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Recently A. W. Goldie [2] has proved that the quotient ring of a prime ring
with some'asqending chain condition is a simple ring with minimal condition. In
this note we shall show that we can obtain the properties of a ring whose
quotient ring is a primitive ring with minimal one sided ideals (P.M.L.), which
are analogous to those of a prime ring in [2]. The following example shows
that there exists such‘a ring.

Let I be the ring of rational integers. Let R, be a sub-ring of matrix ring
with infinite degree over the ring of rational numbers such that

(aif)
( 2’”12% ) mi€l, (aij)€l,.

Let R=UR,, then if an element a of R is not zero divisor, @ is the following

form:
(aij)
=( 2m12m2 ) laij|<=0, m;==0.

Hence the right (and left) quotient ring of R is Q=U@Q,,:

(aij)
Qn:< . ) (aii) €Qn and mi€Q’,
where @’ is the ring of rational numbers, and @ is P.M.IL..

In this note there are many statements which overlap [2], but we shall
repeat those for the sake of completeness.

1. Preliminaries.

Let R be a ring with the right and left quotient ring @ and we shall call
non zero divisor elements regular elements. We shall denote one sided ideals
of R by Roman and ones of @ by German.

We have the following statements.
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(1) If ¢1, €y, Cn are regular elements of R, thew there exist regular elements
dy, dy, - ,d, and c such that
il =d;ct.
We can prove this by the induction with respect to #, cf. Asano [1], and [2]
Lemma 4. 2.
(2) If A is a right, left and two sided ideal respectively, then AQ, QA and
QAQ consist of ac™, ¢t a and d*ac™', a€ A and ¢, d€ R, respectively.
Cf. [2] Lemma 4. 3. ;
(8) Lett be a non zero right ideal of Q, then t~R=(0).
Let S be a sub-set of Q. We shall define the following annihilators.
S, =izl €R, Sx= (O},
Sk ={x]€Q, Sx=(0)} and
S = {a| €R, there exists a regular element b in R such that
b aeSY(SAR).
(4) Let t be a right ideal of Q, then
t=(~R)Q.
It is clear t=2( ~R)Q. If x€r then x=ac™ a, c€ER and a=xc€r~R Hence
x€(~R)Q.
(5) Sy =S~ R and Spx=S,Q.

It is clear that S,*=2S,Q. If ¢€S,* and a=bc™, b, c€ R, then (0)=Sa=Sbc™*
hence b€S,.
We have clearly
( 6 ) Sr* = (S)r* cmd (S)r = Sr*mR.
Let { be a left ideal of Q, then
7 UAR)r = Lx~R.
By the definition {={~R and by (6) we have ({~R),=[,={,#~R.

(8) Let I, be a maximal annihilator in R, then I,Q is so in Q.
Let 1,x be a maximal annihilator in Q, then (,*~R is so in R.

It is clear that I, @ is an annihilator. If there exists an annihilator [, such that
[#21,Q, then ([~R),=0*~R2[,Q~R21I,. By (3) [~R=+(0), and ({~R),=R,
hence ({~R),=I, and [*={*~R)Q=(~R),Q=1,Q. Conversely let t be a
maximal annihilator, then t~R is an annihilator in R by (7). If I,=2t~R, by
(4) we have

t=C~RQZLQ=1I%, hence t=IL*2], and t~R=1,.
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Let I (&=(0)) be a right ideal in R. We shall call maximal right ideals J with
J~I=(0) complements of I (denoted by I¢, I¥,---).

Let I be a right ideal in R. For any complement I° of I in R there exists a
complement (IQ)°" of IQ such that

(9 1°Q = (IQ)”,
and conversely for any complement (IQ)° of IQ there exists a complement I° of I
satisfying (9).

If x€e(IQ~I°Q), then x=ict=jd* i€l, j€I° and we have by (2) ¢ '=af,
d7*=bf ™, hence ia=jb€I~1°=(0) and x=0. If there exists a right ideal | such
that 7°Q< ] and {~IQ=(0), then |~R~I<]~IQ = (0), hence since I°Zj~R, I°
={~R and I°Q=(~R)Q=1. Therefore I°Q is a complement of [Q. Conversely
let (IQ)° be a complement, then from the fact (JQ)* ~R~I=(0), (IQ)* ~REI*
hence (IQ)*=((IQ)* ~R)QZI°Q. From the above I°Q=(IQ)°’, hence (IQ)*
=(IQ"=I°Q.

