that as points
on CP?!

(5.27) Ljiw), (1, —ix), (1,iB), (1,—iB)

are four distinct points. Thus (5.23)—(5.26) mean that iy ease the projective trans-
formation determined by the matrii,, leaves the set of the 4 points (5.27) invariant.
If (5.24) and (5.26) happen, thehy; fixes all 4 points. This meand,, = cl, for some
ce C*. If (5.23) and (5.25) happen, thef,, interchanges (li«) and (1,—i«) and
also (1,iB) and (1,—iB). This meansAy, = cdiag(1,—1). A simple computation also
shows that there exists no projective transformation zemgi the remaining two cases.
Moreover, sinceU commutes with the real structure (5.3), we readily obtaia R.
Thus we obtain the claim (i) in case (I).

If U belongs to the case (ll), by similar computation as above,deguce that,
as a projective transformatioy, maps (1j«) to either (1,i8) or (1,—ipB) (so that
(1, —ix) is mapped to (1+-ipB) or (1,ipB) respectively). FurtherA,; maps (1j8) to
either (1j«) or (1,—i«) (so that (1-iB) is mapped to (i) or (1,ix) respectively).
Among these 22 = 4 possibilities, only the two cases

Moo (Lia) > (1,iB) and (Lig) — (1,ia),

and
Axx: (1,i) —(1,—iB) and (LipB)+— (1, —i«a)
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can actually occur, and for each these ca8gsis represented by the matrices

0 1 0o -1
(5.28) Azz_c(aﬂ 0) and C(aﬂ 0 )
respectively for some € C*. Finally, again by commutativity with (5.3) we obtain
c € iR. This completes the proof of claim (iii). ]

The next lemma determines all automorphisms of the prejeatiodel Z which
commute with the real structure.

Lemma 5.5. (i) LetU be a6x6 matrix in Case (l)of the form(5.16),where A;
and Az are as in(5.17)and A, = Az, = O and Ay is as in(5.20) by Lemma 5.4
Then after normalizing by a scalar multiplication to make=cl, U preserves the pro-
jective modelZ if and only if the entries ir{5.17) satisfy|a| = |b| = 1.

(i) Let U be the6 x 6 matrix in Case (Il)of the form(5.18), where Az and As; are
as in(5.19)and A, = Az, = O and A, is as in(5.21) by Lemma 5.4 Then after
normalizing by a scalar multiplication to make=¢1, U preserves the projective model
Z if and only if the entries in(5.19) satisfy

(5.29) laj =g, b=« (and c=1).

Proof. We only show (ii) since (i) can be proved by a similandaimpler) com-
putation. We recall tha? is defined by the following 2 quadratic polynomials:

3
(5.30) ho = 2wow1 + )»Z% + EZ% + waws,
(531) heo = wowy + Zg + Z% + Waws.

We also recalke? = 4—21, 2 = 2.—2. Let the constantsa(b,c) be arbitrary satisfying
c € iR. Then by substitution, we obtain

3
(5.32) Uho = —2|al?waws + c?123 + Eczoﬁl,szzg — |blPwown,
(5.33) Uhy = —|alPwaws + ¢*Z3 + c?a®B225 — |b|?wow;.

By multiplying a real constant t&J, we may supposéb| = 1. So we have constants
(a, b, ¢) with |b] = 1 determiningU in Case (Il). This gives,

3
(5.34) Uhg = —2|al?waws + 123 + Eczoﬂﬁzzg — wow,

(5.35) Uhy = —|al?wqws 4 ¢*23 + c?a® 225 — wow;.
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If U preservesZ, then preserves the quadratic ideh,(h.), SO there exist constants
c; andc; so that

1
(5.36) (e319) ho —cU hoo = ho — hoo = wowi + ()\. - l)Z% + EZ%
A computation gives
ciUhg — Uhe, = —(¢1 — Co)wowy + |al*(—2¢1 + Co)waws

(5.37) 3
+ A(ar — )7 + (Ecl — cz) ca’p?z.

Comparing with (5.36), we see thet—c; = 1 and|a|?(—2c; + ¢,) = 0. Since|a| # 0,
we obtain
(538) c=1, c =2
Then we have
1
(5.39) Uho — 2Uh,, = wowy + ¢®(A — 2)Z5 — Eczazﬂzzg.

Comparing coefficients with (5.36), we have

(5.40) Ah—2)= %

(5.41) —%Czazﬂz =(-1).

By (5.40) we obtainc® = —a~2. Further, if this is satisfied, (5.41) automatically holds.
So we find thathg —h,, € (Uhg, Uhy) holds if and only if after a rescaling the entries
of U satisfyc =i and|b| = «.

Next, by rescaling, we assuma| = 1. We compute that

3
(5.42) Uho = —2wgws + c125 + Eczoﬂ,szzg — |blPwow:
(5.43) Uhy = —waws + szg + Czazﬂzzg — |b]Pwows.

Consider the element

1
(5.44) ho —2hy = (A — 2)2% — EZ% — WaWs.

We next findc; andc, so that

1
(5.45) ciUhg — cUhy, = (A —2)75 — Ezg — waws.
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We compute

ciUhg —coUh, = (—2C1 + Cz)w4w5 + C2(C1)\. — Cg)Zg

(5.46) 3

+ (ECl — Cz) Czazﬂzzg — |b|2(C]_ — Cz)wou)]_.
We find that
(5.47) Ibj2(c1 —¢) =0, —2c1+ ¢ =—1,

which implies thatc; = ¢, = 1. We then have

1 1
(5.48) i =01-2, -1 = -5

2
The latter equation implies?> = —g~2, which implies the former equation. So we find
that hg — 2h,, € (Uhg, Uhy) holds if and only if after a rescaling the entries Of
satisfyc =1 and |a| = 8.

On the other hand, a${, h.) = (ho —hs, ho —2hy), and g, ho) = (Uhg,Uhy)
holds if and only ifhg € (Uhg, Uhy) and h,, € (Uhg, Uhy). Hence by a combination
of the above two, we conclude thalt preservesZ if and only if U can be rescaled to
satisfyc =1, |a| = 8 and |b| = «. ]

According to Lemma 5.5, in Case (), each Af;, Az, and Agz has 2 types of
choices, with|a] = |b| = 1. Hence the automorphisms in (i) of Lemma 5.5 constitute
2% = 8 tori. Similarly by Lemma 5.5 (ii), the same is true for Ca$g, (so that we
again obtain 8 tori. Thus we obtain 16 tori in the holomorphitomorphism group of
Z. All automorphisms in these 16 tori commute with the realicttire.

