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On some homogeneous spaces of classical Lie groups
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We shall, in this paper, give cellular decompositions of homogeneous spaces V,,
W, and X, of classical Lie groups O(n), U(n) and Sp(n) by their diagonal subgroups

respectively.

1. We denote by F one of three fields of real numbers R, complex numbers C
or quaternion numbers @, and by d=d(F) the dimension of F over R; d(R)=1,
d(C)=2 and d(Q)=4. Let F” be a right vector space of dimension 7 over F' and
e; (1=1,---,n) be the element of F" whose i—th component is 1 and the others are 0.
F"-1 is embedded in F” as a vector subspace whose last component is O.

Denote by G(n) one of three classical Lie groups O(n) (orthogonal group), U(n)
(unitary group) and Sp{n) (symplectic group). G(xn) operates on F* in the natural
sense. G(n—1) may be regarded as a subgroup of G(#) by extending a point A of
G(n—1) to G{n) by requirement that Ae,=e,.

The diagonal subgroup D(#)¥ of G(x) is isomorphic to the product group S4-!x
- xS471 (n—fold), where S4-1 is the unit sphere in F which is a group. We define
K, to be Gn)/Dn). Then we have G(n—1)/D(n—1)=Gn—-1)xD1)/D(n)C
G(n)/D(n). Thus we have a sequence

K,CKyC - CKuC -

In the natural sease G(m) operates on K,, ie. for g€ G(n) and a€ K,, we have
gacK,.

K, is denoted by V,, W, or X,, according as the field F is real, complex or
quaternionic respectively.

Let 2,1 be the d(n—1)-dimensional projective space over F. If a point x of
2,1 has a representative x=[x,, ---, x,,], where %, -+, x,, are, not all zero, in F, then
the other representatives are x=[xa, -+, x,a], where @ is any non zero element of F.
Hence we can choose a representative v=[x, -, x,] such that |x;]2+ - +|x,|2=1.

Now, if we define a mapping
t: Q01— G
by the formula
¢(Lay, s xa) = (0y—20:%),  4,j=1,-,m,

1) In the case Gn)=Un), Dn) is a maximal torus of U(x).
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then ¢ is homeomorphic into, (see [2]). Hence we may consider £2,-, is a subset of
G(n). £,-, is embedded in £, as a subspace whose last component is 0.

The basic tools used here are indicated by the commutative diagram

Dy —> G(n) ——> St

ol

Ky —— 82,

where S%-! is the unit sphere in F” and (G(»), , S¥1; G(n—1))?» (G(n), p, K,;
D)), (SE Y A, Ly-r1; S, (Kau, ¢, 2y-1; Kue1), and (G(n), g, £4-1; G(n—1) xS41)

are the familiar fibre spaces.

2. Let ES" be the unit cell in F” of x=(x,, ---, ¥,) such that |x| =/ Tx 24+ + [x,]2
<1 and & be EF"—(E?)". Let D" be the subset of E9" of x such that 1/,/2<
(2] =y T2, 24+ - + [%,]2=1 and S¥"!, S be the subsets of D" consisting of x
such that|x| =1/3/2, |x| =1 respectively. Then D% is homeomorphic to S*-1x I.%
And define D by the set D — (-1 §an-1y)

Now, we define mappings

Fa-in: EFOD —s G(n)

and
, foant EF*V— K,
by setting
Fuctn(®) = 05;—2%:%5),  4,j=1, -,
where x= (¥, -, %,-1) € EF"~D and x,=,/T_—[x[2,
and

fn—l,n =po }n—l,n-
If a mapping §p: DF* 1 — Q,,_, is defined by
$F = qofn—-l,n»
then we have the following

LEmMMA 2.1. & maps DF*Y homeomorphically onto 2,y — (2,_s w,) and maps
Ser=L-1 fo Q,_,, SEnD1 po w, respectively, where w, is a point [0,---,0,1] of
2,-:.

Proof. 1In the formula

Er(®) = Ep((%1, - 20)) = [ 2012, , -+, —2%,1%,, 1 —243],

2) (E, p, B; F) indicates a fibre space with total space E, base space B, fibre F and projec-
tion p.
3) Sdn—1is a (dn-—1)-sphere and I is [0, 1] interval.
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we have 0<(1—2x2<C1 for x€ DF™1, Hence for a point a of 2,-1— (2,2 w,),
we can determine x,, ‘-, x,_1 from £z(x)=a uniquely and continuously with respect
to a. The last two assertions are obvious, since 1—2x2=0 for x€ SE”~1-1 and x,=0
for x € SF»—H-1,

From this lemma, we see that 7,.1,; (resp. fi-1,;) maps D1 homeomorphically
into G(HCG#n) (resp. K;CK,) for n>1>3, Put

d(l 1) ”fl -y l(@d(l—l)) s
and
€2 = fr.2(ED).

We shall call &P (n=>1>3) the (quasi)-primitive cell and ¢, the primitive cell
of K,.

