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In this note we shall define the weak dimension of algebras 4, analogous to
the dimension of algebras in Cartan and FEilenberg [6], Ch. IX. In section 1 we
shall characterize the algebras with the weak dimension zero, and study some pro-
perties of the weak dimension of the tensor product of two algebras, and we shall
completely determine the weak dimension of fields. If an algebra A has a finite
degree over a field K, it is well known that A is separable if and only if AR A*
(=4% is semi-simple, where A* is anti-isomorphic to 4. Rosenberg and Zelinsky
[15] proved that if 4¢ is a semi-simple algebra with minimum conditions, then
[4:K]<oo. Therefore if we want to define some generalized separability of alge-
bras with infinite degree over K, then we may restrict ourselves to the case where
A% is semi-simple in the sense of Jacobson. In section 2 we shall call 4 R-separable
if A° is regular, and 4 has the property E, if AQL is regular for any field L=K.
We shall consider these algebras and relations between these two algebras. In
section 3 we shall study some properties of tensor products of separable fields and
algebras. In this note we always assume an algebra 4 has a unit element and
that A-modules are unitary. We use [6] as a reference source for homological
algebras.

1. The weak dimension of algebras

Let 4 be an algebra over a commutative ring K. We shall define the weak
dimension of 4 (notation w.dim A), analogous to Cartan and Eilenberg [6], Ch.
IX. 7.

DEeFINITION 1. w.dim A=the minimal integer n such that
Hoi(4, A=Torli,(A, £)=0
for any two sided A-module A.

First we state some remarks about the definition. Let A be an algebra over

a field K. If 4° is Noetherian or if A is semi-primary with radical N such that
[4/N: K] <o, then we have

w.dim A=w.dim 4=dim A=dimA

from [6], Ch. VI, Exer. 3, and Auslander [2], Coro. 8 and [3], Th. 5.
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In general we have clearly by the definition
dimA=w. dim4,

and there exists an algebra 4 in which the above equality is not satisfied.
Let K be a commutative ring, and 4, " and 37 be K-algebras. We consider
the functor

TA C)=A A(@% (B (% O=4 (? B) %ECU

for the symbol (A,,r, 4Bs, r,=C). According to Eilenberg, Rosenberg and Zel-
insky [9], we have the spectral sequence when I” is K-flat:

1) Tor 427 (A4, Tor Z (B,C))=>L.T(4,0),
p
2) Tor 2= (Tor 4(A, B),C)> L.T(A,C).
qQ
If Tor 2(B,C)=0=Tor(4, B) for p,q>0, 1) and 2) collapse and we have
* Tori®" (A, B(SEZC)zTor;;@E(A@B, C), (cf. [6], Ch. IX, Th. 2.8).
4
If we replace 30 by I'* and C by I' in (*), we have
LemMa 1. If A is a regular K-algebva and I' is a K-flat K-algebra, we
obtain

H,(I', AQB) =Tory®" (A, B)  for (Auir, arB).
4

If we replace 4 by K in the lemma 1, we obtain
LemMma 2. If K is commutative vegular and I' is a K-algebra, we have
isomor phisms
H,(I'yA® B)=TorL(A, B)
for (Ar, rB).
If we replace 4 by I'’* in the lemma 1, we obtain
LemMa 3. If ' is a K-flat vegular algebra, we have isomorphisms
H,(I'y AQB) = Tor,I"*(A, B)
r
for (rAr, rBr).
We can obtain the analogous theorem to [6], Ch. IX, Prop. 7.10.

TueoreM 1. Let K be a commutative regular ring and A be a K-algebra,
then the following conditions arve equivalent:
a) w.dim A=0,
b) ARAL* is regular.
Proof. If A°is regular we have immediately w.dim4=0 by the definition and
the author [10], Th. 5. Conversely if w.dimA=0, we obtain by the lemma 2

1) Unadorned ) is always taken over K.
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0=w.dimA=w. gl.dim4,

hence 4 is regular. We have, therefore, by the lemma 3
0=w.dimA=w. gl. dim /£°.

Hence 4° is regular.

CoroLLARY. Let L be a commutative vegular extension ring of K. If
w.dim A=0 then AQ L is regular.