Let t be a right ideal in Q. For any complement 1° of 1 in Q there exists a
complement (i~R)¢" of (~R) in R such that

(10) AR = (~R)”
and conversely for any complement (1~R)° there exists a complement right ideal
1° in Q satisfying (10).

From the fact i~R~i°~R=(0) we have *~ RS (~R). i*=\1~R)QT
GARQ=(G~R) Q)= by (9). Hence i°*=1°" and i R=1"" A R=(G~R)“ QAR
23G~R). Conversely (~R)~G~R)=(0), then i~(i~R)*Q=(0). Hence
G~R) Q<1 for some complement I° of I and i°~RZ(i~R)¢. By the above
*~R=G~R)" 2 ({~R)°, hence i ~R=({~R).

2. Uniform right ideals.

We can classify the right ideals in R as follows;

I=] if and only if there exist regular elements d, @’ in R such that for any
elements 7€1, v €], rd€J and »'d’ €I

It is clear that

I=J]if and only if IQ = JQ.
We shall denote the class containing I by [I].
ProrosiTiON 1. The right ideals in Q are lattice isomorphic to {[I]}.

Proof. From the definition and (3) it is clear that this correspondence is
onto and that (,~L)QZLQ~LQ. If x€c[[Q~LQ, x=r,gi'=r.q3%, ;€ 1; and by
(1) we have x=wp i =r,p,t7%, hence np,=7p<cL~I and x€(T,~L) Q. We
have clearly (I,VL)Q =T1LQ“LQ.
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[I1Q ~R is the unique maximal right ideal in [I]. Since @ is P.M.I. there
exist minimal right ideals and we call a right ideal in R which corresponds to
a minimal right ideal in Q@ an wwuiform right ideal and the unique maximal right
ideal in this class basic 7ight ideal.

ProrositioN 2. If U is a uniform rvight ideal, then for any non zevo right
ideals I, ] (SU) I~ ]=F(0).

Proof. Since U is uniform, UQ is irreducible, hence IQ=JQ=U®. From
Proposition 1 I~ /=F0.

- LemMa 12 Let Q be a PM.I ving. If a right ideal t is not minimal, then it
contains at least two minimal vight ideals.

Proof. Let t contain only one minimal right ideal v,. Then t3Ct~3 and
t13=1,=¢Q where 3 is the socle of . Hence r3=¢1rj. For any elements €z, 2€3
we have rz=erz ie. (er—#)z=0. Therefore er—r€3,=(0) and er=7. Hence
er=r=e@Q.

ProprosITION 3. Let U be a right ideal in R. If for any non zero vight ideals
L Jin U I~J=(0), then U is uniform.

Proof. If U is not uniform, there exist two minimal right ideals t,, 1, in UQ by
Lemma 1. Since t,~U==(0), t,~,U=(0) and v, ~U~1.~U=(0), it is a contradiction.

ProposiTiON 4. Let I be a right ideal in R. I is uniform if and only if there
exist elements y,, v, and rvegular elements yi, y5 in R such that for any elements
x, X €I xy]=2x"y,, ¥ y5=%,.

Proof. Let x¢™ and x’¢’™* be elements in IQ. Then by the hypothesis
x’y’=xy with regular element y. Hence x'¢' '=xyy ¢ ‘=xq'qyy ¢ €xQ,
therefore IQ is irreducible. The converse is similar.

ProprsiTION 5. There exist mutually isomorphic uniform right ideals in any
two classes which contain basic right ideals.

Proof. Let I, and I, be basic. Since @ is P.M.I. there exists a Q-isomorphism
Aof ,Q to L,Q. Let ,Q=e;Q, e;=rix7t, ri€1;, x;€R and A(e;) =e.q, g€ Q. Then
Mr)=2(ey %) =exqx,. If we put x.gx,=y27", y,2€R, we have 0F1(»2)=e.qx,2
=, X5  X,q%,2=7,y. Since I,Q and LQ are irreducible, [7,2R'JP=[1] and [7,yR"]
=[1,]. Hence 4 sends r,zR! isomorphically onto r,yR".

