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In this note we shall define the weak dimension of algebras A, analogous to 

the dimension of algebras in Cartan and Eilenberg [6], Ch. IX. In section 1 we 

shall characterize the algebras with the weak dimension zero, and study sorne pro­

perties of the weak dimension of the tensor product of two algebras, and we shall 

completely determine the weak dimension of fields. If an algebra A has a finite 

degree over a field K, it is well known that A is separable if and only if A®A* 

(=A') is semi-simple, where A* is anti-isomorphic to A. Rosenberg and Zelinsky 

[15] proved that if A' is a semi-simple algebra with minimum conditions, then 

[A: K] < =. Therefore if we want to define sorne generalized separability of alge­

bras with infinite degree over K, then we may restrict ourselves to the case where 

A' is semi-simple in the sense of Jacobson. In section 2 we shall call A R-.separable 

if A' is regular, and A has the property E, if A® L is regular for any field L?;,K. 

We shall consider these algebras and relations between these two algebras. In 

section 3 we shall study sorne properties of tensor products of separable fields and 

algebras. In this note we always assume an algebra A has a unit element and 

that A-modules are unitary. We use [6] as a reference source for homological 

algebras. 

1. The weak dimension of algebras 

Let A be an algebra over a commutative ring K. We shall define the weak 

dimension of A (notation w. dim A), analogous to Cartan and Eilenberg [6], Ch. 

IX. 7. 

DEFINITION 1. w. dim A=the minimal integer n such that 

for any two sided A-module A. 

First we state sorne remarks about the definition. Let A be an algebra over 

a field K. If A' is Noetherian or if A is semi-primary with radical N such that 

[A/N:K]<=, then we have 

w. dim A=w. dimAeA=dimAeA=dimA 

from [6], Ch. VI, Exer. 3, and Auslander [2], Coro. 8 and [3], Th. 5. 
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In general we have clearly by the definition 

dimA2':w. dimA, 

and there exists an algebra A in which the ab:we equality is not satisfied. 

Let K be a commutative ring, and A, r and }:; be K-algebras. We consider 

the functor 

T(A,C)=A (59 (BQ?JC)=(A®B) ® C1l 
A®r 2. A r®"-2. 

for the symbol (AA,r, AB"J,, r, "J, C). According to Eilenberg, Rosenberg and Zel­

insky [9], we have the spectral sequence when r is K-fiat: 

1) Tor ';rCA, Tor~ (B,C))-:":)LnT(A,C), 
p 

2) Tor r~"J, (Tor ~(A, B), C)-:":)LnT(A, C). 
q 

If Tod(B, C) =O=Tor~(A, B) for p, q>O, 1) and 2) collapse and we have 

(*) Torg0r(A,B6<C)::::;Tor~0"J,(A®B,C), (cf. [6], Ch. IX, Th. 2.8). 
~ A 

If we replace }:; by r* and c by r in (*), we have 

LEMMA 1. If A is a regular K-algebra and r is a K-jlat K-algebra, we 

ob tain 

Hp(r, A®B) ::::;Tor~0r(A, B) for (AAr, uB). 
A 

If we replace A by K in the lemma 1, we obtain 

LEMMA 2. If K is commutative regular and r zs a K-algebra, we have 

isomorphisms 

for (Ar, rB). 

If we replace A by r* in the lemma 1, we obtain 

LEMMA 3. If r is a K-flat regular algebra, we have isomorphisms 

Hp(r, A®B) :=:;;Torpr'(A, B) 
r 

for CrAr, rBr). 

We can obtain the analogous theorem to [6], Ch. IX, Prop. 7.10. 

THEOREM 1. Let K be a commutative regular ring and A be a K-algebra, 

then the following conditions are equivalent: 

a) w. dim A=O, 

b) A®A* is regular. 

Proof. If A' is regular we have immediately w. dimA=O by the definition and 

the author [10], Th. 5. Conversely if w. dimA=O, we obtain by the lemma 2 

1) Unadorned ® is always taken over K. 