5.2. Determination of small resolutions. As in Proposition 5.1, the projective
model Z of Poon’s twistor spaces on Z#P? has precisely 4 ordinary nodd, P, P;
and P;. The actual twistor spacg is obtained fromZ by taking small resolutions for
each node. Of course, there are exactly 2 ways of small resodufor each node.
(We refer the reader to [11, Section 12] for a discussion ef $mall resolutions of
ordinary nodes of threefolds.) Since the resolution mussgive the real structure, the
small resolutions ofP; and P; uniquely determine those d?; and P; respectively, so
there are exactly 4 ways to obtain small resolutions of thieetyaZ which preserve the
real structure. In this subsection we explicitly determimeich small resolutions yield
the twistor space. This gives a completely explicit corgtom of the twistor spaces
of Poon’s metrics on 2 €P?, starting from his projective models iGP°.

For the purpose of specifying the small resolutions of adinnodes ofZ, we
first investigate local structure &f in neighborhoods of the singularities. First we take
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P, =(1,0,0,0,0,0) and®; = (0, 1, 0, 0, 0, 0). If we define two hyperplanes @P°
by H, = {az, —iz3 =0} and H_, = {az, + iz3 = 0}, then by (5.5) and (5.6) the two
irreducible components of the two reducible hyperplandises Z N H, and Z N H_,
contain P; and P; as smooth points. Namely, the 4 surfaces

(5.49) D} := {0z — 23 = wg = wow; + (21 — 3)z5 = 0},
(5.50) D} := {0z, —iz3 = ws = wows + (21 — 3)z5 = 0},
(5.51) D, := {0z + 123 = wg = wows + (21 — 3)z3 = 0},
(5.52) D := {az; +iz3 = ws = wowy + (24 — 3)z5 = 0},

all of which are cones over a smooth conic, sh®eand P, as smooth points. Note
that D} = o(D}) and D}, = o(D%) hold, and that all of these 4 surfaces &envariant.
The configuration of these 4 surfaces and the ordinary naldtustrated in the dia-
gram on the left in Fig. 1. In a neighborhood Bf, by settingwo = 1 in the defin-
ing equations in (5.1) and eliminating;, we can think ofZ as defined inC* =
{(z2, Z3, w4, ws)} by the equation

(5.53) a?7z5 + 25+ 2waws = 0,

from which one can see tha&, is an ordinary node of. Similarly, by neglecting the
last common hyperquadric in (5.49)—(5.52), these 4 susfa@m be considered to be
defined in the sam&* (at least in a neighborhood d#,).

By the equations (5.53) and (5.49)—(5.52) (with the last mmm quadratic equa-
tion neglected), a small resolution &f at P; is clearly specified by which pair among
{D}, D5} or {D}, D5} is blown-up atP;. By exchanging the role ofuy and w; in the
above argument, we see that a small resolution at the cdejymznt P; can also be
specified by which pair ofDj, D} or {D}, D5} is blown-up atP;.

Similarly, by (5.7) and (5.8), the other two reducible hygane section&Z N Hp
andZn H_g contain P; and P; as smooth points. They consist of the faBinvariant
surfaces

(5.54) D} = {Bzo —iz3 = wo = (3—20)Z + waws = O},
(5.55) D, = {Bzz —izz = w1 = (3— 21)Z + waws = O},
(5.56) D, := {Bzo +iz3 = wo = (3—21)Z5 + waws = O},
(5.57) D, = {Bzo+iz3 = w1 = (3—21)Z + waws = O}.

These are illustrated in the diagram on the right in FigureB{.the same reasons as
for P, and P;, the small resolutions o at P; and P; are specified by which pair
among{D3, D}} or {D3, D,} is blown-up atP; and P; respectively.

Hence any small resolution & preserving the real structure falls into exactly one
of the following:
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Fig. 1. The 8 cones meeting at singularities &f The broken
lines are the images of the fo@-invariant twistor lines, which
separateD; and D; for 1 < j < 4. The rational curve€;, Cj,

] =2,4andL;, 1 < j <4, are the intersection of the corres-
ponding divisors.

(¥) {D},D5} and{Dj,D}} are blown-up pairs nedp; and P, respectively, of D/, D5}
and{Dj, D,} (the complementary pairs) are blown-up pairs neaand P; respectively.
(*) {Dj, D5} and{Dj, D} are blown-up pairs ned?; and P, respectively, of D}, D5}
and{D;, [_);1} (the complementary pairs) are blown-up pairs neaand P; respectively.

Here, we are specifying blown-up pairs only f& and P; since blown-up pairs
at P, and P; are automatically determined from those fr and P; respectively, by
the real structure. For example, for the first cases) the blown-up pair neaP; is
{D}, D’z}, and by the real structure this is mapped to the p{, D3}, and we choose
this as a blown-up pair at the poift, = o(Py).

Obviously, each of these cases contain two ways of resakiti€onsequently, for
each case, we obtain two (non-singular) 3-folds. Next wetkatthese two spaces in
each case are biholomorphic. For this, we define a new mélyiky

(5.58) Uo := diag(l, 1, 1-1, 1, 1).

It is immediate to see (from (5.1)) thaty(Z) = Z holds. We denote this involution
onZ by the same lettetdy. Note thatU, commutes with the real structure.

Proposition 5.6. Letv;: Z; — Z andv,: Z, — Z be the two resolutions of in
the case(x), and v}: Z; — Z andvj: Z, — Z be the two resolutions d in the case
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(*)'. Then the involution Yon Z lifts as a biholomorphic map Z— Z, and Z — Z,.
Furthermore the last two biholomorphic maps commute with the real stnect

Proof. We first note that the real structure on the projectivedel Z naturally
lifts to any of the four small resolution®, Z,, Z; and Z; since we are choosing the
blowup pairs in such a way that the real structure maps blopaips to blowup pairs.
In order to prove the proposition, it suffices to verify thit maps the blow-up pairs to
the (complementary) blow-up pairs. By elementary compurtat we havelg(D)) =
D3, Up(D3) = Dj. This immediately implies the former claim of the propamiti The
latter claim follows from the commutativity df); with the real structure. O

By Proposition 5.6, we can identif; and Z,, and alsoZ; and Z,. Next we
show that the latter two spaces aret twistor spaces:

Proposition 5.7. Let Z, and Z, be as above and; and o, the real structure
induced by that orZ. Then(Z/, o;) and (Z3, o,) are not twistor spaces.

