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1. Let 2 be a bounded plane region (connected open set) and let there be
given a certain equation in one unknown function #: [« ]=0. We shall say that
# is an F-function in an open set contained in © provided # is there a solution®
of FLul=0.

Let E be a closed set contained in £. We shall say that E is of $-capacity
zero and write Cg(E)=0, provided there exist an open set O containing E and
an F-function #(x,y) in O-E, such that

lim #u(x,y)= 4+ oo
(%,9)2(%7,97)

for all boundary points (¥’,y") of O-E belonging to E. Such a function # will be
called an Evans’ function for E with respect to §[u]=0.

Especially if

du = gi’; + gjﬁ =0

is taken for Flu] = 0, Cyx(E)= 0 means that E is of logarithmic capacity zero,
which we shall write C(E) =0 in the sequel.

The main purpose of this paper is to give some conditions for that Cg(E) = 0
implies C(E)=0 or conversely C(E)=0 implies Cg(E)=0. Applications will be
made to solutions of linear partial differential equations of elliptic type. Finally

we shall obtain an extension of the theorem on removable singularities for har-
monic functions.
2. We define the generalized Laplace operator 4*x by

. 4 1 (er .
* —_ — I —
AFulx,y) = lpl_)mo pZ{ Zﬂjo u(x+p cos 8, y+psin 0)do u(x,y)}
or

A*u(x,y) = lim %{ % jp jmu(x—wcos 6, y+rsin @) rdrd6—u(x, ) }
po P AP Jo Jo
It turns out that, if # is twice continuously differentiable, 4*x exists and is iden-
tically equal to Adu.
THEOREM 1. Let O be a bounded open set in the plane, E* the exterior frontier
of a closed set E lying in O, and O% the portion of O exteriovto E*. Let a(x,y),

b(x,y) be continuously diffeventiable functions in O* such that a,b, a,, b, are uniformly

1) A solution must be continuous and have continuous derivatives of all orders appeared in

SLu]=0.
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bounded there, and let o(x,y,u) be a continuous function for (x,y) € O* and — o <
u <+ oo, satisfying

(1) sup I(o(x,yy u)l <4 oo
(1y9) eg%ru>1 u
or
&) inf  o(x,y,u) >—co.

(#:9) € 0% u>1
If theve exists in O% a solution u(x,y) of the equation
fFu+au,+bu,+o(x, v, u)= 0,
possessing the boundary behavior
u(x,y) =+ o0

lim
(% 9)—> (2%, %)
for all points (x*,y*) of E¥*, then the logarithmic capacity of E is zero.

Proof. Without loss of generality we can assume that the boundary of O,
say B(O), consists of a finite number of smooth curves and that # is defined con-
tinuously in O*UB(O*)—E* and u# > 1 there.

Let D be any component (connected open set) of O* and put

By=B(D)NE*, By=B(D)NB(O).
Denoting by D), the set of points (x,y) of D at which u(x,y) <n(m=12-"),
B(D,) contains By if n is large enough. Let D} be the component of D, which
has B; as boundary components. Shrinking D¥ to D, by changing B(D}) — By, we
construct a sequence of regions D, bounded by a finite number of smooth curves,
such that

€)) 1<u<n in D,UB(D,),
n—-1<u<n on B(D,)—B;
and D,cD,sCD,»C ..., D,—>D.

We now form the harmonic function #%,(x,y) which is continuous in D,U
B(D,), harmonic in D, and equal to # on B(D,). Then
A*(u—h,) +au+bu,+¢(x,y,u)=0  in D,
and
u—nh,=0 on B(D,).
Therefore we may write #—#, in the form

@ wn—hG =5 [ {ausrbu,+o@ne }Gien; x, ydedn,

where G,(§,7;x,y) is the Green’s function for D, (with respect to the Laplace
equation) with pole at (x,y). To prove C(By) =0, it suffices to show that

lim ha(x,3)
n—ro0 n

Let G(§,7;x,5) be the generalized Green’s function for D with pole at (x, y).
We then have in view of (1) and (3),

= 0.

hm <ﬂ(5, 77y u) G (S 77 x’y) 0

n—rco
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‘ ﬁngﬂ@(g,n; x,y)’ <AGE,7;5%,9)

KiGLADN ’ <400, except at (§,7)=(x,¥), and -

with A= sup
EymeoFu>i

0< ”DG@”??%y)dEdﬁ < +o0,

Hence we obtain

®) lim —
n—oo

Next consider

L[ ot m 063 % ) dsdn-o.

