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In the previous paper” we defined a new uniform topology of functional space
and studied analogous theories about uniform spaces as about topological spaces.
However, the uniform topology was defined with the order of real numbers and was
unnatural. In this paper we shall define a more natural uniform topology and shall
simplify the theories.

In this paper we denote by R a uniform space and by {U,|ac A},
U,={U,(x)|x€ R} the u.nbd (=uniform neighbourhood) system of R.?

DerFiniTION. We denote by F(R) a family of functions defined on a subset of
R and having values in a uniform space R’ with the u.nbd system {B,|a €A},
By={Vy () |2 € R'}. Moreover, we denote by Dy the domain of definition of a
function F€ F(R). For fe F(R) we define a subset of F(R) by U, (f)={g|Vxe€
Dy Hy € Uy(x) : g(9) € Vo (f(x)) ; V€ Dg Hy € Up(x) : f(3) € V(gD }.

THEOREM 1. {U,pla€ A, &’ € Ay Npw={ULw (f)|FEF(R)}) satisfies the condi-
tion of u.nbd system in F(R) consisting of continuous functions defined on a closed
set of R.

Proof. We denote by f, g, h elements of F(R). Let f==g, then f(x)==g(x) for
some % € Dy~ Dg, or there exists x€ (Df~Dg) "~ (Dg~Ds®). If the former is the case,
then there exist @€ A, &’ € A’ such that y€ U,(x) implies g(y) ¢ V(f(x)). Hence
g€ Uy (f). If the latter is the case, then x € Df~Ds° implies U,(x) ~Dg=¢ for
some € A. Hence g¢ U, (f) (@’ €A)).

Since W, <U,*», B< Ny imply obviously U, < U,,, for every U,,, Ugps there
exists 1,y such that U,y/(%) & Uyw (%) A Upp (%) (x€R).

Lastly, we prove that Ug*<11,* and Bp*< BV, imply UgpHF< Wy, If g, k€ Upp(f),
then for every x € D, there exsists y € Up(x) such that f(y) € Vp/(g(x)) and z€ Up(y)
such that A(2) € Vp/(f(y)). Hence z€ U,(x), h(2) € Vp(g(x)). Similarly, for x€ D,
we get z€ U,(x) such that g(2) € Vy/(h(x)). Hence h€ U,y (g).

The last two propositions are valid for an arbitrary family of functions defined

1) On uniform topology of functional spaces, this journal, Vol. 5, No. 2, 1954.

2) We assume without loss of generality that y € Ua(x) implies x € Un(y) for every u.nbd.

3) My<Ue means Uy(x)ZUw(x) for every x€ R.

4) Np*={“Y{Up(y)|yc Us(x)}|xc RY; hence Mp*<Ww, if and only if y, z€ Up(x) implies
y€ Un(2) for every x€ R.
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on a subset of R and having values in R/,

From now on we concern ourselves only with real valued functions; hence this
new uniform topology is defined by {Uu.la€ A, e>0}, Upe={U,( |fEFR},
Uue( f)={g|Vx€Ds Ay € Uy(x): | f() —g(9) |< e ; Vx€Dg Ay € Up(x): |g(x) —f ()]
<e}. We denote by F,(R) (F(R)) the uniform space with this uniform topology
consisting of all the uniformly continuous (continuous) functions defined on a closed

set of R and having values between 0 and 1.

DErFINITION. We define M(x) to mean the mapping which maps x€ R to the
function x (f|f€ Dx): x(f)=f(x), Dx={f|x€ DS Fu(R).

LEMMA 1. M(x) € F(Fu(R)) for every x€ R.

Proof. If f& Dy, then x¢ Dy, and hence there exists a such that U,(x) ~Dr=4¢.
Therefore g€ U,(f) implies x¢ Dg, ie. g¢ Dy; hence Dy is closed. If f€ Dy, then
for every e >0 there exists a € A such that |f(U,(x)) —f(x)| <% 5). Since g€ Uwzi(f)
implies |g(x)—f(x)|<e, 2(f) is continuous.

THEOREM 2. M(x) is a uniformly homeomorphic mapping from R onto M(R)
CF(F.(R)).

Proof. 1t is obvious that M(x) is one-to-one. M(x) is uniformly continuous.
For given ¢ >0 and a € A we take B€ A such that Ug*<U,. If y€ Us(x), then for
f€ Dy, we take y € A such that |f(Uy(x))—f(x)|<e, |f(U,(3))—a|<e for some a.
Defining g(y) = f(x), g(x) =a(x¢ Dgfor U.(9) A Dr=¢), g(2)=f(2)(z€ U (%) AU/ (9)),
we obtain g€ U, (f) such that x(f)=y(g). Since |y(f)—x(g)|< e for f€D,, we
have M( ) € Ugee(x)®. Thus M(x) is uniformly continuous.