Proof. By Proposition 5.6, it suffices to show the claim fd&; (o). In CP®
we define

Cri={nn=z3=wi=ws=0}, Cr:={z=23=wo=ws =0},
(5.59) _
4:={22=23=w0=w5=0}, C4:={22=Z3=w1=w4=0}.

It is immediate to see that these a@invariant non-singular rational curves iA.
Moreover, each of these 4 curves goes through exactly twaisingoints of Z (see
Fig. 1). We further define

recalling from above that these are precisely the imagebeoGtinvariant twistor lines.
Suppose thatZ] is a twistor space. Then by Lemma 5.3, these are the images of
the four G-invariant twistor lines (undeW). We use the same letters to mean the
strict transforms intaz] of these curves. Further, I€;, C4, C3, C3 be the exceptional
curves of the small resolutiod) — Z. Then in the small resolutioZ;, the 8 curves

Ci, Cy, C3,C4, C1, Cy, C3 and C4 form an ‘octagon’ (This is true for any small reso-
lution of Z.) Further, under the present choice of the small resolutioa curvesL

in Z/l can be seen to be configured as in the left diagram in Fig. 2.

We make a short remark on how Fig. 2 is obtained. For exammlesider the
first small resolution in£)’. Then the blow-up pair aP; is {D}, D,}. This means that
by the effect of the resolutionl,; and C, are separated by the exceptional cug
since D] is blown-up atP; (= Ly N C,). At the same timeC, and L, are separated
by C; since D’2 is blown-up atP; (= C, N Ly). As a result, neaC; the situation
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Li(z=—-a) Lo I Ly (z=a)
_ Ls I
Ly (z=0 3
| : Ly (2= D)
Ly (2= —p) La Ly Ly (2= —p)
Ly (z = q) L Ly Ly (2= —a)

Fig. 2. Octagons formed by the 8 torus-invariant rationaves
and the configuration of torus-invariant twistor lines. Ta# fig-
ure is for one of the two incorrect small resolutions, andribbt
figure is for one of the two correct small resolutions.

becomes as in the left diagram in Fig. 2. Similar reasoningliep to all other edges
of the octagon.

Next, we letz := z3/z, (wherez,, z3 are part of the homogeneous coordinates of
CP®) and consider it as a non-homogeneous coordinat€ Bh = {(z,, z3)}. Then by
(5.3) the real structure on the la€tP?! is given byz — —2z, so that the real locus is
given by {z e C | z< iR}. Moreover by the definition ot j, we have

Z=—ia on Li, z=ia on Ly
(5.61) . .
z=—-if on Lz z=iB on Ly

These mean that under the (meromorpl@ejjuotient mapZ’ — CP* which is induced
by the projection @o, w1, 2, 73, ws, ws) — (2, z3), eachL; is mapped to the point

z=—ia for j=1,z=ia for j=2,
(5.62) ) ) _ )
z=—ip for j=3,z=ip for | =4

As Poon’s metric is a special form of a Joyce metric, we wilkkinapply the theorem
of Fujiki [3, Theorem 9.1, 1)], which identifies tha ¢ 2) real parameters involved in
the construction of Joyce metrics or# CP? and the twistorial invariant that specifies
the positions of the reducible members in the pet€jK (which in our case ar®; +
Dj, 1< j £ 4). Consequently, the four points in (5.62) can be candyicagarded
as points on the boundary#? (where the Joyce metric is constructed Bnx 7{?).
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Furthermore, since the twistor fibration map— 2 # CP? is K-equivariant, we have
the diagram

Le— (Ui4:1 Ci) U (Ui4:1 Ci)

l l/ (o1)

(5.63) 2 #CP2 «— 4K-invariant 2-spheres

T

HZUQHZ«— 92

where all horizontal arrows mean the obvious inclusions usseats. In particular, we
have an isomorphism

(5.64) ((QC') U <._L4J1 Ci)>/(K, o) ~ 0H?,

where (K,o7) means the automorphism group of generated byK ando;. Therefore,
looking at the left diagram of Fig. 2, we see that the imagehef four K -fixed points
of the K-action on ZP? under the quotient map

2#CP? - (2#CP?)/K ~ H? U 9H?
are configured alongX? in the order
(5.65) —a, B, =B, a.

But asa > 0 andp > 0, the 4 numbers cannot be configured in this order, even up to
cyclic permutation and reversing the orientation. Themsfohel -s cannot be config-
ured as in the left diagram in Fig. 2. This means that the smealblutions in ) are

not the twistor space, as claimed. []

Thus we have obtained the small resolutions of the projeatariety Z which give
the twistor space in completely explicit form. Namely, suhall resolutions are ex-
actly the two ones in%). We remark that for the former among the two correct small
resolutions, the torus-invariant twistor lines are configuias in the right diagram in
Fig. 2; the latter case becomes the mirror image of this.

5.3. Determination of the conformal isometry group (for 2 #CP?). In this
subsection we show that, among the automorphisms in Lemmhgparameterized by
16 tori), only 8 tori lift to the twistor space. (Note that iremgeral automorphisms of
the base do not necessarily lift to a small resolution.) Wgirbevith Case (I).
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Proposition 5.8. Let U be the6 x 6 matrix of the form

Air O O
(5.66) U= O A»n O |,

O O Ag
where

1 0 1 0

(567) A22—(0 1) or (0 _1),
and
(5.68)

a o0 0 a b 0 0 b
All—(o é) (é O)' Asa—(o 5) or (5 O)’ la] = |b| =

(These are necessary conditions obtained.@mmas 5.4and 5.5.) Then U lifts to the
twistor space if and only if &, A;; and Ags take the following combinations

e Ay =1, and Ay, Asz are diagona)

e Ay =1, and Ay, Asz are off-diagonal

e Ay =diag(l,—1), A1 is diagonal and Ag is off-diagona)

e Ay =diag(l,—1), Ay is off-diagonal and Ag is diagonal.

REMARK 5.9. This proposition means that the natural injective homighism
(5.69) Auf Z - Aut’ Z

is not surjective. Namely, even if we restrict to the reabtesons, the projective mod-
els can have strictly larger symmetries than that of thettwispace.

Proof of Proposition 5.8. We determine whether the projectransformatiorlJ
lifts to a small resolution, by using the obvious fact thataariomorphismJ of Z lifts
to a small resolutiorZ if and only if U maps blow-up pairs at any ordinary nodeszof
(in the sense of Section 5.2; seg)(to a blow-up pair. More concretely:

1) If U fixesP; (j =1 or 3), thenU can be lifted to a small resolution af at P; if
and only ifU preservesachpair of divisors. (Ifj = 1, this means{U(D’l),U(D/z)} =
{D}, Dy}; if {U(D}), U(D)} = {D}, Dy}, U does not lift on any small resolutions. If
j = 3, this means{U(Dj), U(D})} = {D5, Dj}; if {U(D5), U(D})} = {Dj, D}, U
does not lift on any small resolutions.) In these cadéscan also be lifted to any
small resolution (ofP;) automatically.

