On the homotopy groups of Stiefel manifolds

Yoshihiro SAITO

(Received March 19, 1955)

J. H. C. Whitehead [3] gave a cellular decomposition of the Stiefel manifold V_{k+m} , *m* of *m*-frames in Euclidian (k+m)-space, and he and Baratt-Peacher [1] determined the homotopy groups π_{k+j} (V_{k+m} , *m*) for j = 1, 2, 3.

In the present paper, by making use of the above J. H. C. Whitehead's result and the Steenrod square, we shall gave a reduced cell complex of P_{k-1}^{i} and determine $\pi_{k+j} (V_{k+m, m})$ for $j \leq 5$ $(k \geq j+2)$.

The basic tools used are following:

i) (Whitehead's theorem) [3 theorem 3]. If r < 2k, then $\pi_r (V_n, m) = \pi_r (P_{k-1}^l)$, l = Min(r+1, n-1), k = n-m, where P_{k-1}^l is a space obtained from the *l*-dimensional projective space by shrinking its (k-1)-dimensional hyperplane to a point.

ii) (Squaring formula). If we denote by u^j the generator of $H^j(P_{k-1}^i; Z_2)$, we have $Sq^iu^j = \binom{i}{j}u^{i+j}$ for $i+j \leq l$, where $\binom{j}{i}$ is the binomal coefficient with the usual conventions.

I am deeply grateful to Prof. H. Toda for his kind advices during the preparation of this paper.

1. Notations.

We shall use the following notations throughout this paper.

 P_{k-1}^{n} : the space obtained from the *l*-dimensional projective space by shrinking its (k-1)-dimensional hyperplane to a point.

We denote π_{n+r} (P_{n-1}^{n+k}) , π_{n+r} $(P_{n-1}^{n+k}, P_{n-1}^{n+k-1})$ by π_r^k , σ_r^k respectively.

Let $K = L \underset{f}{\smile} e^{n+1}$ be a complex such that e^{n+1} is attached to L by a mapping f. A map $\bar{g}e^{n+1}$: $(E^{p+1}, \dot{E}^{p+1}) \rightarrow (K, L)$ is defined as follows, where g is a map S^p to S^n ; $\bar{g}e^{n+1}$ maps E^{p+1} in e^{n+1} by the suspension of g, $\bar{g}e^{n+1}|\dot{E}^{p+1}$ in K by $f \cdot g$.

Now if $f \cdot g$ is a nullhomotopic in L, we denote by $ge^{n+1}: S^{p+1} = E_+^{p+1} \smile E_-^{p+1} \rightarrow K$ the following map: $ge^{n+1}|E_+^{n+1}$ maps E_+^{p+1} in e^{n+1} by the suspension of g, and $ge^{n+1}|E_-^{p+1}$ is a null homotopy of $f \cdot g$.

 $\{\bar{g}e^{n+1}\}_q$, $\{ge^{n+1}\}_q$ are cyclic subgroups of order q of $\pi_{p+1}(K, L)$, $\pi_{p+1}(K)$ which are generated by $\{\bar{g}e^{n+1}\}$, $\{ge^{n+1}\}$ whose representatives are $\bar{g}e^{n+1}$, ge^{n+1} respectively.

We denote the generators and these representatives of $\pi_{n+1}(S^n)$, $\pi_{n+2}(S^n)$, $\pi_{n+3}(S^n)$, by the same letters η , ε , ν respectively.

We denote the *m*-dimensional cell of P_{n-1}^{i} and the generator of $H^{m}(P_{n-1}^{i}, Z_{2})$ by the same letter e^{m} .

2. Reduced complex of P_{n-1}^{n+i} .

Let *n*-dimensional *CW*-complexes *K*, *L* be of the same homotopy type. Consider two complexes $K' = K \underset{\alpha}{\smile} e^{n+1}$ and $L' = L \underset{\beta}{\smile} e^{\prime n+1}$, where α and β are characteristic mappings of e^{n+1} and $e^{\prime n+1}$ respectively. If $f \cdot \alpha$ is homotopic to β in *L*, then $g \cdot \beta$ is homotopic to α in *K*, and *L'*, *K'* are of the same homotopy type. Therefore if we can construct a reduced complex of P_{n-1}^{n+i} , then $L = K \underset{f_{n+i}}{\smile} e^{n+i+1}$ is a reduced complex of P_{n-1}^{n+i+1} where f_{n+i} is a map representing an element of $\pi_{n+i}(K)$. Now P_{n-1}^{n} is an *n*-sphere. Hence by the determination of the homotopy class of the characteristic map f_{n+i} for each *i*, we can determine the homotopy type of P_{n-1}^{n+i} .