The weak dimension of algebras and ifs applications 49 

O=w. dimA-,2':w. gl. dimA, 

hence A is regular. We have, therefore, by the lemma 3 

O=w. dimA-,2':w. gl. dimA'. 

Hence Ae is regular. 

CoROLLARY. Let L be a commutative regular extension ring of K. If 

w. dim A=O then A® L is regular. 

Proof. It is clear that (A®L)®CA®L)*"'"(A®Ae)rg;L. On the other hand, if 
K 1. K K K 

we replace (A, r, L;) by (L, Ae, K) and (B, C) by (L, A) in (*) we have 

Tor~L®Al(A, L ®A) "'"Tor~'(A, 

Therefore it follows from the lemma 2 that 

Tor4ŒL(C, D) "'"Tor~L®Al'(C(g;D, L®A) "'"Tor~'(CQ?JD, A) =0 
L L L 

for P>O and (CL,r, L,rD). Hence L®A is regular. 

W e can obtain the following lemma from the spectral sequences 1) and 2) 

analogously to [9], Prop. 3. 

LEMMA 4. Let A be a K-jlat K-algebra and let K be an L-algebra. Then we 

have 

L-w. dim A~L-w. dim K+K-w. dim A. 2l 

If further A is K-projective and contains a K-direct summand K 1 isomorphic 

with K, then 

L-w. dim K~L-w. dim A. 

REMARK. Let K be a field. We assume A®L is regular for any commuta­

tive regular ring L containing K. If we replace L by the center Z of A, since 

Z®Z is the center of A®Z, Z®Z is regular. Hence K-w. dim Z=O. Further 

if L' is any commutative regular ring containing Z, A®L' is regular since A®L' 
2 z 

is a homomorphie image of A ®L'. Therefore in the consideration of the converse 

of the corollary, we may restrict ourselves to the case of a central algebra by 

the lemma 4, (cf. Prop. 3 below). 

The following theorems have been proved independently by Eilenberg, Rosen­

berg and Zelinsky [9], using the above spectral sequences. 

THEOREM 2. Let K be a field and A and r be K-algebras. Then we have 

w.l. dim A<zrA®B=w.l. dim,A+w.l. dimrB, 

for CA,rB). 

2) L-w. dim means w. dim A where A is considered as an L-algebra. 
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Especially w.dimA(i!)T=w.dimA+w.dimr, (cf. [9], Prop. 10). 

W e use the following two lemmas to prove the theorem. 

LEMMA 5. Let K be a field. Then we have 

w.l. dim A®r A(i!)B;;;;w.l. di mAA +w.!. dimrB, 

for CA,rB) 

We can easily prove this lemma by using T-product of [6], Ch. XI. 

LEMMA 6. For an exact sequence: o-A"-->-A-A'-0 of A-modules, we have 

This is clear by the exactness of Tor. 

Proof of the theorem. By the lemma 5 we may assume w.l. dimAA+w.l. dimrB 

<=. Renee we can prove the theorem by the induction with respect of w.l. dimAA 

-1-w. 1. dimrB. If w. 1. dimAA=w. 1. dimrB=O, replacing L: by K in (*) we obtain 

Tor A®r(C,A®B):::;Torr(c®A,B), CC,r), 

hence w.l. dim A®rA!59B=O. Assume now that the theorem is true for any left 

A-module A' and left T-modu!e B 1 with w.l. dimAA' +w.l. dimrB';'Sm, (O:s;m<=), 

and that w.l.dimAA+w.l.dimrB=m+l. We may assume w.l.dimAA=n>L 

From a A-exact sequence: o-R-P-A--'0, of A with P projective, we obtain 

the exact sequence: 

By the induction hypothesis and the lemmas 5 and 6 we obtain w. 1. dimA0 rA!59B 

=w.l. dimAA+w.l. dimrB. 

We can prove similarly the following theorem. 

THEOREM 3. Let K be a commutative ring, and A and r be K-algebra. If 

r is K-jlat, then 

w. gl. dimA(i!)T;'Sw. dimA+w. gl. dimr. 

