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We shall, in this paper, give cellular decompositions of homogeneous spaces Vn, 

Wn and Xn of classical Lie groups O(n), U(n) and Sp(n) by their diagonal subgroups 

respectively. 

1. We denote by F one of three fields of real numbers R, complex numbers C 

or quaternion numbers Q, and by d =d(F) the dimension of F over R; d(R) = 1, 

d(C) =2 and d(Q) =4. Let pn be a right vector space of dimension n over F and 

e; (i=l, ... , n) be the e:ement of pn whose i-th component is 1 and the others are O. 

pn-l is embedded in pn as a vector subspace whose last component is O. 

Denote by G(n) one of three classical Lie groups O(n) (orthogonal group), U(n) 

(unitary group) and Sp~n) (symplectic group). G(n) operates on pn in the natural 

sense. G(n-1) may be regarded as a subgroup of G(n) by extending a point A of 

G(n-1) to G(n) by requirement that Aen=en. 

The diagonal subgroup D(n) IJ of G(n) is isomorphic to the product group Sd-l x 

... xsd-l (n-fold), whe~e Sd-l is the unit sphere in F which is a group. We define 

Kn to be G(n)/D(n). Then we have G(n-1)/D(n-1)=G(n-1)xD(1)/D(n)C 

G(n)/D(n). Thus we have a sequence 

In the natural se:~se G(n) operates on Kn, i.e. for gE G(n) and aE Kn, we have 

ga E Kn· 

Kn is denote1 by Vn, Wn or Xn, according as the field F is real, complex or 

quaternionic respectively. 

Let t2n-l be the d(n-1)-dimensional projective space over F. If a point x of 

t2n-l has a representative x=[x1 , ... , Xn], where x1 , ... , Xn are, not all zero, in F, then 

the other representatives are x= [x1a, · · · , X na], where a is any non zero element of F. 

Renee we can choose a representative x=[x1 , .. ·,xn] such that lx1 12 + ... +lxnl 2 =1. 

Now, if we define a mapping 

1 : t2n-l ~ G(n) 

by the formula 

i, j = 1, ... , n, 

- --- --------------

1) In the case G(n)=U~n), D~n) is a maximal torus of U(n). 
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then 1 is homeomorphic into, (see [2]). Renee we may consider f2n-r is a subset of 

G(n). f2n-r is embedded in S2n as a subspace whose last component is O. 

The basic tools used here are indicated by the commutative diagram 

1 y 
l2n-1 ---;. G(n) ---;. s~n-1 

Pl À lÀ 
Kn -------;> !Jn-1 

q 

where S~~-1 is the unit sphere in pn and (G(n), r, S~~-1 ; G(n-1)) 2l (G(n), p, Kn; 

D(n)), (S~~-1, À, f2n-1; Sd-1), CKn, q, f2n-1; Kn-1), and (G(n), f-1., f2n-1; G(n-1) xsd-1) 

are the familiar fibre spaces. 

2. Let E~'!' be the unit cell in pn of x=(x,, ... ,Xn) such that lxi = 1/lx1 12 + .. ·+ lxnl 2 

< 1 and é~n be E~'!'- (E~7')". Let D~:' be the subset of E~;> of x such that 1/1/2 < 
lxi = 1/lx1 1 2 + ... + lxnl 2 <1 and S~n-1, s~-1 be the subsets of D~:' consisting of x 

such thatlxl =1/1/2, lxi =1 respectively. Then D~:' is homeomorphic to san-1xJ. 3l 

And define 'I)'f,"' by the set D1'f'-(Sa,n-1uS'!.:"-1). 

Now, we define mappings 

J n-l. n: EJfcn- 1)---;. G(n) 

and 

by setting 

i,j=1, ... ,n, 

where x=CX1, ... ,Xn-1 ) EE,~cn- 1 J and Xn= 1/i-=-[xT2 , 

and 

fn-1, n = PO J n-1, n. 