3. Remember that £,_, is a cell complex composed of cells u°, ud, -+, ud™=2,
where u?* is given as the image of &% by the characteristic mapping ¢, for ud*

¢r: Ef —> Q4 s,

¢k<x) = [xly o ;xk+1>07 ) 0] ’

where x=(x;, -+, %) € EFf and xp1=4/1—|x[2.
Now, for n—2_>k_>0, we define mappings

Fron: E¥F—> G(n)

and
fk, n- Egk i Kn
by setting
X
6” x,J_C, 0
[ . 25
Few = o rob g | ig=1 ke,
1 o
j‘l)""xk—l—lé 0 0
where x=(x1, -, x) € Ef* and %p1=,1— |2,
and
Seon="0°Ftn-

Obviously we have the following

LEmMA 3.1, Y =q° fron-

From this lemma, we see that f,; (resp. fz,;) maps &% homeomorphically into
G(H)CG(n) (resp. K;CK,) for [—2>k=>0. Put

efty = fr,1(E%) .

We shall call e%; (n—22>/-2>k_=1) the primitive cell of K,.
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4. For integers ky, -, kj; I, ,1; such that n>10,"> - >[;>2 and [;>k; >0
(i=1,---,7), we shall define a mapping

. rppdk dk,
fk1,~ T T 'EGX - XEG i —> K,
by setting

Sroo byt o, (91,00, 95) = fkl,h(yl) .?kj_l,l]_1<yj—1>fkj,lj<yj>

dk, . . . dr dk
where ‘E%* indicates one of either D7* or Ey*. Put

d(ki+ - +k)) . , cdky 08k N4
Chyy e bys by dy = Sl ks 1y, 2; CEF X e XER )Y

and

n
eo1 = Ky,

dk, . . . ar dk,
where ‘Sx ' indicates one of eithar ©% ' or &p'.

. . dCky+ - +k .
LemMma 4.1. K, is the wunion of the subsets ej, and Eki,-l.-,kj;zlf).--,zj with

n=dy > >1;>2 and 1; >k 220 (6=1, -, 7).

Proof. Since Ky=e), and K, (which is d-dim projective space £,=S4"1)=
ed 1 ed,5, we shall assume that the assertion is valid for K,_,. Suppose that a¢€ K,
but a¢ K, (i.e. g(a)==w,). In the case of ¢(a)¢ 2,_,, we can choose a point
yE€DE™D such that £x(y)=¢g(@) by Lemma 2.1. Put U= 7, ,.(3). In the case of
qla) € ,-5, q(a) belongs to some cell ud* of £,.,, hence we can choose a point
y€&% such that ¢x(»)=¢(@). Put U=Fp,(»). In either cases, U*a€ K,_,. By the
assumption of the induction, U*a belongs to some subset Sii’k},f k] +,’f ’),J with
n—1>0,">-+>1;2>2 and [, >k; >0 (or to €3,) of K,.,. Therefore a belongs to

A(k+kyi+ - +ky)

Ak o +E . .
d(n—1+k 7 in the first case and to € .\ %, n, iy,..,s; i0 the second case.

n—1, ky, -, Ry m, Iy, s /]

LEMMA 4.2. The subsets in the preceeding lemma are disjoint to each other and

78k 78k . d(ky+ - +k))
Sy by 1yyoeey 1, TRADS "Ep X oo XEp homeomorphically onto &, 77, i g

Proof. If UU, - Us—ras=V,Vy--Vi_ibs, where Uy € Frmim('EX™), as € Fho1s (/655
and if m >m’ then /,,< [, and V,,, b; are also similar ones, then ¢(U,U, --- Us_,as)
=q(V,V, - Vi_ibs). This follows p(U)=pu(Vy). Since u(U)=gopof(y)=qof(y)=
&(y) or ¢(y) for some y€’Ey and & or ¢ is homeomorphic, it follows U,=V,. Hence
we have U, Us_1as=V, - Vi_;b:. Analogously U,=V, and so on. Consequently
we have s=f{ and a;,=b;. This proves that these subsets are disjoint and f, ok
4,1, is one-to-one. The fact that fkl_l,,,k];ll, ...,7; is homeomorphism is obvious from

J
Lemmas 2.1 and 3.1.

HUL-22k 20 (=1, ), then ey ="y T will be written by eff1 o FR)

dky  d(ka+t - +k))
and also by €, ) Choy oo ey by o 1,
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Furthermore, it will be readily verified the following

: maps the boundary of ’E'}k‘x X’Eiki to the lower
dimensional skelton of K, than d(k + --- +kj).

LEmMMA 4.3 fo kit 00

5. Since the quasi-primitive cell &P is not a cell in the natural sense, the

above construction does not give a cell structure in the sense of J. H.C. Whitehead [17].
In order to correct this, we shall decompose &% P into two cells e¥5 P and el_, ;.

The details are the following.