Throughout this paper we use the notation P_{n-1}^{n+i} to denote a reduced complex of P_{n-1}^{n+i} .

3. The homotopy type and homotopy groups of $P_{n=1}^{l}$.

We consider the following diagram

In this diagram, the sequence $\cdots \longrightarrow \sigma_r^k \xrightarrow{\partial_r^k} \pi_{r-1}^{k-1} \longrightarrow \pi_{r-1}^k \xrightarrow{j_{r-1}^k} \sigma_{r-1}^k \longrightarrow \cdots$ are exact.

Divide the following 4 cases.

Case 1: n = 4l.

In this diagram (*), we have $\pi_1^1 = \pi_{n+r} (S^n)$ and $\sigma_r^k \approx \pi_{n+r-1} (S^{n+k-1})$. By a property of the projective space, e^{n+1} is attached to e^n by a mapping of degree 0. Therefore we have $P_{n-1}^{n+1} = S^n \vee S^{n+1}, \pi_1^1 = \{e^{n+1}\}_{\infty} + \{\eta e^n\}_2$ and $\pi_1^2 = \{\eta e^{n+1}\}_2 + \{\varepsilon e^n\}_2$.

Since $\operatorname{Sq}^1 e^{n+1} \neq 0$ and $\operatorname{Sq}^2 e^n = 0$, ∂e^{n+1} covers e^{n+1} with a mapping of degree 2 and does not cover e^n . Hence $P_{n-1}^{n+2} = S^n \vee Y^{n+2}$, where Y^{n+2} is the suspended space of the projective plane whose homotopy groups are studied by H. Toda.¹⁾

1) See [2], p. 79.

We have $\pi_2^1 = \{\eta e^{n+1}\}_2 + \{\varepsilon e^n\}_2$, Image $j_2^2 = 0$, $\sigma_3^2 = \{\overline{\eta} e^{n+2}\}_2$ and Image $\partial_3^2 = 0$. These imply that π_2^2 is isomorphic to π_2^1 .

We consider the characteristic map of e^{n+3} . Since $\operatorname{Sq}^2 e^{n+1} = 0$, ∂e^{n+3} does not cover e^{n+1} . And we may suppose that ∂e^{n+3} does not cover e^n . This fact is proved as follows: Since the fibre bundle $V_{n+4, 4}/V_{n+3, 3} = S^{n+3}$ has a cross-section for $n = 4l^{(2)}$ we have $\pi_{n+2} (P_{n-1}^{n+3}) = \pi_{n+2} (V_{n+4, 4}) \approx \pi_{n+2} (V_{n+3, 3}) = \pi_{n+2} (P_{n-1}^{n+2}) = \{\eta e^{n+1}\}_2 + \{\varepsilon e^n\}_2$. If ∂e^{n+3} covers e_n then $\{\varepsilon e^n\}$ is a nullhomotopic map in π_2^3 . This is a contradiction. Then we have $P_{n-1}^{n+2} = S^n \vee Y^{n+2} \vee S^{n+3}$.

We have $\pi_2^3 = \{\eta e^{n+1}\}_2 + \{\varepsilon e^n\}_2, \ \pi_3^1 = \{\varepsilon e^{n+1}\}_2 + \{\nu e^n\}_{24}, \ \pi_3^2 = \{\eta e^{n+2}\}_4 + \{\nu e^n\}_{24}, \ 1^{\text{D}} \text{ Image} \ \partial_4^3 = 0 \text{ and Kernel } \partial_3^3 = \{e^{n+3}\}_{\infty}.$ These implies that $\pi_3^3 = \{e^{n+3}\}_{\infty} + \{\eta e^{n+2}\}_4 + \{\nu e^n\}_{24}.$

Since $\operatorname{Sq}^1 e^{n+3} \neq 0$ and $\operatorname{Sq}^2 e^{n+2} \neq 0$, ∂e^{n+4} covers e^{n+3} with a mapping of degree 2 and covers e^{n+2} by η .