2) If U(Py) = Py, thenU can be lifted to small resolutions af at P, and P; which
preserve the real structure if and only {i) (D)), U(D5)} = {D}, D}. Similarly, if
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U(P;) = P3, U can be lifted to small resolutions @&; and P; which preserves the
real structure if and only ifU(Dj), U(D})} = {Dj, Dj}.

First we examindJ of (5.66) in the case wherfy, = |, and A;;, Asz are diago-
nal. TheseU fix all four singularities ofZ and leave anyD;j and f)/j Ql<j<4)in-
variant. Hence by 1) above, we conclude that suclift to any small resolution ofZ.
In particular,U lifts to an automorphism of the twistor spaZe Since thesé&J include
the identity matrix, they form the identity component of thetomorphism group.

Next, if Ay = diag(1—-1), andAs1, Az are diagonal, thel (P) = P, andU (D)) =
D3 hold. Hence by 1), thesg do not lift to any small resolution. [Ax = 1, and Ay is
diagonal, andAgs is off-diagonal, therJ (P;) = P, andU (D) = D’l hold. Hence by 1),
theseU do not lift to any small resolution. 1, = diag(1,—1), and A;; is diagonal
and Ags is off-diagonal, therJ(P;) = P, andU(D3) = D’Z. Hence by 1), thes® lift
to any small resolution aP; and P;. Further sinceJ (Ps) = P3 andU(D%) = D}, by 2)
this time, we conclude that thest lift to any small resolution aP; and P as long as
they preserve the real structure. Hence thdskft to an automorphism of the twistor
spaceZ. If Ay = |y, Aps is off-diagonal andAgs is diagonal, then we haved (P3) = Ps
andU(D3) = Dg. Hence by 1), thes® do not lift to Z. If Ay, = diag(1,—1), As1 is
off-diagonal andAg3 is diagonal, then we havd (Py) = Py, U(D}) = D, U(Ps) = P;
andU(D3) = D,. Hence by 2) and 1), the4 do lift to the twistor spac&. If Ay = I,
and A;; and Agg are off-diagonal, then we hawg(P;) = Py, U(D}) = D}, U(Ps) = Ps,
andU(Dj) = Dg. Hence by 2), thest do lift to the twistor space. Finally, if Ay, =
diag(1,—1) and A;; and Ags are off-diagonal, then we havg(P;) = Py, U(D}) = D5.
Hence by 2), thestl do not lift to Z. This completes the proof of Proposition 5.8[]

Next we consider Case (II). In order to simplify notation, et

(0 1 (0 -1
+ —
(5.70) A22_I(aﬁ O)' A22_|(aﬂ 0).
Proposition 5.10. Let U be a6 x 6 matrix of the form
O O As
(5.71) U=| O An O |,
Azz; O O

where A, = A}, or Ay, = A,, and
(5.72)

_(a 0 0 a (b O 0 b\ l|a=5,
A13_(0 —a) or (—a 0)’ A31_(0 —6) of (—6 0)' Ib| = a.

(These are necessary conditions obtained.@mmas 5.4and 5.5.) Then U lifts to the
twistor space if and only if £, A;3 and A take the following combinations
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o Ay =A,, and Ag, Az are diagona)

o Ay = A, and Ag, Az are off-diagona|

o Ap= Azfz, A3 is diagonal and A is off-diagonal

o Ap= A{Z, A3 is off-diagonal and 4y is diagonal.

Proof. We define a matrix of the form (5.71) (satisfying (5)78y

0 O 0 0 B O
0 O 0 0 0 -8
0 O 0O -1 0 O

(5.73) A= 0O O iap O O O
a O 0 0O 0 O
0O —a O 0O 0 O

We note A2 = afl, so thatA defines an involution oZ. Moreover, we have
(5.74)  A(D}) =Dj A(Dy) =D, A(Dj)=Dj, A(D)) =D

In particular we have{A(D}), A(D,)} = {D5, D;} and {A(Dj), A(D})} = {Dj, D5}
Noting that A(P;) = P3, A(P3) = Py, this means thatA maps any blow-up pairs to
blow-up pairs for the small resolutions in the casg. (ThereforeA lifts to Z if (and
only if) the above conditionx) is satisfied. Hence\ lifts to the twistor spaceZ.
Having done this, for any matrik) of the form (5.71) (subject to (5.72)) we con-
sider the productAU. If A;z and Az; (in the matrixU) are diagonal anddx; = A2,
up to a non-zero constant, the produdt becomes of the first form in Proposition 5.8.
Hence by the propositiolU lifts to Z. Therefore, asA lifts to Z for the small reso-
lutions in (x) as above, we obtain that theBelift to Z for the small resolutions in the
case §). Similarly, if A;z and Agz; (in the matrixU) are off-diagonal andd; = A2,
then up to a non-zero constant, the prodtitt becomes of the second form, so that
lifts to Z for the small resolutions inx). If A3 and As; are diagonal and off-diagonal
respectively anddz, = A}, then up to a non-zero constamtl) becomes of the fourth
form, so thatU lifts to Z for the small resolutions inx«). If A3 and Ag; are off-
diagonal and diagonal respectively aAg, = AJ,, then up to a non-zero constamtlJ
becomes of the third form, so thét lifts to Z for the small resolutions in«). Further,
it can be readily checked that @ is not of these 4 forms, thenU does not coincide
with any of the 4 forms and therefold does not lift toZ for the small resolutions
in (%) by Proposition 5.8. Thus we have proved the claim of the psdjon. O

By Propositions 5.8, 5.10 and 5.7, we have obtained explgtesentations of all
conformal isometries of Poon’s metrics on @2 by 6x 6 matrices. Namely, we have
obtained the image of the (injective) homomorphism (5.2&)lieitly.
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6. Geometric interpretation

In this subsection, we investigate the geometry of the comdid automorphisms
obtained in the previous sections. We begin with the foliayvi

Lemma 6.1. Let n> 2 and[g.g] be a LeBrun metric on #CP?. Then
(i) if n > 3, there exists a uniqu&(1)-subgroup ofAut(g.g) which acts semi-freely
on n#CP?,
(i) if n =2, the number of suclhJ(1)-subgroups is two.