Proof. It is clear that (AQL)R(ARL)*=(ARADRL. On the other hand, if
K pa K K K
we replace (4,7, %)) by (L, 44 K) and (B,C) by (L, A) in (¥) we have

Tor;,LlX)/l)e(A, L@ A)=Torf (A, A) (. 1Az, 0 -
Therefore it follows from the lemma 2 that

Torpes(C, D) =Tor@®»(CRD, LQA) = Tor i (CRD, A)=0
I z L
for p>0 and (Ci,r, r,rD). Hence L A is regular.
We can obtain the following lemma from the spectral sequences 1) and 2)

analogously to [9], Prop. 3.

Levmma 4. Let A be a K-flat K-algebra and let K be an L-algebra. Then we
have

L-w. dim A=SL-w.dim K+ K-w. dim 4.2

If further A is K-projective and contains a K-direct summand K' isomorphic
with K, then

Lw.dim K<L-w.dim A.

ReEMARK. Let K be a field. We assume A®L is regular for any commuta-
tive regular ring L containing K. If we replace L by the center Z of 4, since
ZX Z is the center of AR Z, ZRZ is regular. Hence K-w.dim Z=0. Further
if L’ is any commutative regular ring containing Z, A(X)[/ is regular since A@L/
is a homomorphic image of A& L’. Therefore in the co:lsideration of the conve;'se
of the corollary, we may restrict ourselves to the case of a central algebra by
the lemma 4, (cf. Prop. 3 below).

The following theorems have been proved independently by Eilenberg, Rosen-
berg and Zelinsky [9], using the above spectral sequences.

THEOREM 2. Let K be a field and A and T' be K-algebras. Then we have

w.l.dim or AQB=w.l.dim,A+w.l. dim,B,
for (LA, rB).

2) L-w.dim means w.dim 4 where / is considered as an L-algebra.
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Especially w.dim AQI =w.dim A+w.dimI", (cf. [9], Prop. 10).
We use the following two lemmas to prove the theorem.
LemMA 5. Let K be a field. Then we have
w. L. dim jor AQBZw. I. dim,A+w. . dim; B,
for (LA, rB)
We can easily prove this lemma by using 7T-product of [6], Ch. XI.

LeMMA 6. For an exact sequence: 0—A""—A—A’—0 of A-modules, we have
w.l. dim, A <max(w.l.dim,A, w.l.dim,A")+1.

This is clear by the exactness of Tor.

Proof of the theorem. By the lemma 5 we may assume w.l.dim,A+w.l.dim,B
<oo. Hence we can prove the theorem by the induction with respect of w.1.dim A4
+w.l.dim,B. If w.l.dim,A=w.l. dim,B=0, replacing ¥} by K in (*) we obtain

Tor A®F(c, A®B> zTOrr(C®A, B), (CA, F)a

hence w.l.dim ,orARB=0. Assume now that the theorem is true for any left
A-module A’ and left ["-module B’ with w.1.dim,A’+w.1.dim;B'=m, (0=m <o),
and that w.l.dimsA+4+w.l.dim;B=m+1. We may assume w.l. dim,A=n>1.
From a /A-exact sequence: (0—R—P—A—0, of A with P projective, we obtain

the exact sequence:
0—-RKQ B—-PRB—~ARB—0.

By the induction hypothesis and the lemmas 5 and 6 we obtain w.l. dim 4, ARB
=w.1l.dimA+w.1. dim,B.

We can prove similarly the following theorem.

THEOREM 3. Let K be a commutative ving, and A and I" be K-algebra. If
I' is K-flat, then

w. gl. dimAQRQT Zw. dimAd-+w. gl. dimI.
ReMArRk. Let K be a field. If w.dim 4=0 we have

w.gl.dimARQ=w.gl. dimT,
from the theorem 3 and lemma 5. If A4 is a semi-primary K-algebra with radical
N such that dim 4 and [4/N:K] are finite, then

w. gl.dimARI=w.gl. dimA4-+w. gl dimT,

for any K-algebra I'. Because, by the assumption and Auslander [3], we obtain
w.dimA=dimA=gl. dimA=w. gl. dim4.
Next we shall consider the weak dimension of algebras which are represented

as the direct limit of sub-algebras.



The weak dimension of algebras and its applications 51

ProrositioN 1. Let K be a commutative ving and A be a K-algebra. Assume
that A is a union of a family {Ae«}(ael) of subalgebras As such that if a<pB,
(at, BeD), Aw=<Ap, where I is a direct set. Then we have

w. gl. dim A<sup w.gldim A,
and w. dim A=Zsup w.dim A«, (cf. [15], Prop. 3).