REMARK. Let K be a field. If w. dim A=O we have 

w. gl. dimA(i!)T=w. gl. dimT, 

from the theorem 3 and lemma 5. If A is a semi-primary K-algebra with radical 

N su ch that dim A and [A/ N: K] are fini te, th en 

w. gl. dimA(i!)T=w. gl. dimA+w. gl dimT, 

for any K-algebra r. Because, by the assumption and Auslander [3], we obtain 

w. dimA=dimA=gl. dimA=w. gl. dimA. 

Next we shall consider the weak dimension of algebras which are represented 

as the direct limit of sub-algebras. 
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PROPOSITION 1. Let K be a commutative ring and A be a K-algebra. Assume 

that A is a union of a family {A«} (œE l) of subalgebras A"' such that if œ<{3, 

(œ, {3d), A., ~As, where I is a direct set. Then we have 

w. gl. dim A:::;,sup w.gl.dim A"', 

and w. dim A~sup w.dim A«, (cf. [15], Prop. 3). 

Proof. A is the direct limit of system {A.,, n~} (n~ are inclusions). Since 

A= UA"', unit element of A is contained in ali Aao for œ;;:: sufficently large œo. For 

any A-module A we have a A«·module A•A«=A«. lt is clear that if œ<{3, A.,~ 

As, hence A=lim A"' by the above remark. Form [6], Ch. VI, Exer. 17, we have ___,. 

Tora CA, C) =lim Tora"' CA«, Cao), ___,. 
This proves the first part of the proposition. W e can prove similarly the second 

part. 

If A is a commutative algebra over a field K with minimum condition, and A 

is not semi-simple, then w. dim.A=co by [2], Prop. 15 and the lemma 2. Renee we 

can restrict ourselves to the semi-simple case, and further we may restrict our­

selves to the case where A is itself a field. 

The following arguments are slight modifications of [15], 5. 

PROPOSITION 2. Let K be a field and A the field KCt1···tn) of rational june­

tians in n indeterminates over K. Then K·w. dmA=n. 

Since A® A is Noetherian, we have the proposition 2 from the remark of the 

definition 1 and [15], Th. 7. 

LEMMA 7. Let A be a locally separable algebra,3 l then A' is regular. 

Proof. Let A be locally separable and a= L. b; ®ci be an element of A' 
(b;, c; EA), then there exists a separable subalgebra A' of fini te order over K, con­

taining ali b;, c;. Therefore a is regular in A'' and hence in A'. 

PROPOSITION 3. Let A be a field of transcendental degree n~= over K with 

separable basis. Then K-w.dim A=n. 

Proof. Let B be a separable basis with n elements, then A is algebraic 

separable over K(B). By the lemmas 4 and 7, and the proposition 2, we have 

n=K-w.dimK(B)~K-w. dimA 

~K-w. dimK(B) +K(B)-w. dimA=n. 

PROPOSITION 4. If A is a finitely generated extension field of K with no sepa­
rable basis over K, then K-w. dim A=co. 

Proof. Let A=KCx1,···, x,.) and lets be the largest integer such that S=KCx1, 

···, Xs) can be separably generated over ·K. Let t1.···, tn be a separable basis of 

3) Every finite subset can be embedded in a separable subalgebra of finite order. 
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Sand L=K(t,,.··, tn). Then there exists a finite extension field G of K such 

that L(x.,+l) ®G is not semi-simple. (see the proof of the theorem 9 in [15]). 

Hence K-w.dimA2::K-w.dimL(Xs+l)=G-w.dim(L(Xs+l)QS:G)=oo, ([6], Ch. IX, Coro. 
7.2). 

