
Cao, W.
Osaka J. Math.
49 (2012), 901–907

DISCRETENESS CRITERION IN SL(2, C) BY A TEST MAP

WENSHENG CAO

(Received October 27, 2010, revised February 17, 2011)

Abstract
In the paper [12], Yang conjectured that a nonelementary subgroupG of SL(2,C)

containing elliptic elements is discrete if for each elliptic elementg 2 G the group
h f, gi is discrete, wheref 2 SL(2,C) is a test map being loxodromic or elliptic.
By embedding SL(2,C) into U(1, 1IH), we give an affirmative answer to this ques-
tion. As an application, we show that a nonelementary and nondiscrete subgroup of
Isom(H3) must contain an elliptic element of order at least 3.

1. Introduction

The discreteness of Möbius groups is a fundamental problem, which has been dis-
cussed by many authors. In 1976, Jørgensen established the following discreteness cri-
terion by using the well-known Jørgensen’s inequality [8].

Theorem J. A nonelementary subgroup G of Möbius transformations acting on OC
is discrete if and only if for each pair of elements f, g 2 G, the grouph f, gi is discrete.

This result shows that the discreteness of a nonelementary Möbius group depends
on the information of all its rank two subgroups. The above result has been generalized
by many authors by using information of partial rank two subgroups. For example,
Gilman [5] and Isochenko [7] used each pair of loxodromic elements, Tukia and Wang
[10] used each pair of elliptic elements.

Sullivan [9] showed that a nonelementary and non-discrete subgroup is either dense
in SL(2,C) or conjugate to a dense subgroup of SL(2,R). This result gives an approach
to studying the discreteness of Möbius groups from the topological aspect. Mainly us-
ing Sullivan’s result, Yang [11] obtained some generalizations by the information of
the remaining four kinds of rank two subgroups.

Recently, Chen [3] proposed to use a fixed Möbius transformation as a test map
to test the discreteness of a given Möbius group. His result suggests that the discrete-
ness is not a totally interior affair of the involved group and provides a new point of
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view to the discreteness problem. Yang [12] generalized some results by test maps (see
Theorems 2.4–2.7) and proposed the following conjecture.

Conjecture 1.1. Let G be a nonelementary subgroup ofSL(2, C) containing
elliptic elements and f a loxodromic(resp. an elliptic) transformation. If for each elliptic
element g2 G the grouph f, gi is discrete, then G is discrete.

In SL(2,R), since the trace is real, one can find a sequence{gn} of distinct elliptic
elements inG such thatgn ! I . In fact, this is a special case (i.e. dimM(G) D 2)
of [4, Corollary 4.5.3]. Yang mainly used this fact to prove the following theorem
(Theorems 2.9 in [12]).

Theorem Y1. Let G be a nonelementary subgroup ofSL(2,R) containing ellip-
tic elements and f a loxodromic(resp. an elliptic) transformation. If for each elliptic
element g2 G the grouph f, gi is discrete, then G is discrete.

For the general case in SL(2,C), Greenberg [6] gave an example such thatG is
a loxodromic group and is not discrete with dimM(G) D 3. This example indicates
that it is nontrivial to construct a subgroup generated byf and an elliptic element in
G which is nonelementary, in which one can apply Jørgensen’s inequality to obtain
a contradiction. However, in the case of SL(2,C), Yang also obtained the following
theorem (Theorems 2.11 in [12]).

Theorem Y2. Let G be a nonelementary subgroup ofSL(2,C) containing ellip-
tic elements and f a loxodromic(resp. an elliptic) transformation withjtr2( f )�4j < 1.
If for each elliptic element g2 G the grouph f, gi is discrete, then G is discrete.

In this paper, we mainly use an embedding of SL(2,C) into U (1, 1IH) and then
apply Corollary 4.5.2 in [4] to prove Conjecture 1.1.

Theorem 1.1. Conjecture 1.1is positive.

In [13, Remark 2.7], Yang observed the following proposition and gave an example
[13, Example 2.1] to show that forn � 4, there does exist a nonelementary and non-
discrete subgroup of Isom(Hn) with all elliptic elements having order 2.