If a mapping ÇF: D1~cn- 1 J -:> S2n_1 is defined by 

then we have the following 

LEMMA 2. 1. Ç F maps 'IJffCn- 1 J homeomorphically onto f2n_ 1 - (f2n_2 u w0) and maps 

S~Cn- 1J- 1 to f2n_ 2 , Stcn-1)-l fo W0 respective/y, where Wo is a point [0, ... , Ü, 1] of 

f2n-I • 

Proof. In the formula 

2) (E, p, B; F) indicates a fibre space with total space E, base space B, fibre F and projec­
tion p. 

3) Sdn-1 is a (dn -1)-sphere and I is [0, 1] interval. 
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we have 0<1-2x~<1 for xE'Ilffcn-1 J. Renee for a point a of t2n-1 -(Qn-zuw0), 

we can determine x1, · · · , Xn-1 from ~ F(x) =a uniquely and continuously with respect 

to a. The last two assertions are obvious, since 1-2x~=O for xE S!:Cn- 1J-1 and Xn=O 

for xE SfCn-IJ-I. 

From this lemma, we see that 1 t-U (res p. ft-u) maps 'Il1~ct- 1 J homeomorphically 

into G(l)CG(n) (resp. KtCKn) for n>l>3, Put 

and 

W e shall cali 

of Kn. 

.a(l-1) 
~l-l.l (n2!>3) the (quasi)-primitive cell and e'f.. 2 the primitive cell 

3. Remember that Qn-z is a cell complex composed of cells u0, ua, · · · , uacn-zl, 

where udk is given as the image of E'f.k by the characteristic mapping ifJk for udk 

ifJk: E~k ___,. Qn-2' 

ifJk(x) = [x1, ···, xk+l• 0, ···, 0], 

where x=(x,,···,xk)EEt.k and xMl=v/1-lxl 2 • 

Now, for n-22k>O, we define mappings 

1 k. n: Et.k ___,. G(n) 

and 

by setting 

0 

h.n(X) 

where x= Cx1, ... , xk) E E%k and Xk+l = ,/1-1 xl2 , 

and 

x, 

fk. n = P 0 1 k, n • 

Obviously we have the following 

LEMMA 3.1. ifJk = q 0 fk. n • 

i, j = 1, ... , k+ 1 ' 

From this lemma, we see that 1 k. t (res p. !k.t) maps E~-' homeomorphically into 

G(l)CG(n) (resp. KtCKn) for l-2~k~O. Put 

We shall caU e~~~ (n-2?:)-2>k?21) the primitive cell of Kn· 
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4. For integers k,, .. ·,kj; l,, ... ,fj such that n>f,> .. ·>lj>2 and l;2k;>O 

(i=l, ... ,j), we shall define a mapping 

by setting 

where 'E~k, indicates one of either D~k, or E~.k,. Put 

d(k, + ... +k;) = f ('cdk, x ... x 'c~·k;)4) EkJ,···,k1 ;t1,···,l1 k,, .. ·,k1 ;t,, ... ,fj F 

and 

where 'c~k, indicates one of eithar SD'J/'' or c'J/'' . 

LEMMA 4. 1. Kn is the union of the subsets e8, 1 and E~;~1.~ ~; 7~:) .. , 11 with 

n>l1 > ... >lj~2 and l;;?:k;>O (i=l, ... ,j). 