Consider the following two cases.

i) $l \equiv 0 \mod 2$. Since $\operatorname{Sq}^4 e^n = 0$, ∂e^{n+4} covers e^n by $k\nu$ with even k. However the homotopy type of P_{n-1}^{n+4} depends only on $k \mod 2$. This is proved as follows: Let $K = (S^n \vee Y^{n-2} \vee S^{n+3}) \smile e^{n+4}$, where ∂e^{n+4} covers S^{n+3} with a mapping of degree 2, e^{n+2} by η and S^n by $k\nu$. Let $K' = (S'^n \vee Y'^{n+2} \vee S'^{n+3}) \smile e'^{n+4}$, where $\partial e'^{n+4}$ covers S'^{n+3} by a mapping of degree 2, e'^{n+2} by η and S'^n by $k'\nu$ with k' = k+2a. Consider a map $f: (S^n \vee Y^{n+2} \vee S^{n+3}) \rightarrow (S'^n \vee Y'^{n+2} \vee S'^{n+3})$ such that i) $f | S^n \operatorname{maps} S^n$ in S'^n with degree 1, ii) $f | Y^{n+2} \operatorname{maps} e^{n+2}$ in e'^{n+2} with degree 1, iii) f maps the upper hemi-sphere E_+^{n+3} of S^{n+3} in S'^{n+3} with degree 1 and maps the lower hemi-sphere E_-^{n+3} in S'^n by $a\nu$. Consider also a map $f': (S'^n \vee Y'^{n+2} \vee S'^{n+3}) \rightarrow (S^n \vee Y^{n+2} \vee S^{n+3})$ such that $f \operatorname{maps} S'^n, e'^{n+2}, E'_+^{n+3}$ are mapped in S^n, e^{n+2}, S^{n+3} with degree 1 respectively and E'_-^{m+3} is mapped in S^n by $-a\nu$. Then $f \cdot f', f' \cdot f$ are homotopic to identity maps of $P_{n-1}^{n+3}, P'_{n-3}^{n+3}$ respectively. On the other hand, f and f' are extended to mappings $g: K \to K', g': K' \to K$ such that $g \cdot g', g' \cdot g$ are homotopic to identity mappings of K, K' respectively. Thus we may suppose that ∂e^{n+4} does not cover e^n .

Since Image $\partial_3^4 = \{2e^{n+1}\} + \{\eta e^{n+2}\}$, we have $\pi_3^4 = \{e^{n+3}\}_8 + \{\nu e^n\}_{24}$.

ii) $l \equiv 1 \mod 2$. Since $\operatorname{Sq}^4 e^n \neq 0$, ∂e^{n+4} covers e^n by $k\nu$ with odd k. By the same reason as in the case $l \equiv 0$ (2), the homotopy type of P_{n-1}^{n+4} depends only on $k \mod 2$. Thus we may suppose k = 1. Hence we have Image $\partial_3^4 = \{2e^{n+3}\} + \{\eta e^{n+2}\} + \{\nu e^n\}$ and $\pi_3^4 = \{e^{n+3}\}_{48} + \{\eta e^{n+2}\}_4$.

We have $\pi_4^1 = \{\nu e^{n+1}\}_{24}$, $\sigma_5^2 = \{\overline{\nu} e^{n+2}\}$, Image $\hat{\sigma}_5^2 = 2\nu e^{n+1}$, $\sigma_4^2 = \{\overline{\varepsilon} e^{n+2}\}$ and j_4^2 is an onto-homomorphism. Thus we have $\pi_4^2 = \{\varepsilon e^{n+2}\}_2 + \{\nu e^{n+1}\}_2$.

Since Image $\partial_5^3 = 0$, $\sigma_4^3 = \{\bar{\eta}e^{n+3}\}$, j_4^3 is an onto-homomorphism and $2\{\eta e^{n+3}\} = 0$ in π_4^3 , we have $\pi_4^3 = \{\eta e^{n+3}\}_2 + \{\varepsilon e^{n+2}\}_2 + \{\nu e^{n+1}\}_2$.