Proof. Letpy, ..., pn € H® be the monopole points ofyg]. Then the structure
group U(1) of the principal bundle oveé®\ {ps, ..., pn} acts semi-freely omCP?,
and it coincides with the identity component of Agit¢) if and only if then points do
not lie on a common geodesic. Therefore to prove (i) it susfite consider the case
that py, ..., pn are contained on a common geodesic. If the last conditioratisfied,
the identity component of Auf(g) becomes the toru¥. Note that forn = 2, this
condition is automatically satisfied.

The K -action onn#CP? is obtained as follows. First consider a standiréction
on C2, which is given by ¢,w) — (sztw) for (s,t) € U(1)xU(1). We blow-upC? atn
points in such a way that the blown-up points are always onutfigue K -fixed point
of the strict transform of the-axis. Let C? be the resulting complex (toric) surface.
Next, we add a point at infinity t€2. Then by reversing the standard orientation, we
obtainn#CP? with a K-action. (Over the open subsé® c n#CP?, [g.g] contains a
Kahler scalar-flat metric with & -action.) As thisK-action contains a U(1)-subgroup
acting semi-freely (which is explicitly given by(s, t) | s = 1}), it can be identified
with the identity component of Aut(g) (in the present situation). Hence to prove the
lemma it is enough to classify all U(1)-subgroups lofwhich act semi-freely orC2.

If Ky C K is such a U(1)-subgrou; has non-isolated fixed points [14, Propos-
ition 1]. Hence, since th&-action onC? is free on the preimage of?\ {zw = 0},
the subgroupK has to fix the strict transform of theaxis or thew-axis, or some ex-
ceptional curve of the blow-uf? — C2. On theseK -invariant subsets, th& -action
is explicitly given by multiplication by

(6.1) t,sttsts7?, .. tsT,

respectively. Namely, all subgroups having non-isolateedfi locus are explicitly
given by

(6.2) {t=1},{s=1}, and {t=s (L<k<n).

Sincen > 2 the first one acts non-semi-freely, whereas the second deesemi-freely.
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For the remaining subgroupg = s¥} (1 < k < n), the action on then(+ 2)
K-invariant subsets (in the last paragraph)

(6.3) sk S g2 sk gL

Hence the action becomes semi-free if and only & 2 andk = 1. This means that

if n > 3 the subgroup{s = 1} is the unique U(1)-subgroup acting semi-freely, and
if n =2, the subgroupgs = 1} and {t = s} are all such subgroups. Thus we have
obtained the claim of the lemma. O

We return to the case of 2@P2. Recall that in the proof of Lemma 5.3 we have
defined twoC*-subgroupsG; and Gs (explicitly defined as (5.12) and (5.13)).

Lemma 6.2. Viewing the group G= C* x C* (acting on Pooris twistor spacg
as the complexification of K= U(1) x U(1) (acting on Poois metrig, the subgroups
G; and G; of G are exactly the complexification of the twil1)-subgroups acting
semi-freely o2 #CP2.

Proof. We freely use notations in the previous section. ffies to show that
G: and G3 act semi-freely on the twistor spac By their explicit forms (5.12) and
(5.13), G; and G; clearly act semi-freely ofCP°. Therefore they act semi-freely on
the projective modelZ. Hence it is enough to show that they act semi-freely on the
exceptional curve€,, Cs, C; and C3 of the small resolution€ — Z. The weights for
the G; and Gz-actions on these curves can readily computed by usingstievariant
divisors D] and D (1 <i < 4), and they become either 0 or 1. Thus we conclude that
G; and Gz act semi-freely onZ. OJ

Let K; and K3 be the U(1)-subgroups dk whose complexifications ar&; and
G3, respectively. We know that these are all of the U(1)-subgsoacting semi-freely.
For these subgroups, we set

(6.4) Xo = {p € 2CP? | the isotropy subgroup oK; at p is {Id}},
and
(6.5) Yo = {p € 2CP? | the isotropy subgroup oKs at p is {Id}}.

From the proof of Lemma 6.1 we know, # Yp. Let p; and p, be the image of
the two isolated fixed points of th&i-action under the quotient map 2GP? — 2 #
CP?/K;. Similarly, letg, and g, be the image of the two isolated fixed points of the
Ks-action under the quotient map 2G#P? — 2 #CP?/Ks. Then since §g] is Ki-
invariant, by the result of LeBrun [14], the quotient spakt%:: (Xo/K1) U {p1, pz}
becomes a 3-manifold equipped with a hyperbolic metric gnglis obtained by the
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hyperbolic ansatz with monopole poings and p,. Similarly, H3 := (Yo/K3) U {q1, G2}
becomes a 3-manifold equipped with a hyperbolic metric gngl is obtained by the
hyperbolic ansatz whose monopole points gieand g,. Thus any Poon metric on
2 #CP? has the following double fibration:

2 #CP?

(6.6) / \

H3UIHS H3 U aHS.

Here, m; and 3 are the quotient maps by th€;-action andKs-action, respectively,
and 87-{,:13(: ) and aHg(: S?) are the images of the non-isolated fixed locus of the
Ki-action andKz-action, respectively. Note that if > 3, an analogous double fibration
does not exist by Lemma 6.1.

By Propositions 5.8 and 5.10, when= 2 the group Aut§ g) consists of 8 tori.

DEeFINITION 6.3. We defineH to be a subgroup of the full conformal isometry
group Aut@.g) consisting of the 4 tori in Proposition 5.8; namety consists of auto-
morphisms which are lifts of automorphisms of the projectinodel Z represented by
matrices of ‘diagonal type’

Proposition 6.4. The image of the subgroup H under the homomorphism

Aut(gie) — GL(H®(Z, F))
in (4.4) preserves the two subspaced (B, F)®: and H(Z, F)Cs.
Proof. Take any® € H and letU € GL(6,C) be the image oH under the homo-

morphism, where we are usinguo, w1, 2, Z3, wa, ws} as a basis oH%(Z, F) ~ C®
as before. By the definition of the subgrotp, U must be of the form

Az O O

(6.7) O Ayu O |, A, Ay AzeGL(2,C).
O O As

On the other hand, by (5.4), the two subspaces are expligitign by

(6.8) H(Z, F)® = (25, 23, wa, ws), and H(Z, F)® = (wo, w1, 2, Z3).