Proof. Since K 1 =e8,1 and K 2 (which is d-dim projective space 2 1 =Sd-1) = 

e3,1ue't, 2 , we shall assume that the assertion is valid for Kn_ 1 • Suppose that aEKn 

but a$ Kn- 1 (i.e. q(a)=t~w0 ). In the case of q(a) $ t2n_ 2 , we can choose a point 

y E SDfficn-1) such that Ç F(y) =q(a) by Lemma 2. 1. Put U = J k.n(y). In the case of 

q~a) E !Jn-z, q(a) belongs to sorne cell udk of t2n-z, hence we can choose a point 

yEc~.k such that ifJk(y)~~q(a). Put U=Jk,n(y). In eithercases, U*aEKn_ 1 • By the 

assumption of the induction, U*a belongs to sorne subset Edk(h,+ k···. +1k1 ) •• 1 with 
1> •J•b ') 

n-l>l,> ... >lj22 and l,>k;:C?_O (or to e3. 1) of Kn- 1 • Therefore a belongs to 
d(n-l+kt + ... +k1 ) • h fi d d(k+kt + ··· +k1 ) • h d 

En-l, kt, ... , k;; n, 1" ... , t1 1n t e rst case an to Ek, k,, ... , k;; n, 11, ... , lj 1n t e secon case. 

LEMMA 4. 2. The subsets in the preceeding !emma are disjoint to each other and 
1 dkt 1 dkj h h' ll d(k,+···+k;) fk" ... , kj; 11 , ... , 11 maps CF x ... x cF omeomorp zca y onto Ek,, ... , k; ; 1,, ... , 11 • 

Proof. If UtUz ···Us-tas= V, Vz ... Vt-tbt, where UmE hm.tmC'E~·k'"), as E /ks.tsC'c:k,) 

and if m>m1 then lm<lm1 and Vm, bt are also similar ones, then q(U1 U2 ... Us_ 1as) 

=q(V1 V2 ... vt-tbt). This follows tJ..CUt)=tJ..CVt). Since tJ..(U)=qopof(y)=qof(y)= 

Ç(y) or q;(y) for sorne y E 'cF and Ç or cp is homeomorphic, it follows Ut= V1 • Renee 

we have U2 • .. Us-tas= Vz .. · Vt-tbt. Analogously Uz = Vz and so on. Consequent! y 

we have s = t and as= bt. This proves that these subsets are disjoint and fk" ... , k;; 

t" ... , t1 is one-to-one. The fact that fk" ... , k;; ft, ... , lj is homeomorphism is obvious from 

Lemmas 2. 1 and 3. 1. 
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Furthermore, it will be re3.dily verifie:l the following 

LEMMA 4. 3. fk, ... , k,; 11 , ... , 11 maps the boundary of 'E~k1 x ... x 'E~ki ta the lower 

dimensional skelton of Kn than d(k1 + ... +ki). 

5. Since the quasi-primitive cell E~~I:P is not a cell in the natural sense, the 

above construction does not give a cell structure in the sense of ]. H. C. Whitehead [1]. 

In order to correct this, we shall decompose <1~;,-P into two cells ef~1.P and ef-1,1. 
The details are the following. 

Let '1'l1 be the subset of SD~f' consisting of real numbers x= (x, 0, .. · , 0) such that 

1/1/2 <x<1 and ''1)~?"' be SD~n-SD1 • Put 

and 

Then we have éf~1~P ~e~~I:Puef-u. e1~;,-~J (n?:.l23) will be also called the primi­

tive cell of Kn. 

Now, each time when Ed(k1 + ... +k;) t · th ffi h th t k l 1 k 1, ... ,k1 ;t1, .. ,tj conams e su x suc a ;= ;-, 

l; > 3, we decompose it into two disjJint subset 1 d(k! + ... +k;) 
Ek" .. ·,k,,··,kj;f, .. ·,t1 and 

d(k1 +···+k,+- .. +k1)+l Th 
Ek1, ... , k,, ... , k,; 1, ... , 1,, ... , 1j . is process decomposes the subset E into the union of 

disjoint cells. Th us we have a cellular decomposition of Kn. 

6. Let K~ be the abstract cell complex which is composed of eL and e~:~.1~ ~; ~~~:). , 1j 

which is the product of primitive cells of Kn· Then we have 

LEMMA. 6. 1. The injection i: K -> Kn induces an isomorphism 

i*: H(K~; Z)---+ HCKn; Z) 5J. 