We have $\sigma_5^4 = \{\overline{\eta}e^{n+4}\}$, Image $\partial_5^4 = \{ee^{n+2}\}$ and Image $j_4^4 = 0$. These imply that $\pi_4^4 = \{\eta e^{n+3}\}_2 + \{\nu e^{n+1}\}_2$.

²⁾ For example, see Steenrod's book: The topology of bibre bundles, p. 142.

Since $\operatorname{Sq}^2 e^{n+3} \neq 0$ and $\operatorname{Sq}^4 e^{n+1} = 0$ for $l \equiv 0$, ∂e^{n+5} covers e^{n+3} by η and e^{n+1} by $k\nu$ with even k. However $2\{\nu e^{n+1}\}$ is nullhomotopic in π_4^4 , and so we may suppose that ∂e^{n+5} does not cover e^{n+1} .

Since $\operatorname{Sq}^2 e^{n+3} \neq 0$ and $\operatorname{Sq}^4 e^{n+1} \neq 0$ for $l \equiv 1$, we may suppose that ∂e^{n+5} covers e^{n+3} by γ and e^{n+1} by ν .

Therefore we have $\pi_4^5 = \{\nu e^{n+1}\}_2$ for both cases.

Since $\pi_5^1 = 0$ and Kernel $j_5^3 = \{12\nu e^{n+2}\}$, we have $\pi_5^2 = \{12\nu e^{n+2}\}_2$.

We have also Image $\partial_5^3 = 0$, $\sigma_5^3 = \{\overline{e}e^{n+3}\}$ and j_5^3 is an onto-homomorphism. These imply that $\pi_5^3 = \{ee^{n+3}\}_2 + \{12\nu e^{n+2}\}_2$.

Since $\sigma_6^4 = \{\overline{\epsilon}e^{n+4}\}_2$, Image $\partial_6^4 = \{12\nu e^{n+2}\}$ and Image $j_5^4 = 0$, we have $\pi_5^4 = \{\epsilon e^{n+3}\}_2$. We have $\sigma_6^5 = \{\overline{\eta}e^{n+5}\}$, Image $\partial_6^5 = \{\epsilon e^{n+3}\}$ and Kernel $\partial_5^5 = \{2e^{n+5}\}$. These imply that $\pi_5^5 = \{2e^{n+5}\}_{\infty}$ for $l \equiv 0$, $=\{\overline{2}e^{n+5}+\overline{\nu}e^{n+2}\}_{\infty}$ for $l \equiv 1$, where $f = (\overline{2}e^{n+5}+\overline{\nu}e^{n+2})$: $S^{n+5} \rightarrow P_{n-1}^{n+5}$ is a mapping such that the upper hemi-sphere E_+^{n+5} of S^{n+5} is mapped in e^{n+5} with degree 2 and the lower hemi-shere E_+^{n+5} of S^{n+5} in e^{n+2} by the suspension of ν .

Since Sq¹ $e^{n+5} \neq 0$, e^{n+6} is attached to P_{n-1}^{n+5} by a generator of π_5^5 . Thus we have $\pi_5^6 = 0$ for both cases.

Summing up the above, the homotopy type of P_{n-1}^{n+6} is described as follows:

Case 2: n = 4l + 1.

In this case P_{n-1}^{n+5} is of the same homotopy type as the complex K obtained by shrinking e^{n-1} to a point in P_{n-2}^{n+5} .

Therefore the homotopy type of P_{n-1}^{n+5} is described as follows:

Then we have:

