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In the previous paper1l we defined a new uniform topology of functional space 

and studied analogous theories a bout uniform spaces as about topological spaces. 

However, the uniform topology was defined with the order of real numbers and was 

unnatural. In this paper we shall define a more natural uniform topology and shall 

simplify the theories. 

In this paper we denote by R a uniform space and by {U"' Ia E A}, 

Ua~={Ua~(x)lxER} the u.nbd (=uniform neighbourhood) system of R.2J 

DEFINITION. We denote by F(R) a family of functions defined on a subset of 

R and having values in a uniform space R' with the u. nbd system {ma~'la' E A'}, 

ma~'= { Va~'(x') I x' E R'}. Moreover, we denote by Df the domain of definition of a 

function fEF(R). For fEF(R) we define a subset of F(R) by Ua~a~'Cf)={gJVxE 

Df :FlyE Ua~(x): g(y) E Va~'Cf(x)); VxEDg :FlyE Ua~(x) :f(y) E V.,,(g(x))}. 

THEOREM 1. {Ua~.,,laEA, a'EA'}(Ua~a~'={U.,"''(f)lfEF(R)}) satisfies the condi­

tion of u. nbd system in F(R) consisting of continuous functions defined on a closed 

set of R. 

Proof. We denote by f, g, h elements of F(R). Let f=f=g, then f(x)=f=g(x) for 

some x E DfnDg, or there exists X E (DfnDgc) u (DgnD/). If the former is the case, 

then there exist aEA, a'EA' such that yE Ua~Cx) implies g(y)$ Va'Cf(x)). Hence 

g$ Ua~a~'(f). If the latter is the case, then x E DfnD/ implies Ua~Cx) ,.Dg=¢ for 

some a EA. Hence g$ Ua~a~'(f) (a' E A'). 

Since U·<Ua~3\ mi'<Ua~' imply obviously Uy;~<U"'"''' for every U"'"''' Ullfl' there 

exists Un' such that U;yt(X) ~ Ua~a~1 (X) n u(:l(:l 1 (X) (x E R). 

Lastly, we prove that Ull*<U.,•J and mll'*<m.,, imply Ullll'*<U"'"''· If g, hE Uw(f), 

then for every x E Dg there exsists y E Ull(x) such that f(y) E Vf3 1 (g(x)) and z E Uf3(Y) 

such that h(z) E Vll'Cf(y)). Hence zE Ua~(x), h(z) E V.,,(g(x)). Similarly, for xE Dh 

we get zE Ua~(x) such that g(z) E V.,,(h(x)). Hence hE Ua~a~'(g). 

The last two propositions are valid for an arbitrary family of functions defined 

1) On uniform topology of functional spaces, this journal, Vol. 5, No. 2, 1954. 
2) We assume without loss of generality that y E Ua~(x) implies x E U.,(y) for every u. nbd. 
3) U1<Ua~ means U1(x)CU.,(x) for every x E R. 
4) llJ3*={u{Uf:l(Y)IyE U(3(X)llxERl; hence llf3*<Ua~, if and only if y,zE UJ3(X) implies 

y E U.,(z) for every x E R. 
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on a subset of R and having values in R', 

From now on we concern ourselves only with real valued functions ; hence this 

new uniform topology is defined by {U.,,,IaEA, e>O}, U.,,={U.,,(/)1/EF(R)}, 

U.,,(f) = {glflx E Df 'JJ.y E U.,(x): 1/(x)- g(y) I <e; Vx E Dg 'JJ.y E U.,(x): I g(x)- f(y) I 

<e}. We denote by Fu(R) (F(R)) the uniform space with this uniform topology 

consisting of all the uniformly continuous (continuous) functions defined on a closed 

set of R and having values between 0 and 1. 

DEFINITION. We define M(x) to mean the mapping which maps x E R to the 

function X Cfi/E Dx): x(f) = f(x), Dx= {/I X E Df}CFu(R). 