”D/WG” &, m;x,9)dédn.
In view of vanishing of G, on B(D,) and by integration by parts, this integral
can be brought in the form
” aG ¢&,7; %, y)}dé‘dn
== [[, auG,&n;x y)dsdn—” au-0c G (8, 3, y) dédn
Dn & n\Sy "y Ay Dn 65 n\Sy "y A, .
Since @ is uniformly bounded in D, we have similary as the preceding argument
(6) lim —- f f azuG,(§,7; x,y)dédn = 0.
Let H,(&,7m) be the harmonic function in D, with the boundary values log r=

log v/ (€=x)2+ (7—)% on B(D,). Then

26, 1;%,5) = log —1;+Hn(5, 7),

so that
0 . _ x—=£ 0
65 Gn(f,"?»x,y) - 1,2 + 85 Hn(‘f, 7]),

and so
‘ 0 .
”D auawé G.(&,m;x,y)dédn

— JJDnau dEdn + ff au— H dédn.

We now obtain by Schwarz inequality
(1 e . den ) = (], (B m)'acan) ([ canraca).

By Dirichlet’s principle? we can find a positive constant K such that

[ (Gem)" + (Zm) yasan <K for all n.

o

2) R. Courant, Dirichlet’s Principle, Conformal Mapping and Minimal Surfaces (1950), p.11
K may depend on (%, ).
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Hence

e maean |<v ([],, () aear)’

—> (0 as #—> oo,

Thus
.1 0 _
lim L | anau—é? H, dédn=0.
On the other hand it is easy to show that
1 x— E
}11_{1; fj au ——5—— d&dn=0.

Therefore we get

@ tim L[ B G, 55,9 dedn-o.

n—o0
(6) and (7) give us

1 (f )

® }zl—l;l;lxa ” J g G.(€,7; x,¥)dédn=0.

Similarly we have

©) tim L[ [ bu, Gu&,n; 2, 3)dsdn=o.

700

Finally it follows from (4), (5), (8) and (9), that
lim hy (%, 9)

n—r00 n

—tim[ 4D L[ b byt om0 [ GaEn; w)dedn | =0

n—0

for any (x,y) of D. This proves C(Bg) =0.
Let us now assume (2) instead of (1). Then we have

lim inf —H e&n;uw)G.(&n; x,y) dédn = 0

7n—-rc0

instead of (5), so that we get

lim sup WACHINY
n—rco n
However #,(x,y) > 0 for all n. Consequently

lim ha(x,5) _ 0

n—0co n

This proves C(By) =0.

O* has at most a finite number of components D® (k=1, 2, ---,m) of the type
considered above. Putting B§{®=B(D*)UE* we have C(B{*) =0 for k=1,2,---,m
Therefore ‘

C(E" = ];"”1 C(BSP) =0.
From this it follows that C(E*) =0, consequently E* is identical to £ and C(E) =0.
The theorem is thus proved completely.

As an application of this theorem we can state:

Let a(x,y), b(x,y) be continuously differentiable in 2, and let ¢(x,y,u) be a
continuous function for (x,y) € 2 and —co<u<+oo, satisfying
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(1[) Sup I ¢(x’ y; u) 1 <+OO
(£ Y)EF> u>1 u
or
’ .
(2 ) (x,y)lenif, u>1 (p(x, Y u) >=o

Jor each closed subset F of 9.

Let the equation

A*u+au+bu,+o(x,y, u)=0

be taken for FLul=0, then Cx(E)=0 implies C(E) =0.

3. We shall denote by {¥} a family of all F-functions defined in any open
subset of 2 and impose the following conditions to {J}:

(C) If fE(F), g €{F} in some open set O, then Af+ug€ {F} in O for any
real numbers 4 and .

€y If f,€{(F}(n=1,2,---) in some open set O and f, converge uniformly
toward f in any closed subset of O, then f€ {&F} in O.