 $\begin{aligned} \pi_1^1 &= \{\eta e^n\}_2, \quad \pi_1^2 &= \{\eta e^n\}_2, \quad \pi_2^1 &= \{\eta e^{n+1}\}_4, ^{10} \quad \pi_2^2 &= \{e^{n+2}\}_\infty + \{\eta e^{n+1}\}_4, \quad \pi_2^3 &= \{e^{n+2}\}_8, \\ \pi_3^1 &= \{\varepsilon e^{n+1}\}_2 + \{\nu e^n\}_2, ^{10} \quad \pi_3^2 &= \{\eta e^{n+2}\}_2 + \{\varepsilon e^{n+1}\}_2 + \{\nu e^n\}_2, \quad \pi_3^3 &= \{\eta e^{n+2}\}_2 + \{\nu e^n\}_2, \quad \pi_3^4 &= \{2e^{n+4}\}_\infty \quad \text{for} \quad l \equiv 0, \\ \pi_4^1 &= \{12\nu e^{n+1}\}_2, ^{10} \quad \pi_4^2 &= \{\varepsilon e^{n+2}\}_2 + \{12\nu e^{n+1}\}_2, \quad \pi_4^3 &= \{\varepsilon e^{n+2}\}_2, \quad \pi_4^4 &= \{2e^{n+4}\}_\infty \quad \text{for} \quad l \equiv 0, \\ &= \{\overline{2}e^{n+4} + \overline{\nu}e^{n+1}\}_\infty \quad \text{for} \quad l \equiv 1, \quad \pi_4^5 = 0, \quad \pi_5^1 = 0, \\ \pi_5^1 &= 0 \quad \text{ince} \quad \text{Sq}^4 e^{n+2} = 0 \quad \text{for} \quad l \equiv 0 \quad \text{and} \quad \pm 0 \quad \text{for} \quad l \equiv 1, \quad e^{n+6} \quad \text{is attached to} \quad e^{n+2} \quad \text{by} \quad k\nu, \\ \text{where} \quad k \text{ is even for} \quad l \equiv 0 \quad \text{and} \quad k \text{ is odd for} \quad l \equiv 1. \quad \text{However} \quad 2\{\nu e^{n+2}\}_2 = 0 \quad \text{in} \quad \pi_5^5, \quad \text{thus} \\ \text{we have the following, the homotopy type depends only on} \quad k \mod 2, \quad \pi_5^6 = \{\nu e^{n+2}\}_2 \\ \text{for} \quad l \equiv 0 \quad \text{and} \quad \pi_5^6 = 0 \quad \text{for} \quad l \equiv 1. \end{aligned}$

Case 3: n = 4l + 2.

We obtain P_{n-1}^{n+5} from P_{n-2}^{n+5} by the same manner in the preceding section. The homotopy tope P_{n-1}^{n+5} is described as follows:

Then we have:

 $\begin{aligned} \pi_1^1 &= \{e^{n+1}\}_{\infty} + \{\eta e^n\}_2, \quad \pi_1^2 &= \{e^{n+1}\}_4, \quad \pi_2^1 &= \{\eta e^{n+1}\}_2 + \{\varepsilon e^n\}_2, \quad \pi_2^2 &= \{\eta e^{n+1}\}_2, \quad \pi_3^3 &= 0, \\ \pi_3^1 &= \{\varepsilon e^{n+1}\}_2 + \{\nu e^n\}_{24}, \quad \pi_3^2 &= \{\varepsilon e^{n+1}\}_2 + \{\nu e^n\}_{12}, \quad \pi_3^3 &= \{2e^{n+2}\}_{\infty} + \{\nu e^n\}_{12}, \quad \pi_3^4 &= \{\nu e^n\}_{12}, \\ \pi_4^1 &= \{\nu e^{n+1}\}_{24}, \quad \pi_4^2 &= \{\nu e^{n+1}\}_2, \quad \pi_3^3 &\approx \pi_4^4 \approx \pi_4^2, \quad \pi_5^4 &= \{\nu e^{n+1}\}_2 \quad \text{for} \quad l \equiv 0, \quad \pi_5^4 = 0 \quad \text{for} \quad l \equiv 1, \\ \pi_5^1 &= 0, \quad \pi_5^2 &= \{12\nu e^{n+2}\}_2, \quad \pi_5^3 &= \{\overline{\epsilon}e^{n+3} + 6\overline{\nu}e^{n+4}\}_4, \quad \pi_5^4 &= \{\overline{\eta}e^{n+4} + 3\overline{\nu}e^{n+2}\}_8 \quad \text{where} \quad g = (\overline{\eta}e^{n+4} + 3\overline{\nu}e^{n+2}): \quad E_+^{n+5} &\sim E_-^{n+5} \rightarrow P_{n-1}^{n+4} \quad \text{is a mapping such that} \quad g \mid E_+^{n+5} &= \overline{\eta}e^{n+4} \quad \text{and} \quad g \mid E_-^{n+5} \\ &= 3\overline{\nu}e^{n+2}. \quad \text{We have} \quad g \mid E_+^{n+5} &= \{\eta, 2, \eta\} e^{n+1}, \quad \text{where} \quad \{\eta, 2, \eta\} \quad \text{is a Toda's construction} \\ \text{and is known} \quad \{\eta, 2, \eta\} &= \pm 6\nu \quad (\text{See} \quad [2, \text{ Chap. 5}]), \quad \text{and so } g \quad \text{represents an element of} \\ \pi_{n+5} \quad (P_{n-1}^{n+5}), \quad \pi_5^5 &= \{e^{n+5}\}_{\infty} + \{g\}_8 \quad \text{for} \quad l \equiv 0, \quad \pi_5^5 &= \{\overline{2}e^{n+5} + \overline{\nu}e^{n+2}\}_{\infty} + \{g\}_8 \quad \text{for} \quad l \equiv 1. \end{aligned}$