Proof. A is the direct limit of system {4«,7nf} (x% are inclusions). Since
A=UAdw, unit element of A is contained in all A« for «= sufficently large a,. For
any A-module A we have a Adw-module AsAw=Awu. It is clear that if a<f, As=
As, hence A=£1:1)1 A« by the above remark. Form [6], Ch. VI, Exer. 17, we have

Tori(A4,C) :-_liin> Torf(Aw,Ca), (4,4, 0.

This proves the first part of the proposition. We can prove similarly the second
part.

If A4 is a commutative algebra over a field KX with minimum condition, and 4
is not semi-simple, then w.dim.4=oo by [2], Prop. 15 and the lemma 2. Hence we
can restrict ourselves to the semi-simple case, and further we may restrict our-
selves to the case where A is itself a field.

The following arguments are slight modifications of [15], 5.

ProrosiTION 2. Let K be a field and A the field K(t,---t,) of rational func-
tions in n indeterminates over K. Then K-w.dmA=n.

Since A& 4 is Noetherian, we have the proposition 2 from the remark of the
definition 1 and [15], Th. 7.

LemMmA 7. Let A be a locally separable algebra,® then A° is regular.

Proof. Let A be locally separable and a¢=36;Qc¥ be an element of A°
(bi, c;ed), then there exists a separable subalgebra A’ of finite order over K, con-
taining all b;, ¢;. Therefore @ is regular in A* and hence in A°

ProrosITION 3. Let A be a field of transcendental degree n=co over K with
separable basis. Then K-w.dim A=n.

Proof. Let B be a separable basis with # elements, then A is algebraic
separable over K(B). By the lemmas 4 and 7, and the proposition 2, we have

n=K-w.dim K(B)<K-w.dim4
<K-w.dimK(B)+ K(B)-w.dim4=n.

ProrosiTioN 4. If Ais a finitely generated extension field of K with no sepa-
rable basis over K, then K-w.dim A=co.

Proof. Let A=K(xi, -, %) and let s be the largest integer such that S=K(x,
-+, x;) can be separably generated over K. Let f,-, ¢, be a separable basis of

3) Every finite subset can be embedded in a separable subalgebra of finite order.
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S and L=K(t1,,t,). Then there exists a finite extension field G of K such
that L(xs+1) @G is not semi-simple, (see the proof of the theorem 9 in [15]).
Hence K-w.dim A=K-w.dimL(%s1) =G-w.dim(L(xs+1)RG) =0, ([6], Ch. IX, Coro.
7.2).

ProrosiTION 5. Let A be a field over L of transcendental degree n<co. Then
w. dim A=n if and only if A is locally separably generated.

Proof. If A is locally separably generated, there exists, for any elements
A1+, An, @ Separably generated extensition F,...n,; containing A;. The proposi-
tion 2 implies w.dim F(a...ay=the transcendental degree of F'(i1...n,), hence
w.dimA=<#% by the proposition 1. On the other hand, w.dim 4=# is an immediate
consequence of the proposition 2 and the lemma 4.

Conversely if {Ai,--*,Am} is any sub-set of 4, then K(1i,--,1,) has a separable
basis by the proposition 4 and the lemma 4. Hence 4 is locally separably gene-
rated.

CorOLLARY Let A be a field over K of transcendental degree n<co. Then
if w.dimA>n, w.dim A=co.

This is clear from the lemma 4 and the propositions 4 and 5. From above
propositions we obtain

THEOREM 4. Let A be a field over K.

If wdim A=n<co, A is a locally separably gederated field of transcendental
degree n.

If w.dim A=co, we have either case a) or b):

a) A is of finite transcendental degvee over K and is not locally separably
generated,

b)Y A4 is of infinite transcendental degree over K. Further the converse
holds.

2. R-separable algebras.

We shall always consider algebras over a fixed field XK.

DEFINITION 2. Let A be an algebra over K. A is called R-separable if A°
=AQ A* is regular, i.e. w.dimA=0.

We obtain immediatly the following theorem from the theorems 1 and 2, and
the remark of the theorem 3 and [10], Th. 5.

THEOREM 5. Let A and I' be algebras over K. Then ARQT is R-separable if
and only if A and I' are R-separable. If A is R-separable, then ARQT is regular
if and only if so is T. :

PropPOSITION 6. Let e be an idempotent of A. If Ais R-separable then ede is
R-separable and any homomorphic image of A is so.

4) A field is locally separably generated if every finite subset can be embedded in a finite-
ly separably generated extension of K.
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This is clear by definitions.