If eis a primitive idempotent in R, then so is ¢ in @, hence ¢R is basic. But
basic right ideals are not always principal even if R has the unit. For example, let
K be a field and x be an independent over K and R, be the subring of elements
in K[x] without constant-term. If we put R=EK+ U (R,), as in the first ex-

1) Mr. Kanzaki kindly pointed out to me this proof.
2) aR' means the right ideal in R generated by a.
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ample, then its quotient ring is Q=EK+UK(x),. Let r=e,Q. If t AR is
principal : rmR:(Ol---Oz---O)R, there exist g,,-,g, and k==0€K such that
0--0---0

filk+g)++ fngn,=%, hence min. degree of f,=1. On the other hand there
exist g{, -, g and K ==0¢€ K such that f;(k{+g1)+ -+ f,25=0, hence min. degree
of fi(x)==2. Thisis a contradiction. Next example shows that basic right ideals
are not always mutually isomorphic. Let R=(R,),+euK+ - +e,,K. If an
element ¥ of R is not a zero-divisor in R then x is regular in K(x),, for the
adjoint of x is in R. Let (x;5), (i) be elements of R, and suppose that (x;;)
is non zero-divisor. Then (x;;) ' (yij)|x:ii|E=adj (x:5)+(y;;) is in R, hence
(x:5) adj (x:5)+(yi;)=(yi;)|%:i;|E and |x;;]E is a non zero divisor. Therefore R
has the quotient ring @ =K(x),. e;Q~R is basic and not principal, because
if uQnR=(enfitenfst+ewmfn R, fi€R, then x=3!figi, g:€ Ry which is a

contradiction. On the other hand e:;;Q ~R=¢ey R is basic and principal. Therefore
11 Q~R is not isomorphic to e;; R.

ProprosiTiON 6. Any rvight ideal I in R contains a uniform right ideal in R.
Proof. Since @ is P.M.IL,, IQ contains a minimal right ideal ¢ in @, and further
(0)=+I~t=I~t~R and (I~t~R)Q=t, hence I~ t~R is uniform.
ProposITION 7. Let U be a uniform rvight ideal in R. Then
U= {x| €R, %, ~U=+(0)}.

Proof. If xu=0 for any u € U, then since UQ is irreducible, UQ=u®, hence
xUQ=xu@=(0). Therefore x€ U;.

An element # in R is called right uniform if #R®' is a uniform right ideal
(equivalently if #R is uniform (R;=R,=(0))).

We can define similarly left uniform elements. But the left uniform elements
coincide with the right uniform elements, because if # is left uniform, then
Qu=Qe is irreducible where ¢ is a primitive idempotent, since @ is P.M.I, ¢Q
is irreducible, hence u®Q =ueQ is also irreducible. Therefore « is right uniform,
and the coverse is similar. Hence we may call right (left) uniform elements
simply uniform elements.

ProrosiTiON 8. Let I be a vight ideal in R. If there exists some uniform
element w such that u,~I1=0), then I is uniform. Furthermore if R is prime, then
the converse is true.

Proof. If wu,~I=(0), for any element ag'€u,*~IQ, a€l we have ua =0,
hence a€Il-~u,=(0) and so wu,*~IQ=(0). Let # be a mapping: ¢ >uq. Since
0710)~IQ=(0), we have a isomorphism IQ~uQ, hence I is uniform. Let R be

prime and I be uniform. If #,~I4=(0) for all element « in I, then I*=0 by
Proposition 7. This is a contradiction.
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From the definition xU is uniform if U is so, hence the sum R, of all uniform
right ideals is two sided ideal and R, is the sum of all uniform elements. Therefore
R, coincides with the sum of all left uniform ideals. Furthermore R,Q is the
socle 3 of Q. R,Q@< 3 and since (t;~R)Q@=t;, for x€3, x€Xr; and x € R, Q.

TueoreMm 1. The cardinal numbers of the maximal length of dirvect-sums of
basic right ideals are equal. Further if Q is a sub-P.MI. ring of Sw(m) with
d-dimm=d-dim W, then the cardinal numbers for basic left ideals coincide with ones
for basic right ideals, where Ly(m) is the ring of continuous endomorphisms of m,
topologized by m’—topology, and 4 is the division ring of Lyy(m)—-endomorphisms of m.

Proof. Let B={B,} be the set of basic right ideals. We can order direct-

sums Sj=0%@Bw of elements B, of B as follows:
S;>S; if and only if S;:Sj@wE‘Z_ij. By the Zorn’s Lemma there exists a
maximal element S, in this order. Then S, meets all basic right ideals. If
S:Q%3 there exists a minimal right ideal 1, such that 1,~S,@=(0). Hence
0)=R~t~S:Q@=2R~1~S, and since R~t, is basic, it is a contradction. There-
fore SoQ=3 Since @ is P.M.I. the right dimension of 3 is constant. It is also
true for left basic ideals. Further if @ is as in Theorem, then the left dimension
coincides with the right one.