(C3) Let E be a closed set of measure zero in ©. Then it is possible to find
a region D containing E such that, for each z € E, there is a function

GE, D= w(,2) log g+ (&2

which belongs to {§} in D—E as a function of &, where w({,z) and v({, z) satisfy
M>w&, z)>m, v, z)|<N for € D—E, Z€E,
M, m and N denoting positive constants not depending on &, z
TuEOREM 2. Let {F} satisfy the conditions (Cy), (Cy) and (Cs). If C(E)=0,
then Cg(E)=0. .
Proof» Take n points z, zs, -+ ,2, on E and put
M, = inf {Erel%x[ (z—z2p(2—29) =+ (z—2zu)|}.

21,25,y
Then C(E)=0 implies m,=—log™/M,— +ccas n->o. Hence we can choose
n; for j=1,2, - so that m,; = 2/, and find a sequence of sets of points {29,;,28,;,
-+, 25;,;} such that

max [(z—2,) (z=23,7) (2= 23;,) | = My;.

Then it is known that

(10) 2 (g, log gy ) =+

as-{ € E approaches to any point of E.

We shall now define a corresponding function for (). Since E is of measure
zero, there is a region D—E for which exist $-functions G({,z) mentioned in
(Cs). Putting

0,0 = 5 BCE 4,

3) Our method for the proof is analogous to that of the Evans’ theorem for harmonic fun-
ctions. G. C. Evans, Potentials and positively infinite singularities of harmonic functions, Monatsh.
fiir Math. u. Phys. 43(1936), pp.419-424.
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we define
an U@ = £ 27u;0).

We shall show at first that the series (11) converges uniformly in D—E.
For any closed subregion F of D—E, we find a positive constant L such that
|GE&,2) | < L for {€F, z€E.
Then |u,(&) | < L, so that the series (11) converges uniformly on F. Hence it
follows from (Cy) u;€ {F}, and so from (Cp) U€ {F} in D—E.
It remains to show that
lim, U() =+

for all ¢’€ E. To prove this, we may assume that E lies in a square with sides
less than 1/2. Otherwise, we devide E into a finite number of closed subsets E;
each of which lies in such a square, and have only to add all U,({) defined above
for E, (shere D may be the same for all £). If we make this assumption, we
can find a small neighborhood V of {” in which, except at points £ € E,

G(&,2) >m log I_f-l-—z] —N for any z€E.

Then
nj 1
ui(©) > 055 log p—gey=N.
Hence from (10),
S 1 u LN et
U(§)>m}}:l< 2%",22:1 log T, ] ) N—+400 as &7,

Thus U(&) is an Evans’ function for £ with respect to {%}, and so Cg(E) =0.
As an application of Theorems 1 and 2, we prove :
TueoreM 3. Let a(x,y), b(x,¥), c(x,y) and f(x,y) be continuously diffeventiable
in Q. Take for FLul=0 the linear partial differential equation of elliptic type
12) Au+au,+buy,+cu+f=0.
Then Cg(E)=0 is equivalent to C(E)=09.
Proof. 1t is obvious from Theorem1 that C(E) =0 if Cx(E) =0. Let us now
suppose C(E)=0. Recognizing that the family of all solutions of the equation
13 du-au+bu,+cu=0
satisfies the conditions (Cy), (Cy) and (Cs), there is, by Theorem 2, a region D—
E in which exists an Evans’ function # for E with respect to (13). On the other
hand, we can find a solution v of the equation
dv+av.+bv,+co+f=0

4) Theorem 3 is an extension of the Evans’ theorem. Recently I. Hong extended this
theorem for solutions of the equation Au+k2x=0 with a constant £ > 0. I. Hong, On positively
infinite singularities of a solution of the equation fJu+k24=0, Kodai Math. Sem. Rep. v. 8, n.1
(1956) pp.9-12.
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in D, if the area of D is sufficiently small. Then w=#+v becomes an Evans’
function for E with respect to (12). Hence Cg(E) =0 and the theorem is established.

The fact that the family of all solutions of (13) satisfies the conditions (C;)~
(Cs) is proved as follows:

(Cy is trivial. (C,) is easily verified by applying the fact that the Dirichlet
problem with respect to (13) has a unique solution for circles of small radius.
To assure (Cy), let us take a small region® D in which there exists, for each z €
E, a fundamental solution having a logarithmic infinity at z and it is written in
the form®

- 1 V(w, z) 1
G, 2= log g+ [ log g7 v

plw—z]
where dr, denotes the area element with respect to w and +r(w,z) is uniformly
bounded with respect to w€ D and z€ E. From this expression, the property re-
quired for G(&, z) in (Cy) follows.