Since $\operatorname{Sq}^{1}e^{n+5} \neq 0$ and $\operatorname{Sq}^{2}e^{n+4} \neq 0$, e^{n+6} is attached to e^{n+5} by a mapping of degree 2 and to e^{n+4} by η . Thus we have $\pi_{5}^{6} = \{e^{n+5}\}_{16}$ for $l \equiv 0$ and $\pi_{5}^{6} = \{\overline{2}e^{n+5} + \overline{\nu}e^{n+2}\}_{8}$ for $l \equiv 1$.

Case 4: n = 4l + 3.

The homotopy type of P_{n-1}^{n+5} is described as follows:

Yoshihiro SAITO

The we have:

 $\begin{aligned} \pi_1^1 &= \{\eta e^n\}_2, \ \pi_1^2 &= 0, \ \pi_2^1 &= \{\eta e^{n+1}\}_4, \ ^1 \right) \ \pi_2^2 &= \{2e^{n+2}\}_\infty + \{\eta e^{n+1}\}_2, \ \pi_2^3 &= \{\eta e^{n+1}\}_2, \ \pi_3^3 &= \{\nu e^n\}_2 \\ &+ \{\varepsilon e^{n+1}\}_2, \ ^1 \right) \ \pi_3^2 &\approx \pi_3^3 \approx \pi_3^1, \ \pi_3^4 &= \{\varepsilon e^{n+1}\}_2 \ \text{ for } l \equiv 1, \ \pi_3^4 &= \{\nu e^n\}_2 + \{\varepsilon e^{n+1}\}_2 \ \text{ for } l \equiv 0, \\ \pi_4^1 &= \{12\nu e^{n+1}\}_2, \ ^1 \ \pi_4^2 &= \{\varepsilon e^{n+2} + 6\bar{\nu} e^{n+1}\}_4, \ \pi_3^4 &= \{\bar{\eta} e^{n+3} + 3\bar{\nu} e^{n+1}\}_8, \ \pi_4^4 &= \{e^{n+4}\}_\infty + \{\bar{\eta} e^{n+3} + 3\bar{\nu} e^{n+1}\}_8, \ \pi_4^4 &= \{e^{n+4}\}_\infty + \{\bar{\eta} e^{n+3} + 3\bar{\nu} e^{n+1}\}_8 \ \text{ for } l \equiv 0, \ \pi_4^5 &= \{2e^{n+4} + \bar{\nu} e^{n+1}\}_8 \ \text{ for } l \equiv 1, \ \pi_5^5 &= \{\nu e^{n+2}\}_2, \ \pi_5^5 &= \{\nu e^{n+2}\}_2, \ \pi_5^5 &= \{\nu e^{n+2}\}_2. \end{aligned}$

Since $\operatorname{Sq}^2 e^{n+4} \neq 0$ and $\operatorname{Sq}^4 e^{n+2} = 0$ for $l \equiv 0$, e^{n+6} is attached to P_{n-1}^{n+5} by $\{\eta e^{n+4}\}$. Since $\operatorname{Sq}^4 e^{n+2} \neq 0$ for $l \equiv 1$, e^{n+6} is attached to P_{n-1}^{n+5} by $\{\nu e^{n+2}\} + \{\eta e^{n+4}\}$. Thus we have $\pi_5^6 = \{\nu e^{n+2}\}_2$ for both cases.

4. The homotopy groups of the Stiefel manifolds.

From the Whitehead's theorem, we have the tables of the homotopy groups of the Stiefel manifolds.