Next, we show the uniformi continuity of the inverse mapping M~'(x(f)). If for
a given a€ A, it holds y¢ U,(x), then for an element f of Fu(R): f(x)=0, f(y)=1,
Dr={x, 3}, and1 for every g¢ Ud%(f) we get g(y)>%. Hence y(g)—x(f)
=g(y)—f(x)>?, and hence M(y) ¢ Uyyy(M(x)). Thus M~'(x(f)) is uniformly
homeomorphic.

Now, we consider a diverging cauchy filter ¥ ={F,|7y€C} and denote by
T={F;|0€ D} the cauchy filter {S(F/, 1) |7 €C, a€ A} defined from F. We define
a function # on the subset D,={f|Ds~Fs==¢(6 € D)} of F.(f) by u(f)=1lim f(Fj).

LEMMA 2. u(f) € F(F.(R)).

Proof. If fé& D,, then Df~Fs=¢ for some ¢ € D, and hence S(Fy, U,) ~Dr=0¢
for some 0'€D and a€A. Since g€ U,(f) implies Fy~Dg=¢, it also implies

5) We use the notation |f(Ux(x)) —f(x)]<% to mean | F(y) —f(x) [<% for every ye€ Un(x).
6) Uxee(@) denotes the u.nbd of a€ F(Fu(R)) defined by lee and &.
7 S, Uy) =" {Uy(x) | Uy(x) A4},
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gé¢ D,. Hence D, is closed. If f€D,, then for every ¢ >0 there exist 6€ D, a€ A
such that |f(S(Fs, llw))—u(f)|<%. Since g€ Uiz(f) implies | g(Fs)—u(f)|<e

and accordingly implies |u(g)—u(f)|<e, u(f) is continuous.

LeMMA 3. Using above wotations, every diverging cauchy filter ¥ ={F/|r¢cC}
converges to u( f) in F(Fu(R)).

Proof. For given ¢>>0 and a€ A, we take «’, 8’ such that Ug*< U< U, *<1,
and F; €% such that FsC Uy(x,) for some x,. We shall prove % € Uge(u) for every
xCFy. Let f€D,, then there exists Fy € § such that V(x)“~S(F;s, Us) S Uy (),
[f(V(x))—a|<e |f(S(Fy, ug/))—u(f)l<-;- for some nbd V(x) of x and B'€A.
If we define g€ F,(R) by g(x)=u(f), g(Fs)=a (Fy~Dg=¢ for V(x)~Dr=¢),
g(2)=f(2)(z€ V¢(£) ~S°(Fs, Up")), then g€ Uy(f) and u( f)=x(g). If x€ Dy, then
w(g)=a and |x(f)—u(g)|< e. Hence x€ Uye(x). Therefore T and & converge to
u(f). Thus this lemma is established.

From this lemma we get

THEOREM 3. M(R) is complete, where M(R) denotes the closure of M(R) in
F(Fu(R)).

It is easy to prove the well known uniqueness of the completion by our method.

COROLLARY. If R=R* and if R*is complete, then R¥ is uniformly homeomorphic
with M(R) by a correspondence which maps x€ R to M(x).

Proof. R* and M*(R*) CF(F.(R)) are obviously uniformly homeomorphic by
the mapping M*(x%): R¥3 x*—x*(f|f€ Fu(R)) (x¥*(f)=lim { f(U*) A R) | U(x¥) is
a nbd of x*}). Since R=R¥ M*(R¥) CM(R). Moreover, since R¥ is complete, it
must be M*(R*¥)=M(R).

REMARK. Generally, the topology deduced from this new uniform topology is
weaker than the strong topology and stronger than the weak topology in any space
consisting of continuous functions. Moreover, it is obvious that this uniform topology
agrees with the strong topology in any space consisting of uniformly continuous

functions.
DerINITION. We use L(R) to mean the uniform space® of all the bounded

uniformly continuous functions of R with the natural lattice-order, where R is a

complete uniform space.

DEFINITION. If a non-vacuous subset J of L(R) satisfies the conditions,
i) f=gé€] implies f€],
ii) if there exists (N f, for f.¢ J, then N £, & J,

yee ¥

then we call J an i-set.