PROPOSITION 5. Let A be a field over L of transcendental degree n<oo. Then 

w. dim A=n if and only if A is locally separabty generated.<) 

Proof. If A is locally separably generated, there exists, for any elements 

..l, · · ·, Àn, a separably generated extensition Fu .. , ... An} containing À;. The proposi­

tion 2 implies w. dim F{A, ... An)=the transcendental degree of F(AL .. A,}, hence 

w. dimA;;=:;n by the proposition 1. On the other hand, w. dim A2=:n is an immediate 

consequence of the proposition 2 and the lemma 4. 

Conversely if {..l,···,Àm} is any sub-set of A, then K(..l,,.··,..ln) has a separable 

basis by the proposition 4 and the lemma 4. Renee A is locally separably gene­
rated. 

CoROLLARY Let A be a field over K of transcendental degree n<oo. Then 

if w. dimA>n, w. dimA==. 

This is clear from the lemma 4 and the propositions 4 and 5. From above 

propositions we obtain 

THEOREM 4. Let A be a field over K. 
If w.dim A=n<=, A is a locally separably gederated field of transcendental 

degree n. 
If w.dim A==, we have either case a) orb): 

a) A is of finite transcendental degree over K and is not local/y separably 
generated, 

b) A is of infinite transcendental degree over K. Further the converse 

holds. 

2. R-separable algebras. 

We shall always consider algebras over a fixed field K. 

DEFINITION 2. Let A be an algebra over K. A is called R-separable if A' 

=A®A* is regular, i.e. w. dimA=O. 

We obtain immediatly the following theorem from the theorems 1 and 2, and 

the re mark of the theorem 3 and [10], Th. 5. 

THEOREM 5. Let A and r be algebras over K. Then A® r is R-separable if 

and only if A and r are R-separable. If A is R-separable, then A® r is regutar 

if and only if so is r. 
PROPOSITION 6. Let e be an idempotent of A. If A is R-separable then eAe is 

R-separable and any homomorphie image of A is so. 

4) A field is locally separably generated if every finite subset can be embedded in a finite­
ly sepo:trably generated extension of K. 
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This is clear by definitions. 

W e shall make conveniently the following definition. 

DEFINITION 3. We call "A has the property E" if AQ<)L is regular for any 

extension field L of K. 

PROPOSITION 7. If A is an R-separable algebra, then it has the property E. 

It is an immediate consequence of the corollary of the theorem 1. 

From the remark of the !emma 4 we obtain the converse of the proposition 

7 under special assumptions. 

PROPOSITION 8. Let A be a direct/y indecomposable algebra over K. If A 

has the property E and A is of finite degree over its center, then A is R-separa­

ble. 

LEMMA 8. Let A be a semi-simple algebra over K (in. the sense of Jacobson 

[12]). We assume that A is a sub-direct sum of R-separable algebras. Then 

A&;;r is semi-simple for any regular algebra r. Next if 2::: is a semi-simple al­

gebra which is a sub-direct sum of primitive algebra with one sided minimal 

ideals, and further we assume 2.:: has the property E, then L:&;!LI is semi-simple 

for any semi-simple algebra LI. 

Proof. By the assumption there exist two sided ideals a., such that A/aœ are 

R-separable and that na.,=(O). 
"' 

a,.Q<;;r are two sided ideals of A&;;r, and since A/a,.Q<;;r are regular by the 

theorem 5, it is semi-simple. On the other hand n(a.,Q<;;T)=(O). Therefore A&;;r 
"' 

is semi-simple. Next let 2.:: be any primitive image with one sided minimal ideals 

of 2.:: and A be its associated division algebra (see [13], Ch. IV) with center Z. 

By the assumption L:&;!Z is regular, and (ë&;;1)(I:Q<;;Z)(e&;;l);;::;A*Q<;;Z is regular, 

where e is an idempotent of 2.:: such that eL:e;;::;A*. Since ZQ<;;Z is the center of 

A*&;;Z, it is regular, hence Z is algebraic separable by the theorem 4 and I:&;;LI 

is semi-simple by [Il], Lemma 5. Therefore it follows by the similar reason 

above mentioned that I:&;;LI is semi-simple. 

PROPOSITION 9. Let A be a commutative algebraic algebra over K. If A has 

the property E, then A is locally separable. 