We shall make conveniently the following definition.

DeriniTiON 3. We call “A has the property E” if AQL is regular for any
extension field L of K.

ProrosiTiON 7. If A is an R-separable algebra, then it has the property E.

It is an immediate consequence of the corollary of the theorem 1.

From the remark of the lemma 4 we obtain the converse of the proposition
7 under special assumptions.

ProprosITION 8. Let A be a directly indecomposable algebra over K. If A
has the property E and A is of finite degree over its center, then A is R-separa-
ble.

LemmA 8. Let A be a semi-simple algebra over K (in.the sense of Jacobson
[12]). We assume that A is a sub-divect sum of R-separable algebras. Then
ARI is semi-simple for any vegular algebva I'. Next if 3 is a semi-simple al-
gebva which is a sub-direct sum of primitive algebra with one sided minimal
ideals, and further we assume 3. has the property E, then QR4 is semi-simple
for any semi-simple algebra 4.

Proof. By the assumption there exist two sided ideals 0w such that A/cw are
R-separable and that Qaw:(o).

ax@I" are two sided ideals of AXI, and since A/a.QI" are regular by the
theorem 5, it is semi-simple. On the other hand M(0,&I")=(0). Therefore ARI"
o

is semi-simple. Next let 3 be any primitive image with one sided minimal ideals
of 3% and A be its associated division algebra (see [13], Ch. IV) with center Z.
By the assumption > ®Z is regular, and (eR1)(LRZ)(eR1) =~A*RZ is regular,
where ¢ is an idempotent of 31 such that ey.e~A*. Since ZQZ is the center of
A*QRZ, it is regular, hence Z is algebraic separable by the theorem 4 and .4
is semi-simple by [11], Lemma 5. Therefore it follows by the similar reason
above mentioned that X4 is semi-simple.

ProrOSITION 9. Let A be a commutative algebraic algebra over K. If A has
the property E, then A is locally separable.

Proof. Since all primitive images are fields by the assumption, A° is semi-
simple by the lemma 8. Moreover since 4°is commutative algebraic, for any finite
elements x;(G=1,---,m) of A, [K[x:]: K]<co and K[x;,JQK[x;] is a semi-simple
algebra with minimum conditions, hence K[x;] is separable.

ProrosiTiON 10. If A is an integral K-algebra and has the property E, then
A is locally separable. ‘

Proof. Let A’ be the field of quotients of 4, and L any extension field of K.

Since 2-4/{%@1;:2 'L;" ®; in A/KL, there exists an element Xy;R1I) of ARXL such
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that (Zui®1:) (LrsQI) (S p@l) = (S piR1). Hence
(2—‘2‘:'— R (AR (Z-‘Z:— XlH=% i;:? ®I;. Therefore since A’ has the pro-

perty E, ;1’ is R-separable. By the theorem 4 and the proposition 9 A is locally
separable.

CoROLLARY. An integral R-separable algebra is locally separable.

ProposiTION 11. If A has the property E, then the tensor product of its center
Z and itself is semi-simple.

Proof. By the assumption A is regular, and so Z is regular, too. Therefore
Z is a subdirect sum of fields Ly. Since ZXLe« is the center of ARLx, ZQL, is
regular. Hence LoQL, is regular, which proves the proposition by the lemma 8.

ProrosiTiON 12. Let A be an algebra with minimum or maeximum conditions.
If A has the property E, then its center is a direct sum of algebraic separable
fields, and A° is semi-simple.

Proof. By the assumptions A has minimum conditions, hence A=(D1)y,®--
@©Dm)n,, , where D; are division rings. Since D; have the property E, their cen-
ter Z; are all algebraic separable by the theorem 4. Therefore, since Z;XZ; are
semi-simple, we have the proposition by [11], Lemma 4.

ExampLESs:1. Let Z be the algebra of all column-finite matrices over an R-
separable algebra Ao of degree M, and let 4 be the algebra of all finite matrices.
Then the algebra A generated by A and -1 in A is R-separable. Because, any
finite sub-set of A is contained in a sub-algebra A’=A;+ Ao+1 where A: is the sub-
algebra of all matrices whose all but fixed finite components are zero.

Since A’'=(Ao)nP Ao, A’ is R-separable by the theorems 1 and 2, hence 4 is
R-separable.