8) The uniform topology is of course the above defined one.
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We call a non-vacuous subset satisfying the dual conditions an s-sef.

DprINITION. We mean by an i-deal a subset I of L(R) satisfying

1) I=~{/,]A€ M}, where J, are i-sets, and for every 4, pn€ M there exists
v € M such that J,& Jy~ Ju,

2) if fy€I(y€C) and if {f |r€ C} is upper bounded, then for every U, there
exist f,/(y € C) such that f/>fy and f€ U, (fy) for some f€l.

3) [ is a non-trivial ideal.

We call a subset satisfying the dual conditions an s—ideal.

LeEMMA 4. For any open set V, {flax€ V: f(x)<a}=]J.,(V) is an i-set.
{flaxeV:f(x) >a}t=S,(V) is an s-st.

Proof. Tt is obvious.
LEMMA 5. {f|f(x) <k}=I1(x) is an i-ideal.
{F1f(2) =k} =Sp(x) is an s-ideal.
Proof. In(x)=~{J.(V)|a>>k, V is an open nbd of x} is obvious. Since Condi-

tion 2) is obviously valid for an isolated point x, we prove 2) for an accumulating
point x. Let fy € (%) (y€C) and let f,<q for a real number ¢(">k), then for a
given U,. we take 8€ A and a natural number # such that Ug*<1l,, q—Tk<€. Since
there exist different # points x,, %,,, ==+, %, in Up(x), we can define f€ L(R) such
that f(x) =k, f(x)=k+ 9 FiCi=1m), AU =g, k <F=g.

Taking ;Y€ Us(x) (i=1---n) such that xY=Fx;Y (i=Fj), f(x,-")gk+g%1—ei,
we can define f/ such that £y =k+L Fi, f/=Fy, F/(UsSa) =g, k<A <a.
Since f€ I(x) and f€ U,.(fy) are obvious, Ix(x) satisfies 2).

LEMMA 6. For every i-set J there exist a real number a and an open set P such
that f(x) <a for some x€ P implies f€ J.?

Proof. From now forth we omit the same proofs as those of the previous paper.'®
See (D).

LemMA 7. If I=~{J/|A€ M} is an i-ideal and if sup {a| theve exists P such
that x€ P, f(x)<a imply f€ J,} —e=a, (¢>0), then inf {a,|A€ M}==—co.

Proof. See (I).
Let us put inf {a\|A€ M}=a (5= —o0), then for every J, there exists some open
set P such that f(x) <a and x€ P imply f€ J,.

Hence we can give the following

DeriniTION. Y {P|f(x)<a and x€ P (open) imply f€ J,} =P,.

9) Lemmas 6-15 admit the dual propositions.
10) loc.cit. We call this paper (I) for brevity.
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LEMMA 8. LW Ju(A, u€M) implies P, Py.

Proof. See (D).

LEMMA 9. {P\|A€ M} is a cauchy filter.

Proof. See (D).

Since R is complete, {P,} converges to a point x of B. Then {f]f(x)<a—¢}
C Ju-(x) &1 (¢2>0) is obvious.

LemMma 10. {f| f(x) <c} ZI for c=sup {k| Ju(x) ZI}.

Proof. It is obvious.

LemMma 11, f(x) >c impllies f& 1 for c=sup {k|Je(qg) ZI}.

Proof. See ().

DeFINITION. We denote by I(%, ¢) an i-ideal I satisfying Lemmas 10, 11.

LeMMA 12. Every i-ideal is represented uniquely by the form I(x, ¢).

Proof. 1t is obvious.

DEeFINITION. For two i-ideals I, I, we define I,~I, to mean that there exists
some s—ideal S such that S~I,=¢, S~ L=4¢.

LeMMA 13. I(x, c)~I(y, d), if and only if x=y.

Proof. 1t is obvious.

DEFINITION. For an i-ideal I and an s-ideal S, we define S~/ to mean that
there exist some i—ideal I, and s-ideal S, such that S~S,, I~I,; S;~1,=¢.

LemMA 14. I(x, ¢)~S(3, d), if and only if x=y.

Proof. 1t is obvious.

Hence we can classify all the i-deals and all the s-ideals by~. We denote by
Q(R) the totality of such classes and by ¥(x) the one-to-one mapping from R onto
Q(R), which maps x to the classes consisting of I(x, @) and S(x, b).

DeriNiTION. If for a family {I(x, a(x))|x€ A} of i-ideals there exists
f exg I(x,a(x)), then we call this family lower bounded. “Upper bounded” is defined
as the dual.