Proof. Since al! primitive images are fields by the assumption, A' is semi­

simple by the !emma 8. Moreover since A' is commutative algebraic, for any finite 

elements X;(i=l,· .. , m) of A, [K [X;]: K] <= and K[x;]Q<;;K[x;] is a semi-simple 

algebra with minimum conditions, hence K[x;] is separable. 

PROPOSITION 10. If A is an integral K-algebra and has the property E, then 

A is locally separable. 

Proof. Let A' be the field of quotients of A, and L any extension field of K. 

Since 2.:: ~~&;;1;=2.:: ),{~ Q<;;l; in A'Q<)L, there exists an element L:vj&;;l~ of AQ<)L such 
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that (L:,p,~@l;) (L:.vi®lj) ('J:.p,i(i!;Jl;) = ('J:.p,i@l;). Hence 
1 1 ' 

C:E ii ®l;)CZ:.J..vj®lj)CL:.-i)_i_(i!)l;)='i..>l).i-®1;. Therefore since A' has the pro-

perty E, A' is R-separable. By the theorem 4 and the proposition 9 A is localiy 

separable. 

CoROLLARY. An integral R-separable algebra is locally separable. 

PROPOSITION 11. If A has the property E, then the tensor product of its center 

Z and itself is semi-simple. 

Proof. By the assumption A is regular, and so Z is regular, too. Therefore 

Z is a subdirect sum of fields Lx. Sin ce Z®Lro is the center of A®Lrx, Z®Lro is 

regular. Hence Lro®Lro is regular, which proves the proposition by the !emma 8. 

PROPOSITION 12. Let A be an algebra with minimum or maximum conditions. 

If A has the property E, then its center is a direct sum of algebraic separable 

fields, and A' is semi-simple. 

Proof. By the assumptions A bas minimum conditions, bence A=(Dt)n/B··· 

ŒCDm)n,., where D; are division rings. Since D; have the property E, their cen­

ter Z; are ali algebraic separable by the theorem 4. Therefore, since Z;®Zi are 

semi-simple, we have the proposition by [11], Lemma 4. 

ExAMPLES: 1. Let A be the algebra of ali column-finite matrices over an R­

separable algebra Ao of degree M, and let Abe the algebra of ali finite matrices. 

Then the algebra A generated by A and Ao•1 in Ais R-separable. Because, any 

finite sub-set of Ais contained in a sub-algebra A'=At+Ao•1 where At is the sub­

algebra of ali matrices whose ali but fixed finite components are zero. 

Sin ce A' ;::::e (Ao)nŒAo, A' is R-separable by the theorems 1 and 2, bence A is 

R-separable. 

2. Let rr be a localiy finite group. The group algebra A=K(rr) is a supple­

mented algebra with the augmentation map e:A-K given by EX=1 for ali Xfrr. 

We assume that r•K =K for order r of any element of n:. Then we can easily 

see that A is locally separable, bence R-separable. If we assume that rK*K for 

order r of sorne central element, then A is not R-separable from [8], Th. 12 and 

the !emma 4. On the other hand if n is a free group, it follows from [6], Ch. 

X, 5, and the analogons theorem to [6], Ch. X, Th. 6. 1 that w. dimA=w.l. dimAK 

=1. 

REMARK. If A is a K-algebra with finite degree over K, and A®L is semi­

simple (regular) for any algebraic extension field L of K, th en A®A* is semi­

simple (regular). But if [A:K] =co, this is not true. For instance, a purely 

transcendental field K(x) preserves regularity for algebraic extension fields of 

the coefficient field K, but K(x) is not R-separable. 
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3. S-separable algebras. 

We shall now define an algebra which has a weaker property than R-separable. 

DEFINITION 4. Let A be an algebra over K. A is called S-separable if and 

only if A'=AQ?!.A* is semi-simple (in the sense of Jacobson [12]). 

It is clear that R-separable algebras are all S-separable, and the following 

theorem shows that the converse is not true in general. 