These directly imply the claim of the proposition. []



240 N. HONDA AND J. VIACLOVSKY

Proposition 6.5. Let n=2 and H C Aut(g.g) be as inDefinition 6.3 Then there
are homomorphisms

(6.9) p1: H = Aut(#3; p1, p2)
and
(6.10) p3: H — Aut(H3: qu, qp)

such thatp; (®) = ¢, where @ is any lift of ¢ obtained inProposition 2.11

Proof. We recall that we have defined the linear projectiopsCP° — CP? for
j = 1, 3 which are explicitly given by (5.9)-(5.10). By the defioh and (5.4), the
composition f;ow: Z — CP? is exactly the rational map associated to the vector space
HO(z,F)®i. The imagef; oW (Z) = f;(Z) (explicitly given as (5.11)) is isomorphic to
CP! xCP?, on whichK; acts trivially. Moreover, by Proposition 6.4f automatically
preserves the quadri€j(Z) for j = 1, 3. (This is also clear from Proposition 5.8 and
(5.11).) Hence forj = 1, 3 we obtain two homomorphisms

(6.11) H — Aut(CP! x CPY).

Furthermore, as we have considered those matfiteshich commute with the real
structure, the image of these homomorphisms commutes thétmatural real structure
on CP! x CP!. Moreover, ifU is a matrix representing an element bf, we have
{U(P1), U(P1)} = (P, P1} and {U(Ps), U(P3)} = {P3, Ps}. If C; and C; respect-
ively denote the exceptional curves (fdr) over the singular point$; and P; of Z

as before, by the twistor fibratio®; and C; are mapped to the 2-spheres which are
fixed by Ki-action andKj-action, respectively. Hence any € H leaves the bound-
ary spheredH? C 2#CP? invariant for j = 1 and 3. Therefore, viewin@P* x CP*

as the minitwistor space of the hyperbolic sp&%% as in the casen > 3, we obtain

a homomorphism

(6.12) pi: H—Aut(H) (j =1,3).

Moreover, the image of (6.3) preserves the set of discrinticanves {C;, C,} of the
map f; oW by the same reason for the case: 3 given in Proposition 4.3 (iii). Hence
the image of (6.4) is contained in AG{Q; p1, p2) for j =1 and Autwg; g1, q2) for
j = 3. Furthermore, the homomorphism is an inverse of the lift in Proposition 2.11
by the same reason for the case> 3 given in the final part of the proof of Propos-
ition 4.1. This finishes the proof. ]

This means that the action of the subgrddppreserves each of the two fibrations
in (6.6) respectively. On the other hand, for automorphismos belonging toH, we
have the following



CONFORMAL SYMMETRIES 241

Proposition 6.6. If ® € Aut(g.g) satisfies® ¢ H, ® maps any fiber ofr; to a
fiber of 73, and any fiber ofrs to a fiber of 7;, where 7; and =3 are the quotient
maps by the K-action and the K-action respectivelyas before.

Proof. Since the lift of theK;-actions § = 1, 3) on 2 #CP? to the twistor space
is given by the restriction of th&;-action to the real forms by Lemma 6.2, it suffices
to show that by any® ¢ H, Gi-orbits are mapped t@s-orbits, and Gz-orbits are
mapped toG;-orbits. LetU be a 6x 6 matrix corresponding t@ ¢ H. ThenU is
as in Proposition 5.10. A8 contains 2 parameteid and b (satisfying|a]| = 8 and
|b] = «), we writeU = U(a,b) (to simplify notation). On the other hand, the subgroups
G; and Gz are explicitly given in (5.12) and (5.13). L&(s) := diags,s™%, 1,1, 1, 1)
andC(t) := diag(1,1,1,1t,t~1). Then as &6 matrices, we have the following relations

B(s)U(a, b) = U(sa b), U(a, b)B(s) = U(a, s*h),

(6.13)
C(t)U(a, b) = U(a, th), U(a, b)C(t) = U(t 1a, b).

These imply thatJ(a, b) interchange<5;-orbits andGs-orbits, as required. []
As an immediate consequence of the above discussion, wé dhta following

Corollary 6.7. Let d and & be the hyperbolic distance between and p €
#H3, and q and @ € H3, respectively. Thend= ds holds.

6.1. Generators of the automorphism group. Finally, we give generators of
the full automorphism group Auj(g) in the casen = 2. (Forn > 3 generators of
Aut(g.g) were already given in Theorem 3.11).

Proposition 6.8. Suppose n= 2 and let H C Aut(g.g) be as inDefinition 6.3,
and let Autp(gis) (=~ K) be the identity component éfut(g.g). Then we have
(i) The subgroup H is generated Byuts(g ) and two involutions.
(i) Aut(g.g) is generated by H and an involution not belonging to H.

Proof. This is easy since we have explicit representatiout{g.g) as 6x 6
matrices. For (i), as the two involutions iH we choose the ones represented by the
following matrices

-1
-1

= O
o

(6.14) Ay := and A, :=

= O
O -
=
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where a blank entry means 0. It is readily seen m%t: A% =1, A; and A, belong
to mutually different non-identity connected componentsHy, and that the product
A1A, belongs to the remaining connected componenHofThis means that the iden-
tity component andA; and A, generate the subgroud. Hence we obtain (i). Note
that these correspond to the transformations describech@orém 3.11.

For (ii) we choose the involutiom\ given in (5.73). As in the proof of Propos-
ition 5.8, A defines an involution on the twistor spaZe Since A is of off-diagonal
type, we haveA ¢ H. Furthermore, by using Propositions 5.8 and 5.10, it is elem
tary to show that for any one of the other 3 components of d\g)(\ H, we can find
an element € H for which the producU - A belongs to that component. This means
that H and A generate Auffg). ]

The following proposition completes the proof of Theorert13above.

Proposition 6.9. As beforelet Auty be the identity component éiut(g.g), which
is obviously a normal subgroup of H. Then the quotient groufAtt, is isomorphic to
Z, x Z,. Moreover the quotientAut /Autg is isomorphic toD4 (the dihedral group of
order 8).

Proof. The former claim readily follows from the explicitrfo of the matrices
U in Proposition 5.8 (the two matrices; and A, generate the grouf, x Z,). For
the second claim, we first note that the group is non-Abelignthe explicit form of
the matricedJ in Proposition 5.10. Therefore, it is isomorphic to eithiee fguaternion
group (the subgroup generated byand j in the quaternions), or the dihedral group
D4. But the former group cannot contain a subgroup which is @pimic to Z, x
Z,. Therefore Aut/Auty is isomorphic to Q. (Alternatively, one can simply show
directly that the three matriced;, A, and A generate the group 4 without using
any classification.) ]

6.2. Einstein—~Weyl spaces. We end this section by reconciling the auto-
morphisms found using twistor theory with the automorplEsgiven in Theorem 3.11,
and also proving that\ (¢) defined in Section 3 is indeed a conformal map. To do this,
we need to study more closely the associated Einstein—Vyades of theG; and G3
actions on the twistor space. Recall that in the proof of LenBrB3, we defined two
linear projectionsf;: CP® — CP3 (j = 1, 3) whose restriction t& can be viewed as
the quotient map with respect to tl& -action. Also recall that the imagefs(Z) are
non-singular quadrics whose equations are given by

(6.15)  fi(Z2) = (0?2 + 22 + 2waws = O}, f3(Z) = {2wows + B2 + 2% = 0}.