LemMmA 15, {I(x, a(x))|x€ A} is lower bounded, if and only if inf {a(x)|x€ A}
F—oo.

Proof. 1t is obvious.

DeFINITION. £(U) and ¥(A) are called wu-disjoint, if and only if for every
lower bounded {I(x, a(x))|x€ U} and upper bounded {S(x, b(x))|x€ A} there exists
waQUI(x, a(x))m@4 S(x, b(x)).

LeEMMA 16. L(U) and &(A) are u-disjoint, if and only if there exists a uniformly
continuous function f such that f(U)=0, f(A)=1, 0<F<1,
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Proof. 1t is obvious.

DEFINITION. A family {€(V(x))|x€ R} of non-void subsets of ¥(R) is called a
uniform nbd of ¥(R), if and only if

(1) () €L(V(x)) implies 8(x) € 8(V(»)), and there exists {L(U(x))|x€ R}
such that

(2) {(U(x)) and L(V°(x)) are u-disjoint,

(3) there exist a(y), b(x), a, ¢ such that {I(y, a(y))|y€ Ux)} is lower
bounded ; fr€ ~{I(y, a(»))|y€ U(x)} and g.€S(x, b(x)) imply gx¢ Uye(fx) for
every x€ R.

LEmMMA 17. {2(V(x)|x€R} is a uniform nbd of £(R), if and only if
{V(x)|x€ R} is a uniform nbd of R.

Proof. If {V(x)|x€R} is a u.nbd of R, then there exists € A such that
U,(x) and V°(x) are u-disjoint for every x€ R. Let a(y)=0, b(x)=1, e=1, then
Jx€ ~AH(3,0)|y€ Uy(x)} and gz€S(x, 1) mean fo(U,(x)) =<0 and g«(x)>1 respec-
tively, and hence g.¢ Un(f2) (x€R).

Conversely, if {V(x)|x€R} is no u.nbd of R and if (1) is valid for
{8(V(x))|x€ R}, then we can show that Condition (3) is not valid for any {U(x)}
such that U(x) and V°(x) are wu-disjoint. Take any a(y), b(x), ¢ € A, e >0 such
that {I(y, a(»))|y€ U(x)} is lower bounded, and put c(x)=inf {a(y)|y€ Ux)}.
Let Ug*<U, and let Up(x) EV(x), then there exists y€ Us(x)—V(x). If x, y are
isolated points, then defining f(¥)=b(x)+1, f(&)=c(x) (z=Fy); glx)=b(x)+1,
g(@)=c(x) (z==x), we obtain f, g such that f€ ~{I(y,a(»)|ye Ulx)}, g€S(x,b(x))
and g€ Uy:(f).

If y is an accumulating point, then take a natural number # and a nbd W(y)
of y such that Il(ﬁ)—%—cu—) <e; W) AU =¢, W(y) S Us(x). Since there exist
different # points y; (¢(=1---n) in W(»), we can define f, g€ L(R) such that
Flop-HEELC@D i ) p W) =), c@SFSB@HT; =0 +1,

gl =" D o), (U=, e <g=<bHD+1. Then fe

{I(3,a(y) |y U}, g€S(x, b(x)) and g€ Us:(f).

If x is an accumulating point, then since x€ Us(y)— V(»), we can prove the
existence of such an element g of L(R) in the same way. Hence {€(V(x))|x€ R}
is no u.nbd of L(R).

Thus we get

THEOREM 4. In order that two complete uniform spaces R, and R, are uniformly
homeomorphic, it is necessary and sufficient that L(R,) and L(R,) are uniformly
isomor phic.t?

11) A uniform isomorphism means a uniform homeomorphism preserving the lattice-order or
the ring-operation,
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COROLLARY. In order that two complete uniform spaces R, and R, are uniformly
homeomorphic, it is necessary and sufficient that C(R,) and C(R,) arve umiformly
isomor phic*®, where C(R;) is the ving of all the bounded uniformly continuous func-
tions on R; and having our uniform topology.

If we concern ourselves with the uniformly topological lattice consisting of func-
tions having values between O and 1, then the discussions are simpler.

THEOREM 5. In order that two complete uniform spaces R, and R, are uniformly
homeomorphic it is necessary and sufficient thai L'(R)) and L'(R,) are uniformly
isomorphic, where L'(R;) is the lattice of all the uniformly continuous functions on
R; having values between O and 1 and has our uniform topology.

Proof. Since the proof is analogous to that of Theorem 4 and is simpler than
it, we omit this proof.