Theorem 1. The table of the homotopy groups $\pi_{k+2}(V_{k+m}, m)$ $(k \ge 4)$ is the following:

k m	1	2	3	$4\leqslant m$
4 <i>l</i>	Z_2	$Z_2 + Z_2$	$Z_2 + Z_2$	$Z_2 + Z_2$
4l + 1	Z_2	Z_4	$Z_{\infty}+Z_4$	Z_8
4l + 2	Z_2	$Z_2 + Z_2$	Z_2	0
4l + 3	Z_2	Z_4	$Z_{\infty}+Z_2$	Z_2

Theorem 2. The table of the homotopy groups $\pi_{k+3}(V_{k+m}, m)$ $(k \ge 5)$ is the following:

k m	1	2	3	4	$5 \leqslant m$
$4 l \left\{ \begin{array}{l} l \equiv 0 \\ l \equiv 1 \end{array} \right.$	Z_{24}	$Z_2 + Z_{24}$	$Z_4 + Z_{24}$	$Z_{\infty}+Z_4+Z_{24}$	$\left\{ egin{array}{c} Z_8 + Z_{24} \ Z_4 + Z_{48} \end{array} ight.$
4l + 1	Z_{24}	$Z_2 + Z_2$	$Z_2 + Z_2 + Z_2$	$Z_2 + Z_2$	Z_2
4 l + 2	Z_{24}	$Z_2 + Z_{24}$	$Z_2 + Z_{12}$	$Z_{\infty}+Z_{12}$	Z_{12}
$4 l + 3 \begin{cases} l \equiv 0 \\ l \equiv 1 \end{cases}$	Z_{24}	$Z_2 + Z_2$	$Z_2 + Z_2$	$Z_2 + Z_2$	$\left\{ egin{array}{c} Z_2+Z_2 \ Z_2 \end{array} ight.$

Theorem 3. The table of the homotopy groups π_{k+4} (V_{k+m}, m) $(k \ge 6)$ is the following:

k m	1	2	3	4	5	$6 \leqslant m$
4 <i>l</i>	0	Z_{24}	$Z_2 + Z_2$	$Z_2 + Z_2 + Z_2$	$Z_2 + Z_2$	Z_2
4l + 1	0	Z_2	$Z_2 + Z_2$	Z_2	Z_{∞}	0
$4\ l\ +\ 2\ \left\{ egin{array}{c} l\ \equiv\ 0 \\ l\ \equiv\ 1 \end{array} ight.$	0	Z_{24}	Z_2	Z_2	Z_2	$\left\{ \begin{array}{c} Z_2 \\ 0 \end{array} \right.$
$4l + 3 \left\{ \begin{array}{l} l \equiv 0 \\ l \equiv 1 \end{array} \right.$	0	Z_2	Z_4	Z_8	$Z_{\infty}+Z_8$	$\left\{ egin{array}{c} Z_{16} \ Z_8 \end{array} ight.$

Theorem 4. The table of the homotopy groups $\pi_{k+5}(V_{k+m}, m)$ $(k \ge 7)$ is the following:

k m	1	2	3	4	5	6	<i>m</i> ≼7
4 <i>l</i>	0	0	Z_2	$Z_2 + Z_2$	Z_2	Z_{∞}	0
$4l + 1 \left\{ \begin{matrix} l \equiv 0 \\ l \equiv 1 \end{matrix} \right.$	0	0	Z_{24}	Z_2	Z_2	Z_2	$\left\{egin{array}{c} Z_2 \ 0 \end{array} ight.$
4 l + 2	0	0	Z_2	Z_4	Z_8	$Z_{\infty}+Z_8$	Z_{16}
4l + 3	0	0	Z_{24}	$Z_2 + Z_2$	$Z_2 + Z_2 + Z_2$	$Z_2 + Z_2$	Z_2

References

- [1] M. G. Baratt and G. F. Peacher, A note on $\pi_r(V_n, m)$, Proc. Nat. Acad. Sci, U. S. A. 38 (1952) 119–121.
- [2] H. Toda, Generalized Whitehead products and homotopy groups of spheres, Jour. of the Inst. of Polytechnics, Osaka City Univ., 3 (1952).
- [3] J. H. C. Whitehead, On the group $\pi_r(V_n, m)$ and shere bundles, Proc. London Math. Soc., 48 (1944).