For fibers of f; and hyperplane sections of the imafgZ), we have the following
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Lemma 6.10. (i) The closures of general fibers of &re smooth conics.
(i) If h is a Gg-invariant plane inCP3, the inverse image ffl(h) is reducible if and
only if h={z, = +iz3/a} or {z, = +iz3/B}.

Since everything is explicit, we omit a proof of the lemma. @furse, an analo-
gous result holds for the other quotient mép We also note that the three involutions
on CP® determined by the matrices, A, (defined in (6.14)), and\s := A,A1 natur-
ally descend to the target space for both of the quotient méfesnote that under the
the quotient map Aut(g) — Aut(gLs)/ Auty >~ Dy, the third elementAs corresponds
to the non-trivial center of R} which is Z,.

By [13, Section 7], the minitwistor lines of these minitwdstspaces are precisely
the hyperplane sectiorfsN f,—(Z), where the pland satisfies
(A) h is real with respect to the naturally induced real struciomeCP? (so that the
real locus onh is necessarilyRP?).

(B) hn fj(Z) does not contain a real point.

In other words, the 3-dimensional Einstein—Weyl space aggpas the parameter space
of these planes. In particular, since the involutiohg, A, and Az naturally induce
those onCP? as above, these also induce involutions AR, which we denote by
o1, P2, P3, respectively. For the purpose of writing these down in iedpform, next
we determine all the plands satisfying (A) and (B):

Lemma 6.11. (i) Any plane inCP3 having (2., z3, ws, ws) as homogeneous co-
ordinates as in(5.9) satisfying the above conditior{®\) and (B), is of the form

(6.16) Z> = ibzz + cws — Cws,

where be R, ¢ € C satisfy the following inequality
2 2 1
(6.17) b* + 2|c|” < —.
o

(i) Alternatively any plane irCP* having (wo, w1, Z2, Z3) as homogeneous coordinates
as in (5.10) satisfying the conditiongA) and (B), is either of the form

(6.18) 7z = ib'z3 + cwg + Cwy,

where B € R, ¢’ € C satisfy the inequality

1
(6.19) ©)—2/c|? > i

or otherwise of the form

(6.20) Z3 = Cwg — Cwq,
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where ce C satisfies|c|? < 1/2.

Proof. Since the real structure @iP? is given by
(6.21) @2, 23, w4, ws) > (Z, —Z, —ws, —Wa),

a planeh = {az + bz + cws + dws = 0} is real if and only ifae R,be€iR,d = —C.
It can be verified by simple computations thagif= 0, hn f1(Z) always contains real
points. Hence we may suppose

(6.22) h={z =ibz; + cws—Cws}, beR, ceC.

Substituting into (6.15), puttingus = —w,4 and replacingzz by iz3 using the reality
requirement, the condition (B) is equivalent to the cowditthat the equation

(6.23) a?(—bzs + cws + Cwa)® — 25 — 2lwa)* = 0

has no solution inZ;, ws) € R x C. If we write ¢ = ¢; +ic; and wg = X + iy, the
left hand side can be seen to be equal to

20%b 2
(a2b2 - 1)(23 - m(clx — Czy))

2a2C§ +ah?-1 (X 3 202¢1Cp )2
ab? —1 202c 4+ 2?2 — 1

B 22a2c§ + 20°C3 + a?b? —1 ,

202¢ 4+ 2?2 — 1 '

(6.24) _2

The condition is equivalent to the definiteness of (6.24gwéd as a real quadratic
form of (zs, X, y). If this is positive definite, we have?b? — 1 > 0 from the first
term. But then the coefficient of? necessarily becomes negative, contradicting the
definiteness. Hence (6.24) must be negative definite. Heredavea?b? — 1 < 0.
Then looking the coefficient of the second square, we obtaift2+ o2b? — 1 < 0.
Then by negativity of the coefficient of?, we obtain 22¢? + 20?c3 + a?b? — 1 < 0.
Conversely, if this last equality holds, all of the three ftiogents are easily seen to be
negative. Thus the quadratic form (6.24) is definite if anty @w?c? + 202cZ + a?h? —

1 < 0. This is equivalent to (6.17), and we obtain (i).

The claim (ii) can be argued in a similar way, as long as weceothat the real
structure onCP? with the coordinatesu, w1, 2o, Z3) is given by (o, w1, o, Z3)
(wq, wo, 2, —23), Which is in a slightly different form than (6.21). We omite details
of the computations, as they are similar to the above. ]

The region defined by (6.17) is an ellipsoid, which we will denby B(«). Al-
though the region defined by (6.19) is disconnected, it besooonnected by adding the
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last disc{|c|?> < 1/2}, and we will denote this connected region ByB). Lemma 6.11
says that the planes satisfying (A) and (B) are parametetizethe ellipsoidB(«), for
f1(Z), and by the regiol3(B) for f3(Z). If we think of the Einstein—Weyl space as the
space of real hyperplane sections of the minitwistor spdeese regions naturally ap-
pear for the two semi-free U(1)-actions, rather than theewyalf space model, as long
as we adopt the present coordinates. By [14, Theorem 2], astediin—\Weyl structure
is naturally induced on these regions and it is preciselyhyygerbolic structure. Using
this, it is now easy to explicitly write down the three invbns ¢1, ¢, and ¢3 on the
Einstein—Weyl spac®(«) (with respect toG,):

Lemma 6.12. For (b, ¢) € B(«), we have

(625) ¢l(b1 C) = (_b! —C), ¢2(b! C) = (_b1 C)v ¢3(b! C) = (bv _C)

Furthermore the image of the two isolated fixed points of thg-d€tion on 2 #CP?
(the monopole poinjsunder the quotient map tB(«) are given by(b, c) = (£1/8, 0).
The images of the two isolated fixed points of thgaktion are given by(b/, ¢’) =
(£1/a, 0).

Proof. The formulas fop; immediately follow from (6.16) and the explicit forms
of A1, Ay, and A3 on CP®. The second statement follows from Lemma 6.10 (ii).