4. We now set the following conditions :

(Co Let D be any region bounded by a finite number of smooth curves in 2
and let f be any &-function on B(D).” Then the Dirichlet problem for D and f,
relative to (&}, has a solution, namely, there is a function which belongs to (%}
in D, is continuous in DUB(D) and equal to f on B(D).

(Cs) Let D be any region in 2. If « is continuous in DUB(D), belongs to
{F} in D and vanishes on B(D), then # vanishes identically in D.

THEOREM 4. Let {§} satisfy the conditions (Cy), (Cy) and (Cs). Let O be an
open set in  and E a closed set of T-capacity zero contained in O. If U is a
bounded F-function in O—E, it is possible to define U on E, so that U becomes
an F-function in O.

Proof. Without loss of generality we can assume that B(O) consists of a
finite number of smooth curves and U€ {§} in O—E where O denotes OUB(0),
and moreover that there is in O— E an Evans’ function # for E with respect to {&}.

By (Cp there are two $-functions U*, #* in O, such that U*, ™ are con-
tinuous in O and U= U* u=u* on B(O). Put w=U-U* h=u—wu*. Then h is
again an Evans’ function for E, and, by assumption, we can find a constant M
such that |w| < M in O-E.

Denoting by O, the set of points at which 2 <#n (n=1,2,--), B(O) becomes
boundary components of O,, because 2=0 on B(O). According to (Cy), 4+ Mh/n are
F-functions in O, with the boundary values + M on B(O,) —B(0) and zero on B(O).

Next we shall show using the condition (Cs) that

(14) MTh =w= —MTh throughout O,.

5) The smallness of D is required for its area and the magnitude of the diameter of D is
irrelevant.

6) See R. Courant-D. Hilbert, Methoden der Mathematischen Physik, II, pp.279-281.

7) f is said to be an §-function on a closed set S if fis so in a certain open set containing S.
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Suppose that the statement Mh/n = w is false. Then there are a point of O, at
which w > Mh/n, and a region D,CO, containing this point, on whose boundary
w=Mh/n. On the other hand, by virtue of (Cy), w—Mh/n is continuous in D,
and belongs to {&} in D,. Hence it follows from (C;) that

)
n

which is impossible. Thus we have Mh/n=w throughout O,. The inequality w =
—Mh/n is shown similarly.

w

=0 in D,

Letting # — o in (14), we see
w=U-U*=0
at all points of O—E, because O, - O—FE as n— oo, This proves our theorem.

As an application of these results we can state:

Let E be a bounded closed set of logarithmic capacity zero in a plane region D,
and let u be a bounded solution of the equation

(15) du+au,+bu,+cu+f=0
in D—E, where a, b, ¢ and [ are continuously differentiable in D, and ¢ = 0. Then
it is possible to define u on E, so that u satisfies (15) on E.

To prove this, consider without loss of generality any bounded solution v of

(15) in D, then w=wu—v is bounded in D and satisfies

(16) dw+aw.+bw,+cw=0
in D—E. Theorems 3 and 4 now apply to w. In fact, taking the equation (16)
for §[w]=0, {F} satisfies the conditions (C) ~(Cs). Hence w, consequently, # is
prolongable continuously over E, so that # satisfies again (15) at all points of E.

In the above statement the restriction on the sign of ¢ was imposed to insure
the conditions (C,) and (Cs). But we notice that a set of logarithmic capacity
zero is of measure zero, and that Theorem 4 remains true for any E of §-capacity
zero and of measure zero provided the conditions (C,) and (Cs) are assumed for
sufficiently small regions.

On the other hand, the Dirichlet problem for a region D and any continuous
boundary value function, with respect to (15), has a unique solution regardless of
the sign of ¢, if the boundary of D is smooth and its area is sufficiently small ®.
So the condition (C,) 1is fulfilled, while the condition (Cs) is also assured for
sufficiently small regions. Hence the above statement holds with no restriction on
the sign of ¢. Thus we obtain

THEOREM 5. Lot E be a bounded closed set of logavithmic capacity zero in a
plane region D, and let u be a bounded solution of the equation

du+au,+bu,+cu+f=0
in D—E, wheve a, b, ¢ and f ave continuously diffeventiable in D. Then it is pos-
sible to define u on E, so that u satisfies the above equation on E.

8) I. G. Petrowsky, Lectures on Partial Differential Equations, (1954), p.232,