An argument of the proof of this theorem essentially owes to that of Amitsur 

[1], Lemma 1 J. 
THEOREM 6. Let K(x.,) be a purely transcendental field over K with finite or 

infinite indeterminantes x.,. If R is an algebra over K which has no nil ideals 

=FO, then K(x.,)c:<JR is semi-simple. 

Proof. If R has not unit element, then the algebra R' adjoined freely unit 

element to R has no nil ideals =FO and R is an ideal of R'. Hence we may as­

sume R has unit element. All elements '/'cO of K[x.,] are not zero divisors in 

K(xœ) c:<JR. Hence we have an isomorphism of K(x.,) ®R to the ring of quotients 

of R[x.,] with respect to K[x.,] (cf. [7], p. 80 Lemma 4). We shall denote this 

homomorphie image by R*[x,.] and the Jacobson radical of a ring T by !CT). We 

shall first show J(R*[x.,]) nR:;;J(R). Let YE/(R*[x.,]) nR, then there exists a 

quasi-inverse element f(x.,)/k(x.,) of r, where f(x.,) E R[xœ], k(x.,) E K[xœ], and 

rk(xœ) +/(x.,) -rf(x,.) =0. 

From this equality we have d=total degree of k(xœ)~total degree of f(x,.). Com­

paring coefficients of a monomial of degree d of this equality we have 

r+s-rs=O, sER. 

Since J(R*[x,.]) nR is an ideal of R, JCR*[x.,]) nR~J(R). 

Next we shall show J(R*[x,.]) nR is a nil ideal. Let YE/(R*[xœ]) nR, then 

YXE/(R*[x.,]) where x=x,. Hence there exists an element /(x.,)/t(x.,)ER*[x.,] 

such that rx+ f(x.,)/t(x,.) -rx•fCxœ)/t(xœ) =0, where f(x,.) E R[x.,], t(x,) E 

K[x.,]. As above we have m'=degree of t(x,) on x~degree of /(x.,) on x=m. 

Let 

g,(y) E K[xz, X3,-··]. 

From the above equality we obtain 

Substitute /(x"') on the right by the whole expression of the right-hand side of 

this equality. Repeating this process yields 

If we replace n by m-1-2 and we compare the coefficients of degree m+1 on x 
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in the equality, then we obtain 

where fJj are coefficients of a fixed monomial in gmt(y) and fJj are not all zero. 

Hence r is algebraic over K and r is nilpotent by [13], p. 19, Th. 1. Therefore 

by the assumption, ](R*[xœ]) nR=(O). Now let g(xœ) rJ(R*[xœ]) and g(xœ) 

= f(xœ)/k(xœ), k(xœ) E K[Xœ], f(xœ) E R[Xœ], then g(xœ) •k(Xœ) E](R*[xœ]) nR[Xa,], 

hence 

](R*[xœJ) =Cf(R*[xœ]) nR[xœ])•R*[x,]. 

In virtue of this equalty, it is sufficient for the proof of the theorem to prove 

](R*[xœD nR[x.,] = (0). First we assume the number of indeterminates is one. 

If ](R*[x]) nR[x] =F (0) there is a non zero polynomial f(x) of minimal degree 

in it. Then f(x) is not constant by the above. We have an automorphism of 

R[x] sending g(x) to g(x+k), where g(x)ER[x], kEK. Hence we obtain an 

automorphism of R*[x] by which ](R*[x]) nR[x] is sent onto itself. There­

fore f(x)-f(x+k)E]CR*[x])nR[x]. Since its degree is less than f(x), we 

obtain f(x)=f(x+k). If we represent f(x) by using a basis U; of R over K: 

f(x)=""E,u;g;(x), g;(x)EK[x], 

we have 

g,(x)=g;(x+k). 

If K is an infinite field we have immediately g;(x) =constant from this equality. 