Proposition 1.1. A nonelementary and nondiscrete subgroup ofIsom(H2) must
contain an elliptic element of order at least3.

Based on the above observations, he proposed the following problem in [13,
Remark 2.7].
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PROBLEM 1.1. Whether there is a nonelementary and nondiscrete subgroup of
Isom(H3) D PSL(2,C) which contains an elliptic element such that each of them has
order 2.

As an application of our embedding, we obtain the following theorem.

Theorem 1.2. The answer toProblem 1.1is negative.

2. The unitary group and embedding principle

In this section, we will recall some facts about quaternion and the quaternionic
hyperbolic geometry. The reader is referred to [1, 2, 4] for more information.

Let H denote the division ring of real quaternions. Elements ofH have the form
q D q1 C q2i C q3j C q4k 2 H whereqi 2 R and

i2 D j2
D k2

D ijk D �1.

Let q D q1 � q2i � q3j � q4k be theconjugateof q, and

jqj D
p

qqD
q

q2
1 C q2

2 C q2
3 C q2

4

be themodulusof q. We define<(q)D (qCq)=2 to be thereal part of q, and=(q)D
(q � q)=2 to be theimaginary part of q. Also q�1

D qjqj�2 is the inverseof q. We
remark that for a complex numberc, we havejcD Ncj .

Let H1,1 be the vector space of dimension 2 overH with the unitary structure
defined by the Hermitian form

hz, wi D w�JzD w1z1 � w2z2,

where z and w are the column vectors inH1,1 with entries (z1, z2) and (w1, w2) re-
spectively, �� denotes the conjugate transpose andJ is the Hermitian matrix

J D

�

1 0
0 �1

�

.

We define aunitary transformation gto be an automorphismH1,1, that is, a linear
bijection such that

(1) hg(z), g(w)i D hz, wi

for all z andw in H1,1. We denote the group of all unitary transformations by U(1,1IH).
Following [4, Section 2], let

V0 D {z 2 H1,1
� {0} W hz, zi D 0}, V

�

D {z 2 H1,1
W hz, zi < 0}.
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It is obvious thatV0 and V
�

are invariant under U(1, 1IH). We defineVs to be Vs
D

V
�

[ V0. Let P W Vs
! P(Vs) � H be the projection map defined by

P

�

z1

z2

�

D z1z2
�1.

We defineB D P(V
�

), the ball model of 1-dimensional quaternionic hyperbolicspace.
It is easy to see thatB can be identified with the quaternionic unit ball{z2HW jzj< 1}.

Also the unit sphere inH is �B D P(V0) and the center of the ball is 0D P
�

0
1

�

.

If g D
�

a b
c d

�

2 U(1, 1IH) then, by definition,g preserves the Hermitian form.

Hence

w�JzD hz, wi D hgz, gwi D w�g�Jgz

for all z and w in V . Letting z and w vary over a basis forV we see thatJ D g�Jg.
From this we findg�1

D J�1g�J. That is:

�

a b
c d

�

�1

D

�

a �c
�b d

�

and consequently,

(2) jaj D jdj, jbj D jcj, jaj2 � jcj2 D 1, NabD Ncd, a NcD b Nd.

As in [1, 2], we can regard U(1, 1IH) as the isometries of real hyperbolic 4-space,
whose model is the unit ball in the quaternionsH. SL(2,C), the isometries of real
hyperbolic 3-space, can be embedded as a subgroup of U(1, 1IH) as following:

f 2 SL(2,C) ,! T f T�1
2 U (1, 1IH),

where

T D

1
p

2

�

1 �j
�j 1

�

.

Let f D
�

a b
c d

�

2 SL(2,C). Then

Of D T f T�1
D

1

2

�

1 �j
�j 1

��

a b
c d

��

1 j
j 1

�

2 U(1, 1IH).

We mention that our model is slight different from the model in [4], where the

Hermitian matrix is J D
�

�1 0
0 1

�

. It follows from (1) that both models define the
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same unitary group. This difference just exchanges the inner and outer of the same
unit sphere of those two models.

The following lemma is crucial to us.