Let ©! be the subset of D% consisting of real numbers x=(x,0, ---, 0) such that
1/y/2<x<1 and ‘DY be DF—D'. Put

ef Y = fro1,1(DFCY)
and

€i1,1 = fro1,:(DY) .

Then we have &4 V=efrPYel |, e85V (n>12>3) will be also called the primi-
tive cell of K,,.

. d(ki+ - +k .
Now, each time when Ekf, L k,:lﬁ ,7; contains the suffix such that k;=/;—1,

d(ky+ - +ky)
Ry, o

l; >3, we decompose it into two disjoint subset ‘¢ ko ks 1y, e, g, and

ARy + oo By o )L . . .
Skf,.’.., ey e ,’kj;ll,...’?,“...,,j. This process decomposes the subset & into the union of

disjoint cells. Thus we have a cellular decomposition of K,,.

6. Let K3 be the abstract cell complex which is composed of ¢§,, and eif,k,‘,f k) N 11:,]). 1

which is the product of primitive cells of K,. Then we have
LemMA. 6.1. The injection i: K— K, induces an isomorphism

iw: HKS; Z)—> H(K,; Z)».

Proof. It will be readily verified that the boundary of the chain e‘,:ff‘,f Pl

g3,
of K, is independent of ej and el ; (#n>>3). We shall orient the cell e}_; ; such

that 0ei_y,;=¢Q,,—ej1. Now we define a chain map o: K,, > K3 by

0(ed,) = ef for n>1>3,

o(el_1) =0 for n>1>3,

o(es,1) = ed.a,

o(eft,) = e, for the primitive cell e%,,

A(ky+ e ) ek d(kat  +F))
0y, ki) 0) = 0k 1) 000, "0 0 1000 1)

To see that 7y is an isomorphism, we shall construct a chain homotopy D by setting

5) Z is a free cyclic group with one generator.
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D(e8,)) = —ef_1, for n=0=3,
D(e},1) = D(ej_,) =0 for n>12>3,
D(e%,) =0 for the primitive cell ¢¢% ,

d(kyt - ) o dky Ukt e R
Dy, ks e, 1) = Dl 12€hy, o ks 05

. dk d(kg+ - + k)
+ (‘l)dkllo.0<ek1,1ll> 'D(ekg, 2 NIT lz,j... , 1]> .
Then, we have directly

0D+Dd =iop—1.

Thus the lemma is completed.
If we take, as a coefficient group, Z,% for V,, and Z for W, and X,,, then it will
be readily verified that the boundary homomorphism is trivial for the chain which is

represented as the product of primitive cells. Therefore by Lemma 6.1, we have

THEOREM 6.1. V, is a cell complex having 7L(!_’2:.1)

n_=>1">k>1. And its Poincaré polynomial mod 2 is

primitive cells ek, with

LPv, ) = A+ A+t4+82) - AL+ - 4771
THEOREM 6.2. W, (vesp. X,) is a cell complex having "(—"z—ﬁ
e2i, (vesp. e¥t)) with n=>=I>k>=1. And W, (resp. X,) has no torsion and its

Poincaré polynomial is

primitive cells

Pw,®) = A+ A +£241*) - A4+t - +1772)
(resp. Px,(t) = A+t A+ +15) - A+2415+ - +44774)) .

7. In the case V,, we shall compute the boundary formula the more details.
We orient each cell #*(n—1>k=>0) of the (n—1)-dimensional real projective space
P,_1 such that

0 for k is odd,
2uk~1 for k is even.

auk={

Next, we orient the cells ¢f,; (n—1=/—1>k=>0) and ¢/-}, (n=/==2) such that ¢
preserves the orientations.

LEMMA 7.1.
oet . — {0 for k is odd and k<I-—1,
bt 2071, for k is oven and k<{I-1,
. 0 for 7 is odd,
0ef,141 = -1 -1 .
2¢;=t 1 +t4eiT1,; for / is even,
and

6) Z, is a cyclic group of order 2.
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6ek1+..~+kj — Zj <1+(__1>ki)(ekl,..+k,_1+...+kj
ki, kgl el = ki k=1, byl -

pkit o FRi—14 - kj
i28,€kb By By By ey f— 1, e 1])

0 for k;<Il;—1,
1 for k;=1/1;—1.

7

where & = {

Proof. The mapping degree of 707, q,;: St >S4
voF1o,1(y, e, 8 = (=252, -, — 22057, 1—2x3)
is 0 if /is odd and +2 if / is even. Furthermore the mapping degree 2:S4— P,

Z(yly :yl) = [yl) ,J’l]

is also 0 if / is odd and +2 if / is even. Hence the mapping degree of Aorof; .
=gqofi-1,7is 0 if / is odd and +4 if / is even. Therefore the cell ¢} ;. is attached
to e{=},, by the degree 0 or 4. The rest of the lemma will be obvious.

THEOREM 7.1. V,, has only torsion of order 2.
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