TueoreEM 2. Let U be a uniform right ideal in R and e(U) be the R-endomor-
phism ving of U. Then non zero element of e(U) is non singular. ¢(U) has the
right quotient division ring which is the Q-endomorphism rving of Q—irreducible
module.

Proof. If ¢€e(U), then ¢ can be extended to a @-endomorphism of UQ.
Because if ug'=u"g’ ' € UQ, then there exist p, s, d by (1) such that ¢g~*=pd™*, ¢'*
=sd™', ‘hence ¢(ug™") =d(u)g™ =d(u)pd™ = ¢(up)d™ = ¢(u’s)d™* = ¢(u’) sd™*
=¢(u’)q’"t. Since UQ is irreducible, the @-endomorphism ring of UQ is a division
ring. Hence if ¢ is not zero, then ¢ is non singular. Let ¢ be any @-endomor-
phism of UQ. Then there exists ¥y in UQ such that ¢(»)=u€cU; y=u'x7, ' €U
and for any element w in U ¢,y w=¢ (' w)=¢( yxw) =uxw =2,,w where 1, :x—ax,
x€R. Hence ¢=2Ausy5.

3. Complements and annihilators.

TueoreM 3. Let B be basic then B=Bi,. A vight ideal B in R is basic if and
only if B is a minimal annikilator. A right ideal M in R is a maximal annihilator

if and only if M=u, where u is a uniform element.

Proof. Let B be basic, then B=BQ~R and BQ=eQ, e=¢>. By (7) B
=(BQ~R)1y=BQi,~R=eQi1,~R=eQ~R=B. If B2L, then (QL),=L,Q< BQ.
Since BQ is irreducible BQ=(QL),. Hence B=BQ~R=(QL),~R=L,. Therefore
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B is a minimal annihilator. Let I=L, be a minimal annihilator. If L,Q=2L*
for some subset L’ in @, then L,=L,Q R2L/x~R=L, by (6). Hence L,=L.
and L,Q=L.Q=L}*. Therefore L,Q is also a minimal annihilator. Let r=¢Q be
an irreducible right ideal in @ contained in L,Q. Then e¢Q=(Qu_. ), and since
L,Q is a minimal annihilator, eQ=L,Q, hence L,=L,Q~R is basic. Let M be a
maximal annihilator. By (8) M@Q=[* is so in Q. Let {, be an irreducible
left ideal contained in [, then Q==[,*=2{,%, hence [,*=[,4x=MQ. Therefore
M (% ~R={y~R)»=B, and B is basic. From Proposition 7 we have B,=u, for
any element # in B. Conversely if # is a uniform element, then Qu is irreducible,
hence (Qu) *=u,x is a maximal right ideal. By (8) w,=u,%*~R is a maximal
annihilator.

Tueorem 4. Let M be a right ideal in R. M is a maximal complement in R
if and only if MQ is a maximal one of right ideals v with (t:Q),=(0) and
MQ R=M or if and only if M=B° where B is basic. Let M be a maximal comple-
ment in R. Then (1) for any basic right ideal B M2B or M~B=(0), (2) M is
minimal irreducible®, (3) if M, is of the maximal length of direct-sum of basic
vight ideals contained in M, then there exists a basic right ideal B such that MO B
is of the maximal length of direct-sum of basic vight ideals in R and (4) M€ is

basic. Maximal annihilators are maximal complements.

Proof. Let M be a maximal complement in R; M=1I°. By (9) MQ=(IQ)°.
Let MQZi°. Since j~R) =i°~R2M, MQ=(i°~R) Q=1 hence MQ is a maximal
complement in @, and MQ~R=M. Let tr be a right ideal with (z:Q),=(0) and
t=2MQ. Then since t D3 there exists a minimal right ideal 1, such that t~1,=(0).
Hence t is contained in a maximal complement. Therefore r=MQ. Conversely
if MQ satisfies the property mentioned in Theorem, then MQ D3 and MQ ~t,=(0);
t, a minimal right ideal, and MQCt§. Since (£§:Q)=(0), MQ=t§. If MQ _1t°,
then (1°:Q),=(0). By (10) M=MQ~R=(1{~R)=(1,~R)*. Further if MCI*
then MQC I°Q=(IQ)%, hence MQ=1I°Q. Therefore M=1I°, and M is a maximal
complement. Let M be a maximal complement in R, then MQ is soin Q. Hence
there exists a minimal right ideal t, such that t,~MQ=(0) and MQ=t;. M=MQ ~R
=1 ~R=(t,~R)® by (10) and t,~ R is basic. Conversely let M=B°. MQ=B°Q
=(BQ)” and BQ is minimal. If 3=(BQ°~3)®BQ®r,, where 3 is the socle of Q,
then for y(€ (B Dt) ~BQ) =111, x,€BQ”, x,€1,, we have x=y—1,€(BQD
1) ~BQY 3 L (BQ)Y. Hence ((BQ)* D1,) ~BR=(0) and 1,=(0). If MQZ1° then
r° D3 hence t°~BQ=(0) and 1*=MQ. Therefore M is a maximal complement
in @ and further B°=MCMQ - R=(BQ)* ~R=(BQ~R)*'=B°” and we have
M=MQ ~R. 1). Let B be basic. Since BQ is a minimal right ideal, BQ Z M@ or