2. Let = be a locally finite group. The group algebra A=K(x) is a supple-
mented algebra with the augmentation map ¢: 4—K given by €x=1 for all xer.
We assume that 7+ K=K for order » of any element of #. Then we can easily
see that A is locally separable, hence R-separable. If we assume that »K=+K for
order » of some central element, then A is not R-separable from [8], Th. 12 and
the lemma 4. On the other hand if = is a free group, it follows from [6], Ch.
X, 5, and the analogous theorem to [6], Ch. X, Th. 6. 1 that w.dimA=w.l.dim,K
=1.

Remark. If 4 is a K-algebra with finite degree over K, and AXL is semi-
simple (regular) for any algebraic extension field L of K, then /1®A* is semi-
simple (regular). But if [4:K]=co, this is not true. For instance, a purely
transcendental field K(x) preserves regularity for algebraic extension fields of
the coefficient field X, but K(x) is not R-separable.
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3. S-separable algebras.

We shall now define an algebra which has a weaker property than R-separable.

DErFINITION 4. Let A be an algebra over K. A is called S-separvable if and
only if A*=AQRA* is semi-simple (in the sense of Jacobson [12]).

It is clear that R-separable algebras are all S-separable, and the following
theorem shows that the converse is not true in general.

An argument of the proof of this theorem essentially owes to that of Amitsur
[1], Lemma 1 J. .

THEOREM 6. Let K(xa) be a purely transcendental field over K with finite or
infinite indeterminantes x4. If R is an algebra over K which has no nil ideals
+0, then K(xy)X®R is semi-simple.

Proof. If R has not unit element, then the algebra R’ adjoined freely unit
element to R has no nil ideals #0 and R is an ideal of R’. Hence we may as-
sume R has unit element. All elements #0 of K[x,] are not zero divisors in
K(x,)®R. Hence we have an isomorphism of K(x,)® R to the ring of quotients
of R[x,] with respect to K[x,] (cf. [7], p. 80 Lemma 4). We shall denote this
homomorphic image by R*[x,] and the jacobson radical of a ring T by J(T). We
shall first show J(R*[x,]) ~R=J(R). Let reJ(R*[xs]) ~R, then there exists a
quasi-inverse element f(xx)/k(xs) of 7, where f(xw)€R[xw]), k(xa) € K[x«], and

rk(%a) +f(%0) —7f (%) =0.

From this equality we have d=total degree of k(x,)=total degree of f(x,). Com-
paring coefficients of a monomial of degree d of this equality we have

r+s—rs=0, sekR.

Since J(R*[x4]) ~R is an ideal of R, J(R*[x4]) ~RZJ(R).

Next we shall show J(R*[x4]) AR is a nil ideal. Let 7e¢J(R*[x4s]) ~ R, then
rxeJ(R*[x4]) where x=2x:. Hence there exists an element f(x,)/t(xs)eR*[%4]
such that 7x-+f(xw)/t(xe) —7xf(xs)/t(xa)=0, where f(x4)€R[%x4]), (Xa)e€
K(xs]. As above we have m/=degree of {(xs) on x=degree of f(x,) on x=m.
Let

t(xu)=Qo(P)axm 1+ +gw(y),  &(¥)eK[x2, X3, ].
From the above equality we obtain
fx)=rxef(xa) —7xet(x4).

Substitute f(xy) on the right by the whole expression of the right-hand side of
this equality. Repeating this process yields

Fxa) =)™ f(Xe) —(rx)™ (Xa) — (rX)" U (%) —7x 1 (Xa) .

If we replace n by m+2 and we compare the coefficients of degree m-+1 on x
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in the equality, then we obtain
PHLY e fopmem 1R —()

where f3; are coefficients of a fixed monomial in g.(y) and f; are not all zero.
Hence 7 is algebraic over K and 7 is nilpotent by [13], p. 19, Th. 1. Therefore
by the assumption, J(R*[x+]) ~R=(0). Now let g(xs)eJ(R*[x+]) and g(x«)
=f(xa)/k(Xa); k(xa) € K[Xa], f(xa) € R[%4], then g(xa) k(xa) € J[(R*[%a]) ~R[Xal,
hence

J(R*[x4]) = (J(R¥*[%a]) A R[xa])* R*[xa].