LEMMA 1. M(x) E F(Fu(R)) for every x E R. 

Proof. If j$Dx. then x$Df, and hence there exists a such that U.,(x).,Df=¢. 

Therefore gE U.,,(f) implies x$Dg, i.e. g$Dx; hence Dx is closed. If /EDx, then 
e s) 

foreverye>O thereexistsaEAsuchthat I/(U.,(x))-f(x)l<2 . SincegE U.,f(f) 

implies I g(x)- f(x) I< e, x(f) is continuous. 

THEOREM 2. M(x) is a uniformly homeomorphic mapping from R onto M(R) 

CF(Fu(R)). 

Proof. It is obvious that M(x) is one-to-one. M(x) is uniformly continuous. 

For given e>O and aEA we take ~EA such that Ull*<U.,. If yE U11(x), then for 

/EDx, we take rEA such that 1/(Uy(x))-/(x)l<e, I/(U1(y))-al<e for some a. 

Defining g(y) = f(x), g(x) =a(x$ Dgfor U (y) nDf=¢), g(z) = /(z)(z E U/(x) n U/(y)), 

we obtain gE U.,,(f) such that x(f)=y(g). Since ly(f)-x(g)l<e for /EDy, we 

have M(y) E U., .. (x)"). Thus M(x) is uniformly continuous. 

Next, we show the uniform continuity of the inverse mapping M-1 (x(/) ). If for 

a given aE A, it holds y$ U"(x), then for an element f of Fu(R): f(x)=O, /(y)=l, 
1 

Df={x,y}, and for every gE U.,~(f) we get g(y)> 2 . Hence y(g)-x(f) 

=g(y)-f(x)>;, and hence M(y)$ U"u(M(x)). Thus M- 1(x(f)) is uniformly 

homeomorphic. 

Now, we consider a diverging cauchy filter iY' = {F/ IrE C} and denote by 

iY= {F8 I tJE D} the cauchy filter {S(F/, U,) IrE C, a E AP) defined from iJ'. We define 

a function u on the subset Du= {fiDfnFs=f=¢(o ED)} of Fu(f) by u(f)=limf(F8 ). 

LEMMA 2. u(f) E F(Fu(R)). 

Proof. If/$ Du, then DfnFs=¢ for some oE D, and hence S(Fs', U.,),Df=¢ 

for some o'ED and a EA. Since gE U.,,(f) implies Fs'nDg=¢, it also implies 

5) We use the notation lf(Ua~(x))-f(x)l< ~to mean lf(y)-f(x)l<fforevery yE U"(x). 

6) Ua~a.(a) denotes the u. nbd of a E F(Fu(R)) defined by Ua~a and E. 

7) S(A, U'l')=U{U'l'(x) I Uy(x)nA=!=.P}. 



On uniform toPology of functional spaces (II) 73 

g$Du- Hence Du is closed. If /EDu, then for every e>O there exist oED, ~EA 

such that 1/(S(Fa, U01))-u(f)l<~. Since gE U"'-t(f) implies lg(Fa)-u(f)l<e 

and accordingly implies I u(g) -u(f) I< e, u(f) is continuous. 

LEMMA 3. Using above notations, every diverging cauchy filter tr' = {F/ I IE C} 

converges to u(f) in F(Fu(R) ). 

Proof. For given e>O and a:EA, we take~'. {3' such that Uf3*<Ua~'<Ua~'*<U"' 

and Fa E tr such that Fa C U011 (X0 ) for some X0 • We shall prove X E UOJee(u) for every 

xEFa. Let fEDu, then there exists Fa'Etr such that V(x)uS(Fa, Ull')CUa~'(X0 ), 

lf(V(x))-al<e, lf(S(Fa', Ulv))-u(f)l<-f for some nbd V(x) of x and {3'EA. 