Hence f(x) is a constant, which is a contradiction. If K is a fini te field of 

characteristric P=FO we can easily prove by the induction on the degree of f(x) 

that f(x)ER[xP-x] (see [1], p. 356). Hence we may write f(x)=h(xP-x), 

h(x)ER[x]. We shall now show that f(x)E](R*[xP-x]). Let k(x) be any ele­

ment of f(x)•R*[xP-x](Cf(x)R*[x]Cj(R*[x])), then k(x) has a unique quasi­

inverse k'(x) in R*[x], 

k(x) +k'(x) -k(x)k'(x) =0. 

By using a mapping: X->-x+1 we obtain an automorphism of R*[x] and 

k(x+ 1) +k'(x+ 1) -k(x+ 1)k'(x+ 1) =0. 

Since k(x) =k(x+ 1) has the unique quasi-inverse, we obtain 

k'(x)=k'(x+1). 

If we represent k'(x) in terms of u;: 

k'(x) = ~·u _j;(x) 
""' ' t;(x) ' 

then we obtain 

(/;(x), t;(x))=1, /;(x), t;(x) E K[x], 
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and (f;(x+1), t;(x+1))=1. 

From this equality we can easily see that 

f;(x)=(x+l), t;(x)=t;(x+1). 

Renee as above t;(x), /;(x) E K[xP-x]. Renee k'(x)ER*[xP-x], which proves 

f(x) E](R*[xP-x]). Finally by using a mapping: X--"Xp-x we obtain an isomor­

phism of R*[x] to R*[xP-x], and a inverse image of f(x) is h(x), and since 

f(x) E](R*[xP-x]) we have h(x) E](R*[x]). But the degree of h(x) is lower than 

f(x), which is a contradiction. Now we shall prove the theorem in a general 

case. If J(R*[xrt,]) nR[x,] *0 there exist') a non ;;::ero polynomial f(x,,, xs) of 

minimum degree with respect to an indeterminate xs. By using a mapping: Xs--" 

xs+ g(x,,) we obtain an automorphism of R*[x,], where g(x"',) E K[Xor,t], and we 

have 

Renee since K(x,,) is an infinite field, we have a contradiction as above. This 

proves the theorem. 

CoROLLARY 1. A purely transcendental field K(x") over K is S-separable, 

but not R-separable. 

This is an immediate consequence of Theorems 4 and 6. 

CoROLLARY 2. Let A be an algebraic separable extension over a subfield Ao 

and Ao be purely transcendental over K. Then for any algebra R which has no 

nil ideal*(O), A(;/)R is semi-simple, and hence A is S-separable. 

Proof. It is clear that A(;/)R=(A(;/)Ao)(;/)R=A(;/)(Ao(;/)R). From the theorem 6 
Ao Ao 

Ao(;/)R is semi-simple, and bence A(;)()(Ao®R) is semi-simple by the assumption and 
A a 

the lemma 8. 

PROPOSITION 13. If A is finitely separably generated, A®R is semi-simple for 

any algebra which has no nil ideal* CO). Converse/y if A'(;/)KP-1 has no nilpotent 

elements, then A' is separable (not necessarily finitely generated) in the sence of 

Bourbaki [5], where p is the characteristic of K. 

Proof. The first part is clear from [5], p. 141 Th. 2 and the corollary 2. If 

A(;/)KP-1 bas no nilpotent elements *0 for any basis {bA} of A', {bK} is linearly 

independent over K. Otherwise we have 

and bence 0 * L:b;(;/)af-1 E (A'®KP- 1) is nilpotent, which is a contradiction. Renee 

we obtain the proposition from [5], p. 129, Coro. 

REMARK. If K is a field of transcendental degree 1 over a perfect subfield P, 
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and .A is a S-separable extension field of K of finite transcendental degree, then 

.A has a separating transcendental basis over K (see [14], p. 384, Coro.). 

The corollary 1 and the following example show that S-seprable algebras are 

not necessarily algebraic. 

Let .A be a complete dircet sum of an infinite number of infinite fields K. 

Then we. can easily show that .A is not algebraic and is S-separable by the 

lemma 8. 
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