In virtue of this equalty, it is sufficient for the proof of the theorem to prove
J(R*[x4]) ~R[x4]1=(0). First we assume the number of indeterminates is one.
If J(R*[x]) ~R[x]+#(0) there is a non zero polynomial f(x) of minimal degree
in it. Then f(x) is not constant by the above. We have an automorphism of
R[x] sending g(x) to g(x+k), where g(x)eR[x], ke K. Hence we obtain an
automorphism of R*[x] by which J(R*[x]) ~R[x] is sent onto itself. There-
fore f(x)—f(x+k)eJ(R*[x]) ~R[x]. Since its degree is less than f(x), we
obtain f(x)=f(x+k). If we represent f(x) by using a basis #; of R over K:

fx)=%u.g:(x), gi(x)eK[x],
we have

&x)=gi(x+k).

If K is an infinite field we have immediately g;(x)=constant from this equality.
Hence f(x) is a constant, which is a contradiction. If K is a finite field of
characteristric p#0 we can easily prove by the induction on the degree of f(x)
that f(x)eR[x?—x] (see [1], p. 356). Hence we may write f(x)=h(x?—x),
h(x)eR[x]. We shall now show that f(x)eJ(R*[x?—x]). Let 2(x) be any ele-
ment of f(x) R¥[x?—x](Cf(x)R*[x]CJ(R*[x])), then k2(x) has a unique quasi-
inverse k/(x) in R*[x],

E(x)+E (x)—k(x)E (x)=0.
By using a mapping: x—x+1 we obtain an automorphism of R*[x] and

x4+ +E (x+1)—k(x+1E (x+1)=0.
Since k(x)=k(x+1) has the unique quasi-inverse, we obtain

E(x)=k(x+1).

If we represent k/(x) in terms of u;:

F@=2u P8 (fi), ta)=1 i), i) eKTx),

then we obtain
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Jiag I and (fGHD, B D=1,

From this equality we can easily see that
Ji =&+, tix)=t:({x+1).

Hence as above t;(x), fi(x)e K[x?—x]. Hence k' (x)€R*[x?—x], which proves
f(x) e J(R*[x»—x]). Finally by using a mapping: x—x?—x we obtain an isomor-
phism of R*[x] to R*[x?—x], and a inverse image of f(x) is h(x), and since
f(x) e J(R¥[x?—x]) we have h(x) € J(R*[x]). But the degree of 4(x) is lower than
f(x), which is a contradiction. Now we shall prove the theorem in a general
case. If J(R*[x4]) ~R[x,]#0 there exists a non zero polynomial f(x., x8) of
minimum degree with respect to an indeterminate xs. By using a mapping: xg—
¥8+g(xy) we obtain an automorphism of R*[xy], where g(x,)€K[%x,], and we

have
Fxar, 28)=f (Ko, 28+ 8 (Xar)).

Hence since K(x,) is an infinite field, we have a contradiction as above. This
proves the theorem.

CorOLLARY 1. A purely transcendental field K(x,) over K is S-separable,
but not R-separable.

This is an immediate consequence of Theorems 4 and 6.

COROLLARY 2. Let A be an algebraic separable extension over a subfield Ao
and Ao be purely transcendental over K. Then for any algebra R which has no
nil ideal+(0), ARQR is semi-simple, and hence A is S-separable.

Proof. 1t is clear that A®R=(A(A®A(,)®R=A§§>(A0®R). From the theorem 6
A@R is semi-simple, and hence A®(;10®R) is seroni-simple by the assumption and
the lemma 8. "

ProrosiTION 13. If A is finitely separably generated, AQR is semi-simple for
any algebrva which has no nil ideal+(0). Conversely if //QK 7 has no nilpotent
elements, then A’ is separable (not necessavily finitely gemerated) in the sence of
Bourbaki [5], where p is the characteristic of K.

Proof. The first part is clear from [5], p. 141 Th. 2 and the corollary 2. If
ARK?®™" has no nilpotent elements #0 for any basis {6} of A/, {b?) is linearly

independent over K. Otherwise we have
S0%;=0, a1#0, a;eK,

and hence 0+ Y10;Ra? " € (A/RK 77" is nilpotent, which is a contradiction. Hence
we obtain the proposition from [5], p. 129, Coro.
RemArRk. If K is a field of transcendental degree 1 over a perfect subfield P,
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and A4 is a S-separable extension field of K of finite transcendental degree, then
A has a separating transcendental basis over K (see [14], p. 384, Coro.).
The corollary 1 and the following example show that S-seprable algebras are

not necessarily algebraic.

Let 4 be a complete dircet sum of an infinite number of infinite fields K.

Then we can easily show that 4 is not algebraic and is S-separable by the

lemma 8.
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