If we define gEFu(R) by g(x)=u(f), g(Fa')=a (Fa'nDg=rp for V(x)nDf=¢), 

g(z)=/(z)(zE Vc(t)nSc(Fa, Uv)), then gE U0J,(f) and u(f)=x(g). If xEDf, then 

u(g)=a and lx(f)-u(g)l<e. Hence xE U,..,(u). Therefore tr and tr' converge to 

u(f). Thus this lemma is established. 

From this lemma we get 

THEOREM 3. M(R) is complete, where M(R) denotes th~. closure of M(R) in 

F(Fu(R)). 

It is easy to prove the well known uniqueness of the completion by our method. 

CoROLLARY. If R=R* and if R* is complete, then R* is uniformly homeomorphic 

with M(R) by a correspondence which maps x E R to M(x). 

Proof R* and M*(R*) CF(Fu(R)) are obviously uniformly homeomorphic by 

the mapping M*(x*): R* 3 x*->x*(fl (E Fu(R)) (x*(f) =lim {f(U(x*) nR) I U(x*) is 

a nbd of x*} ). Since R=R*, M*(R*) CM(R). Moreover, since R* is complete, it 

must be M*(R*)=M(R). 

REMARK. Generally, the topology deduced from this new uniform topology is 

weaker than the strong topology and stronger than the weak topology in any space 

consisting of continuous functions. Moreover, it is obvious that this uniform topology 

agrees with the strong topology in any space consisting of uniformly continuous 

functions. 

DEFINITION. We use L(R) to mean the uniform space8l of all the bounded 

uniformly continuous functions of R with the natural lattice-order, where R is a 

complete uniform space. 

DEFINITION. If a non-vacuous subset ] of L(R) satisfies the conditions, 

i) j< gE] implies /E], 

ii) if there exists n /1 for f· $_ j, then n /1 $_ j, 
YE< Y 

then we call ] an i-set. 

8) The uniform topology is of course the above defined one. 
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We call a non-vacuous subset satisfying the dual conditions an s-set. 

DDFINITION. We mean by an i-deal a subset I of L(R) satisfying 

1) I= n {!>..I). EM}, where ];, are i-sets, and for every A, fl. E M there exists 

vE M such that fvCf>..nf~'-, 

2) if J.y E I Cr E C) and if { f IrE C} is upper bounded, then for every Uae there 

exist f/ Cr E C) such that f/ > f 1 and f E UaeCf-/) for some f E I. 

3) I is a non-trivial ideal. 

We call a subset satisfying the dual conditions an s-ideal. 

LEMMA 4. For any open set V, {fl:;rxE V:f(x)<a}=]a(V) is ani-set. 

{fl:;rxE V:f(x)>a}=Sa(V) is an s-st. 

Proof. It is obvious. 

LEMMA 5. {flf(x) < k} =Ik(x) is an i-ideal. 

{flf(x)>k}=Sk(x) is an s-ideal. 

Proof. Ik(X)=nUaCV)Ia>k, Vis anopennbdof x} is obvious. Since Condi­

tion 2) is obviously valid for an isolated point x, we prove 2) for an accumulating 

point x. Let f 1 E Ik(x) Cr E C) and let fy~q for a real number q(>k), then for a 

given Uae we take {3 E A and a natural number n such that U13*<U"', q- k < s. Since 
n 

there exist different n points X1 , x2 , ... , Xn in U13(x), we can define fEL(R) such 

that f(x)=k, f(X;)=k+q~ki( i=l--- n), f(Uf3c(x))=q, k <t<q. 

Taking x;'1 EUfJ(X) (i=l--·n) such that x/=f=x/ (i=f=j), f(x/)~k+q~ki, 
q-k 

we can define f/ such that fy'(x; 1)=k+--;;;-i, f-/>f1 , f/CUt{(x))=q, k<t-/<q. 

Since fE Ik(X) and fE UaeCf/) are obvious, Ik(x) satisfies 2). 