P f I '11 b d'l 'fi d h h b d f h h . d(kJ+ ... +k;) rao. t w1 e rea 1y ven e t at te oun ary o te cam ek, ... ,k,;f, ... , 11 

of Kn is independent of eri and e!-u (n;;-;:3). We shall orient the cell ef-Lz such 

that Ôef--l.l = e8, z- eri, 1 . Now we define a chain map p: Kn ---i> K~ by 

p(eg,z) = eg,l 

p(eLl.z) = 0 

p(e3.1) = e8.1, 

p(e~~z) = e~~z 

for n?:._l?._3, 

for n !~3, 

for the primitive cell e~;~z, 

To see that i* is an isomorphism, we shall construct a chain homotopy D by setting 

5) Z is a free cyclic group with one generator. 
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D(e8,l) = - e}_u 

D(e8.1) = DCd-u) = 0 

D(e~:l) = 0 

for n>l>3, 

for .n>l>3, 

for the primitive cell e~;l , 

Then, we have directly 

BD+Dâ = i o p-1. 

Thus the lemma is completed. 

If we take, as a coefficient group, Z2 6J for Vn and Z for Wn and Xn, fuen it will 

be readily verified that the boundary homomorphism is trivial for the chain which is 

represented as the product of primitive cells. Therefore by Lemma 6.1, we have 

V · Il l h · n(n- 1) THEOREM 6.1. n ZS a ce camp ex avzng ---Z- primitive cells eZ,l with 

n"?:l>k"?:l. And its Poincaré polynomial mod 2 is 

2Pvn(t) = (1+t)(1-l-t-l-t2) ... (1+t+t2 + ... +tn- 1 ). 

THEOREM 6. 2. Wn (resp. Xn) is a cel! complex having n(n;-1} primitive cells 

e;.'l (resp. ef;l) with n>l>k>l. And Wn (resp. Xn) has no torsion and its 

Poincaré polynomial is 

Pwn(t) = (1-i-f2)(1-1-f2 -l-f4 ) ... (1-l-f2 -l-f4 -l- ... -1-fzn-z) 

(resp. Pxn(t) = (1-l-t4)(1+t"+t8) ••• (1+t2 -i-f8 -i- ... +t•n-4)). 

7. In the case V n, we shall compute the boundary formula the more details. 

We orient each cell uk(n-1 >k?:_O) of the (n--1)-dimensional real projective space 

Pn-1 such that 

f)uk = { 0 
2uk-1 

for k is odd, 

for k is even. 

Next, we orient the cells eZ,l (n-1>l-1>k>O) and e!-=L (n>l>2) such fuat q 

preserves the orientations. 

LEMMA 7.1. 

and 

6) Z 2 is a cyclic group of order 2. 

for k is odd and k<l-1, 

for k is oven and k<l-1, 

for l is odd, 

for l is even. 
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j 
ôek1 +···+kj = 2: (1+(-1)k;)(ek1 ···+k,-l+···+kj 

"" ..• k,. l, ... ,l, '"j k, .... k,-1, .... ky; {j, ... ,l, 

E· = { 0 
' 1 

+ 2E.ekl+ .. ·+k;-1+ .. ·kj ) 
- 1 kj, ... ,k,-1, .... k,; ll, ... ,l,-1, ... ,l} 

for k;<l;-1, 

for k; = l;-1. 

Proof. The mapping degree of roft_1,t: s~-1 ->Sk-1 
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is 0 if l is odd and ±2 if l is even. Furthermore the mapping degree ). : S k-1 ->- Pt-1 

is also 0 if lis odd and ±2 if l is even. Renee the mapping degree of ).oroft-l.l 

=qoft-1.1 is 0 if l is odd and ±4 if l is even. Therefore the cell e!,l+ 1 is attached 

to el=L by the degree 0 or 4. The rest of the !emma will be obvious. 

THEOREM 7. 1. Vn has only torsion of arder 2. 
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