Lemma 2.1 (cf. [4, Corollary 4.5.2]). Let G be a subgroup ofU(1,nIH) such that
(a) G does not leave invariant a point in�Hn

H

or a proper totally geodesic submanifold
of Hn

H

(b) the identity is not an accumulation point of the elliptic elements in G. Then G
is discrete.

Using the same notation as in [4], for any totally geodesic submanifold M 2 Hn
H

,
we denote byI (M) the subgroup of U(1,nIH) which leavesM invariant. By [4, Prop-
osition 2.5.1], the proper totally geodesic submanifolds of H1

H

are equivalent to one of
the four types:H1

R

, H1
C

and H1(I).
By [4, Lemmas 4.2.1,2], we have the following lemma.

Lemma 2.2. Let g2 U (1, 1IH). Then
(i) the elements g2 I (H1

R

) are of the form

g D A�, A 2 U (1, 1I R), � 2 H, j�j D 1I

(ii) the elements g2 I (H1
C

) are of the form

g D A, A 2 U (1, 1I C)I

(iii) the elements g2 I (H1(I)) are of the form

(3) g D

�

a b
�"b "a

�

2 U(1, 1IH), " D �1.

Lemma 2.3. Let G be a subgroup ofSL(2,C). Then T GT�1 is a subgroup of

U(1, 1IH). If g D
�

a b
c d

�

2 G and T GT�1
� I (H1(I)) then either

(i) a, d 2 R and b, c 2 iR, or
(ii) a, d 2 iR and b, c 2 R.

Proof. If g D
�

a b
c d

�

2 G and T GT�1
� I (H1(I)), then T gT�1 is of form (3).

By our embedding and the factjc D Ncj , 8c 2 C, we can verify that the cases" D 1
and " D �1 correspond to cases (i) and (ii), respectively.

By Lemma 2.3, we have the following corollary.

Corollary 2.1. If G is dense inSL(2,C), then the smallest totally geodesic sub-
manifold which is invariant under G1 D T GT�1 can not be H1(I).
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3. The proofs of Theorems 1.1 and 1.2

We also need the following lemma, which is a direct consequence of the well-
known proposition in [9, Section 1].

Lemma 3.1. Let G be a nonelementary subgroup ofSL(2,C). Then either
(i) G is discrete, or
(ii) G is dense inSL(2,C), or
(iii) G is conjugate to a dense group ofSL(2,R).

The proof of Theorem 1.1. Suppose thatG is nonelementary and not discrete.
We may assume thatG is dense in SL(2,C) by Theorem Y1 and Lemma 3.1, where
G1 D T GT�1.

Let M(G1) be the smallest totally geodesic submanifold which is invariant under
G1. By our embedding,G1 is a nonelementary and non-discrete subgroup of U(1,1IH).
Applying conjugation if necessary, we may assume that 02 M(G1). SinceG1 is nonele-
mentary,M(G1) ¤ H1

R

. SinceG is dense in SL(2,C), M(G1) ¤ H1(I). By [4, Prop-
osition 2.5.1],M(G1) is one of the two types:H1

C

and H1
H

.
Suppose thatM(G1) D H1

C

. By Lemma 2.2 and the fact that PU(1, 1I C) is iso-
morphism to PSL(2,R), we can get the desired contradiction similarly as in the proof
of Theorem Y1.

Suppose thatM(G1)D H1
H

. By Lemma 2.1, we can find a sequence{gn} of distinct
elliptic elements inG1 such that

gn ! I .

Since gn 2 G1 and T�1gnT 2 G � SL(2,C) has the same order, we get a sequence
{T�1gnT} of distinct elliptic elements inG such thatT�1gnT ! I . By the same rea-
soning as in Theorem Y1, we can get the desired contradiction.

The proof is complete.

The proof of Theorem 1.2. Suppose thatG is nonelementary and not discrete.
We may assume thatG is dense in SL(2,C) by Proposition 1.1.

Taking the same notations as in the proof of Theorem 1.1, we are left to consider
the caseM(G1) D H1

H

. By Lemma 2.1, the identity is an accumulation point of the
elliptic elements inG1. Therefore we get a sequence{gn} of distinct elliptic elements
in G such thatgn ! I . This implies that there exist an elliptic element with order
greater than three.

The proof is complete.
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