LEMMA 6. For every i-set ] there exist a real number a and an open set P such 

that f(x) <a for some x E P implies f E P) 

Proof. From now forth we omit the same proofs as those of the previous paper.10) 

See (I). 

LEMMA 7. If I=nU11J.EM} is ani-ideal and if sup {al there exists P such 

that xEP, f(x)<a imply fEf>..}-e=a>.. Cs>O), then inf {a>..IJ.EM}=f=-oo, 

Proof. See (I). 

Let us put inf{a;~.IJ.EM}=a (=f=-oo), then for every f>.. there exists some open 

set P such that f(x) <a and xE Pimply fEf>..-

Hence we can give the following 

DEFINITION. u{Pif(x)<a and xEP (open) imply fEf>..}=P>... 

9) Lemmas 6-15 admit the dual propositions. 
10) Joe. cit. We call this paper (I) for brevity. 
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LEMMA 8. fA CJ~'-(1., /1. EM) imp!ies PA CPp.. 

Proof. See (1). 

LEMMA 9. { PA I A EM} is a cauchy filter. 

Proof. See (I). 
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Since R is complete, {PA} converges to a point x of R. Then {flf(x) <a-e} 

Cf"'-.(x) CI Ce>O) is obvious. 

LEMMA 10. {flf(x)<c}CI for C=sup {kl]k(x)CI}. 

Proof. It is obvious. 

LEMMA 11. f(x) >c impllies f$ I for c=sup {kl]k(q) CJ}. 

Proof. See (1). 

DEFINITION. We denote by I(x, c) an i-ideal I satisfying Lemmas 10, 11. 

LEMMA 12. Every i-ideal is represented uniquely by the form I(x, c). 

Proof. It is obvious. 

DEFINITION. For two i-ideals I,, I 2 we define I,-I 2 to mean that there exists 

somes-ideal "such that Sr.I1=¢, Sr.Iz=¢. 

LEMMA 13. I(x, c)-I(y, d), if and only if X=y. 

Proof. It is obvious. 

DEFINITION. For an i-ideal I and an s-ideal S, we define S-I to mean that 

there exist some i-ideal I, and s-ideal 5 1 such that S -51 , I- I 1 ; 5 1 r.I1 = ¢. 

LEMMA 14. I(x, c)-S(y, d), if and only if X=y. 

Proof. It is obvious. 

Hence we can classify all the i-deals and all the s-ideals by-. We denote by 

'i!(R) the totality of such classes and by 'i!(x) the one-to-one mapping from R onto 

'i!(R), which maps x to the classes consisting of I(x, a) and S(x, b). 

DEFINITION. If for a family {I (x, a (x)) I x E A} of i-ideals there exists 

fE n I(x,a(x)), then we call this family lower bounded. "Upper bounded" is defined 
"'EA 

as the dual. 

LEMMA 15. {I(x, a(x)) lxE A} is lower bounded, if and only if inf {a(x) lxE A} 

=f=-oo. 

Proof. It is obvious. 

DEFINITION. 'i!(U) and 'i!(A) are called u-disjoint, if and only if for every 

lower bounded {I(x, a(x)) I x E U} and upper bounded {S(x, b(x)) I x E A} there exists 

fEn I(x, a(x)) n S(x, b(x)). 
"'EU "'EA 

LEMMA 16. 'i! ( U) and 'i! (A) are u-disjoint, if and only if there exists a uniformly 

continuous function f such that f(U)=O, f(A)=1, O<f<l. 
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Proof. It is obvious. 

DEFINITION. A family {2(V(x)) lxE R} of non-void subsets of 2(R) is called a 

uniform nbd of 2 (R), if and only if 

(1) 2 (y) E L( V(x)) implies 2 (x) E 2 ( V(y) ), and there exists {2 ( U(x)) I x E R} 

such that 

(2) 2(U(x)) and 2(Vc(x)) are u-disjoint, 

(3) there exist a(y), b(x), a, e such that {/(y, a(y)) IY E U(x)} is lower 

bounded; fx En {l(y, a(y)) I y E U(x)} and gx E S(x, b(x)) imply gx$ UrxeCfx) for 

every xE R. 