It follows from Lemma 6.12 that among the 4 connected comptmef the sub-
group H, the component which is mapped to (under the the quotient (D, g) —
Aut(gg)/ Auty >~ D4) the nontrivial center of [p can be characterized by the property
that the induced automorphisms 6% and 73 (by the homomorphismg; and p3 in
Proposition 6.5) ardoth orientation reversing.

Since theKs-action acts by isometries oBi(«), the fixed locus ofKz must be
a hyperbolic geodesic (). By Lemma 6.12, this geodesic contains the monopole
points. The formulas (6.25) then clearly imply that the imi@ns ¢; induced byA;
correspond exactly with those in Theorem 3.11.

In conclusion, we show that the mapg®?) defined in Subsection 3.1 above are
conformal automorphisms. We first define

(6.26) A(®) = B(€?)AB(e™?),
recalling the diagonal matriceB(s) defined in the proof of Proposition 6.6.
Theorem 6.13. For any angley, A(¥) is an involution of the twistor space/hich

induces a conformal involution ¢f.s]. The induced involution ig\ (¢ + 7 /2), thus the
map A(9 + 7/2) is a conformal automorphism ¢2 #CP?, [g.s]).
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Proof. It is easy to see that(?) is also an involution. For the moment, let us
consider onlyA. We first note that the involutiom\ induces a diffeomorphism from
H? to itself. To see this, we argue as follows: in thex® matrix representation, the
involution is off-diagonal type. The middle coordinates,(z3) in Section 4 can be
regarded as a (homogeneous) coordinate on the quotient Fh4€* x C*) ~ CP?,
while #? is the space of maximal orbits in the quotient space @P#/K. By the
explicit form of the matrixA and theC* x C*-action (given in (5.4)) these involutions
map C* x C*-orbits to C* x C*-orbits, which means that the involution is indeed a lift
of some diffeomorphism of{2.

By [3, Theorem 9.1], the induced involution @&’ must be a hyperbolic isometry.
To see this, we first note that as the coordinate the equation (53) on [3, p.276]
is a non-homogeneous coordinate on the parameter space geticil |F|< (consist-
ing of torus-invariant members of the systéf|), and since the same is true for the
coordinatezz/z, of ours, it follows thatz in Fujiki's paper is related tazs/z, by a
fractional transformation. (It is possible to write the @ee relation between these two
coordinates; but we do not need the explicit form). On thesiotrand [3, Theorem 9.1]
states that the coordinatecan be used as a conformal coordinate?¢h This means
that any conformal automorphism of Poon’s metric on @B? (which is of course a
special form of Joyce metrics) induces a conformal mapHinas long as the auto-
morphism descends to a map &f. Since the conformal group &2 is equal to the
isometry group, this implies the involution must be a hypéicbisometry.

We next discuss the angular transformation inducedAbyThe K -action onCP®
in (5.4) naturally induceKs ~ K /Kj-action onCP?® = {(z,, z3, wa, ws)}, which is
explicitly written as

(627) Qz, Z3, W4, IU5) = (Zz, Z3, twa, t71W5),t € Ka.

This Kz-action naturally induces the (dual) action on the dual sg@®2)*. If (a,b,c,d)
means the dual coordinates as before, the action is cohcigten by @, b, c, d) —

(a, b, tc, t~1d). By puttinga = 1 and using §, ¢, d) as non-homogeneous coordinates,
the action can be written as

(6.28) ©, c,d) — (b, tc, t~1d).

Then recallingb € R andd = —C on the real locus, we obtain that thé;-action on
B(x) is given by

(6.29) 0, ¢) — (b, tc).

Then since this must be an isometric U(1)-action on the tpgler space, and since
any non-trivial isometric U(1)-action must be rotationsward a geodesic, (6.29) means
that Argc) can be used as a coordinate on the hyperbolic spgHag ~ Hf Then
Arg(t) can be naturally identified with the coordinatg whered; is the coordinate on
U(1) >~ K3 we have used throughout Section 3.
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Similarly, replacing the role oK; and K3 in the above argument, we first obtain
that Ki(~ K/K3) naturally acts onCP3 = {(wo, w1, Zo, z3)} by (wo, w1, Z2, Z3) —
(swo, S*wa, 22, z3). Taking the dual, we obtain th&i-action on CP%)* equipped
with dual coordinatesc(, d’, &, b) given by ¢, d’, &, b') — (s¢,s™'d’, @, b). On the
locusa’ # 0 if we use b/, ¢, d’) as non-homogeneous coordinates by puttng- 1,
the action is written ash(, ¢/, d") — (b, s¢, s'd’). Therefore Argé) can be naturally
identified with the coordinaté;, where6; is the coordinate on U(1} K; we used in
Sections 2 and 3.

The involution A: CP® — CP® induces an isomorphism fror@ P with coordi-
nates £, 3, w4, ws) to CP* with coordinates g, w1, Z, Z3), which is given by

(6.30) @2, z3, wa, ws) = (wo, w1, 22, Z3) = (Bwa, —Bws, —iZ3, iafz).
This induces an isomorphism between the dual spaces whiglves by
(6.31) c,d,a,b)— (a b, c d) = (iapb, —ia’, gc’, —pd").

In the above non-homogeneous coordinates on these @#3){-s, this can be writ-
ten as

1 ic id
(6.32) 0. ¢, d) e (b,c d) = (_W’ —%, ;I)

Restricting to the real locus, we obtain

l H /
(6.33) RxC5®,¢)— {00 =(-—— ) erxcC.
aBb’”  ab’
In particular, A*c’ = —ic’/(«b’). Because); (resp.63) corresponds to the argument of

¢’ (resp. c), this means that undek*, the transformation of the two angular coordi-
natesfs and 0y is given by#6; — 63 = 01 — (7 /2). Hence the angular action induced
by A is given by

b4 T
(6:34) 6a.00) > (0= 5.0+ 5 ).
Since the angular map induced by is orientation-reversing, the induced hyperbolic
isometry must also be orientation-reversing. Since the n@p defined above in (3.32)
is the unique orientation-reversing isometry with the eotproperties (see Remark 3.7),
A must therefore induce the map(r/2) (recalling Definition 3.8 for the definition of
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A(®)). We next compute (with a slight abuse of notation)

A(®)(03, 1) = B(E”")AB(e”)(6s, 61)

B(€”)A (63, 61 — )

- B(e“’)(e1 95— % 03 + %)

—(9 9 ”9+ﬁ+”)
= 1 213 2

This clearly implies thatA (¢9) induces the map\ (9 + 7/2), and the proof is complete.
O
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