3) From this theorem a right ideal I is called irreducible if I=M~N implies I=M or I=N.
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BQ~MQ=(0). Hence BCMQ~R=M or M~B=(0). 2). If ME&N, M<S, and
M=NAS, then MQESQ for MQ=SQ implies 'M=S. Hence SQ=3 and NQ=3.
Therefore NQSQ—=3 and this is a contradiction. If M, M, then M,=(M,®
M¢) ~M, hence M is minimal irreducible. From the above argument and the fact
that MQ ~R=M, M is a maximal complement. Let MQ~t,=(0) for a minimal
right ideal 1,. Since MQ @1, 2MQ, MQD1,=23 We define the right ideal

i = {jl € MQ, there exists an element z€3 such that z = j+7, 7€1,}.

Then {<3~MQ and 3=i+1, =2 P, t’s are minimal ideals. M=MQ R2;~
MQ~R2i~R=3t;~R. If (MQ)° is not minimal, then it contains two minimal
right ideals, t,, t, by Lemma 1. Hence M@~ (1r;D1,)=(0) and (MQD1;) ~t.=(0).
Therefore since (MQ)¢ is minimal and (MQ)*=M°Q, M is uniform and by (1)
M¢ is basic. Let M’ be a maximal annihilator. By (8) M’Q=I, is so in Q.
If {(=Qe is a minimal left ideal in [, then [*=[,%=(1—e)Q and [,*-eQ=(0).
Since 1% is maximal, [, is a maximal complement.

The following example with field @/3 analogous to the first one in this note
shows that a maximal complement is not always a maximal annihilator. Let ¢
be the right ideal generated by elements ey +e, ¢x+es, -. Since (m/tm:d4)=1,
t is a maximal right ideal contained in 3, where m is an irreducible @-module and
4 is its Q-endomorphism ring. If t¥*22r then an element x of t¥*—r is of the
following from

x=x+aE, a€d and x,€3.

If =0, then xe;;=ae;; €v* for a sufficiently large ;. Hence t*23. If a=0, then
x€3. Therefore t*23 From Theorem 4 R~t is a maximal complement but not
a maximal annihilator since t is not maximal. Furthermore in this ring R if a
right ideal M is minimal irreducible and M=MQ ~ R, then M is maximal comple-
ment. Because if M is minimal irreducible then M@ is so in Q. Since t is
minimal irreducible M@ 3, hence MQt§ for some minimal right ideal v, If
1§ 2 MQ then MQ =t~ (MQ@Pr,) is not irreducible. Hence MQ=r§ and by the first
mention in the proof M@ is a maximal complent.

THEOREM 5. If Q satisfies the minimal conditions, then the complement right
ideals coincide with the awnnihilator vight ideals. A right ideal M is a maximal
complement if and only if M is minimal irreducible and M conatins no regular

elements.

Proof. Let I=J° be a complement right ideal. IQ=7°Q=(JQ) =(eQ)*
=(1-e)Q=(Qe), where ¢*=¢, JQ=eQ, because Q is a simple ring with minimal
conditions. On the other hand if IQ ~R=1I'=1I then I’ ~ J==(0), hence (0)=IQ ~
JQ which is a contradiction. Therefore I=J°=J°Q R=(Qe¢)r~R=(Qe~R)-.
Conversely if 7=/, then J,=J+*~R=(eQ)°~R where J/x=(1—e)Q. By (10)
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Jr=J~R=(eQ)° ~R=(eQ ~R)°. Let M be a minimal irreducible right ideal with
MQ==Q. Then there exists a maximal right ideal r which contains M@, t~R2M

and since from Theorem 4 t~R is minimal irreducible, M=t~ R is a maximal
complement.
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