LEMMA 17. {2(V(x)) lxE R} is a uniform nbd of 2(R), if and only if 

{ V(x) I x E R} is a uniform nbd of R. 

Proof. If { V(x) I x E R} is a u. nbd of R, then there exists a E A such that 

Uro(X) and vc(x) are u-disjoint for every X E R. Let a(y) = 0, b(x) = 1, e= 1, then 

fxE n{I(y, O)lyE Uro(x)} and gxES(x, 1) mean fxCUrx(X))<O and gx(x)_?:1 respec­

tively, and hence gx$ Urx1Cfx) (xER). 

Conversely, if { V(x) I x E R} is no u. nbd of R and if (1) is valid for 

{2(V(x)) lxE R}, then we can show that Cortdition (3) is not valid for any {U(x)} 

such that U(x) and Vc(x) are u-disjoint. Take any a(y), b(x), a E A, e>O such 

that {l(y, a(y))lyEU(x)} is lower bounded, and put c(x)=inf{a(y)lyEU(x)}. 

Let Uf3*<Urx and let U13(x)% V(x), then there exists y E U13(x)- V(x). If x, y are 

isolated points, then defining f(y)=b(x)+1, f(z)=c(x) (z=j=y); g(x)=b(x)+l, 

g(z) = c(x) (zi=x), we obtain f, g such that /E n {l(y, a(y)) IY E U(x) }, g E S(x, b (x)) 

and gE Urx 2 (f). 

If y is an accumulating point, then take a natural number n and a nbd W(y) 

of y such that b(x)+!-c(x)<e; W(y)nU(x)=¢, W(y)CU13(x). Sincethereexist 

different n points Y; (i = 1 ... n) in W(y), we can define f, g E L(R) such that 
b(x)+1-c(x). 

f(y;)= n z+c(x), f(Wc(y))=c(x), c(x)<f<b(x)+l; g(x)=b(x)+1, 

b(x)+1-c(x). 
g(y;)= n t+c(x), g(Ur/(x))=c(x), c(x)~_g<b(x)+l. Then fEn 

{l(y, a(y))lyE U(x)}, gES(x, b(x)) and gE UtJ,(f). 

If x is an accumulating point, then since x E UtJ(Y)- V(y), we can prove the 

existence of such an element g of L(R) in the same way. Hence {2 ( V(x)) I x E R} 

is no u. nbd of 2(R). 

Thus we get 

THEOREM 4. In order that two comPlete uniform spaces R1 and'R2 are uniformly 

homeomorphic, it is necessary and sufficient that L(R1) and L(R2) are uniformly 

isomorphicY) 

11) A uniform isomorphism means a uniform homeomorphism preserving the lattice-order or 
the ring -operation. 
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CoROLLARY. In order that two complete uniform spaces R1 and R2 are uniformly 

homeomorphic, it is necessary and sufficient that C(R1 ) and C(R2 ) are uniformly 

isomorphic10, where C(R;) is the ring of all the bounded uniformly continuous func­

tions on R; and having our uniform topology. 

If we concern ourselves with the uniformly topological lattice consisting of func­

tions having values between 0 and 1, then the discussions are simpler. 

THEOREM 5. In order that two complete uniform spaces R1 and R2 are uniformly 

homeomorphic it is necessary and sufficient that L' (R1 ) and L' (R2 ) are uniformly 

isomorphic, where l./(R;) is the lattice of all the uniformly continuous functions on 

R; having values between 0 and 1 and has our uniform topology. 

Proof. Since the proof is analogous to that of Theorem 4 and is simpler than 

it, we omit this proof. 


